Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
/* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
/*
	Written 1998-1999 by Donald Becker.

	This software may be used and distributed according to the terms
	of the GNU Public License (GPL), incorporated herein by reference.

	The author may be reached as becker@usra.edu, or
	Donald Becker
	312 Severn Ave. #W302
	Annapolis MD 21403

	Support and updates available at
	http://cesdis.gsfc.nasa.gov/linux/drivers/starfire.html
*/

static const char *versionA =
"starfire.c:v0.12 5/28/99  Written by Donald Becker\n",
*versionB =" Undates and info at http://www.beowulf.org/linux/drivers.html\n";

/* A few user-configurable values.   These may be modified when a driver
   module is loaded.*/

/* Used for tuning interrupt latency vs. overhead. */
static int interrupt_mitigation = 0x0;

static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
static int max_interrupt_work = 20;
static int min_pci_latency = 64;
static int mtu = 0;
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
   The Starfire has a 512 element hash table based on the Ethernet CRC.  */
static int multicast_filter_limit = 32;

/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
   Setting to > 1518 effectively disables this feature. */
static int rx_copybreak = 0;

/* Used to pass the media type, etc.
   Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
   The media type is usually passed in 'options[]'.
*/
#define MAX_UNITS 8		/* More are supported, limit only on options */
static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};

/* Operational parameters that are set at compile time. */

/* The "native" ring sizes are either 256 or 2048.
   However in some modes a descriptor may be marked to wrap the ring earlier.
   The driver allocates a single page for each descriptor ring, constraining
   the maximum size in an architecture-dependent way.
*/
#define RX_RING_SIZE	256
#define TX_RING_SIZE	32
/* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
#define DONE_Q_SIZE	1024

/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT  (2*HZ)

#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/

#if !defined(__OPTIMIZE__)  ||  !defined(__KERNEL__)
#warning  You must compile this file with the correct options!
#warning  See the last lines of the source file.
#error You must compile this driver with "-O".
#endif

/* Include files, designed to support most kernel versions 2.0.0 and later. */
#ifdef MODULE
#ifdef MODVERSIONS
#include <linux/modversions.h>
#endif
#include <linux/module.h>
#else
#define MOD_INC_USE_COUNT
#define MOD_DEC_USE_COUNT
#endif

#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/malloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/processor.h>		/* Processor type for cache alignment. */
#include <asm/bitops.h>
#include <asm/io.h>

/* Kernel compatibility defines, some common to David Hind's PCMCIA package.
   This is only in the support-all-kernels source code. */

#define RUN_AT(x) (jiffies + (x))

#ifdef MODULE
MODULE_AUTHOR("Donald Becker <becker@cesdis.gsfc.nasa.gov>");
MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
MODULE_PARM(max_interrupt_work, "i");
MODULE_PARM(min_pci_latency, "i");
MODULE_PARM(mtu, "i");
MODULE_PARM(debug, "i");
MODULE_PARM(rx_copybreak, "i");
MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
#endif

/*
				Theory of Operation

I. Board Compatibility

State the chips and boards this driver is known to work with.
Note any similar chips or boards that will not work.

This driver skeleton demonstrates the driver for an idealized
descriptor-based bus-master PCI chip.

II. Board-specific settings

No jumpers exist on most PCI boards, so this section is usually empty.

III. Driver operation

IIIa. Ring buffers

The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
ring sizes are set fixed by the hardware, but may optionally be wrapped
earlier by the END bit in the descriptor.
This driver uses that hardware queue size for the Rx ring, where a large
number of entries has no ill effect beyond increases the potential backlog.
The Tx ring is wrapped with the END bit, since a large hardware Tx queue
disables the queue layer priority ordering and we have no mechanism to
utilize the hardware two-level priority queue.  When modifying the
RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
levels.

IIIb/c. Transmit/Receive Structure

See the Adaptec manual for the many possible structures, and options for
each structure.  There are far too many to document here.

For transmit this driver uses type 1 transmit descriptors, and relies on
automatic minimum-length padding.  It does not use the completion queue
consumer index, but instead checks for non-zero status entries.

For receive this driver uses type 0 receive descriptors.  The driver
allocates full frame size skbuffs for the Rx ring buffers, so all frames
should fit in a single descriptor.  The driver does not use the completion
queue consumer index, but instead checks for non-zero status entries.

When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
is allocated and the frame is copied to the new skbuff.  When the incoming
frame is larger, the skbuff is passed directly up the protocol stack.
Buffers consumed this way are replaced by newly allocated skbuffs in a later
phase of receive.

A notable aspect of operation is that unaligned buffers are not permitted by
the Starfire hardware.  The IP header at offset 14 in an ethernet frame thus
isn't longword aligned, which may cause problems on some machine
e.g. Alphas.  Copied frames are put into the skbuff at an offset of "+2",
16-byte aligning the IP header.

IIId. Synchronization

The driver runs as two independent, single-threaded flows of control.  One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag.  The other thread is the interrupt handler, which is single
threaded by the hardware and interrupt handling software.

The send packet thread has partial control over the Tx ring and 'dev->tbusy'
flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
the 'lp->tx_full' flag.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
clears both the tx_full and tbusy flags.

IV. Notes

IVb. References

The Adaptec Starfire manuals.
http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html


IVc. Errata

*/



/* This table drives the PCI probe routines.  It's mostly boilerplate in all
   PCI drivers, and will likely be provided by some future kernel.
*/
enum pci_flags_bit {
	PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
	PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
};
struct pci_id_info {
	const char *name;
	u16	vendor_id, device_id, device_id_mask, flags;
	int io_size;
	struct net_device *(*probe1)(int pci_bus, int pci_devfn, long ioaddr, int irq, int chip_idx, int fnd_cnt);
};

static struct net_device *starfire_probe1(int pci_bus, int pci_devfn, long ioaddr,
									  int irq, int chp_idx, int fnd_cnt);

#if 0
#define ADDR_64BITS 1			/* This chip uses 64 bit addresses. */
#endif
#define MEM_ADDR_SZ 0x80000		/* And maps in 0.5MB(!).  */

static struct pci_id_info pci_tbl[] = {
	{ "Adaptec Starfire 6915",
	  0x9004, 0x6915, 0xffff, PCI_USES_MASTER, 128, starfire_probe1},
	{0,},						/* 0 terminated list. */
};


/* A chip capabilities table, matching the entries in pci_tbl[] above. */
enum chip_capability_flags {CanHaveMII=1, };
struct chip_info {
	char *chip_name;
	int io_size;
	int flags;
	void (*media_timer)(unsigned long data);
} static skel_netdrv_tbl[] = {
	{"Adaptec Starfire 6915", 128, CanHaveMII, 0, },
};


/* Offsets to the device registers.
   Unlike software-only systems, device drivers interact with complex hardware.
   It's not useful to define symbolic names for every register bit in the
   device.  The name can only partially document the semantics and make
   the driver longer and more difficult to read.
   In general, only the important configuration values or bits changed
   multiple times should be defined symbolically.
*/
enum register_offsets {
	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
	MIICtrl=0x52000, StationAddr=0x50120, EEPROMCtrl=0x51000,
	TxDescCtrl=0x50090,
	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
	TxThreshold=0x500B0,
	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
	CompletionQConsumerIdx=0x500C4,
	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
	TxMode=0x55000,
};

/* Bits in the interrupt status/mask registers. */
enum intr_status_bits {
	IntrNormalSummary=0x8000,	IntrAbnormalSummary=0x02000000,
	IntrRxDone=0x0300, IntrRxEmpty=0x10040, IntrRxPCIErr=0x80000,
	IntrTxDone=0x4000, IntrTxEmpty=0x1000, IntrTxPCIErr=0x80000,
	StatsMax=0x08000000, LinkChange=0xf0000000,
	IntrTxDataLow=0x00040000,
};

/* Bits in the RxFilterMode register. */
enum rx_mode_bits {
	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
	AcceptMulticast=0x10, AcceptMyPhys=0xE040,
};

/* The Rx and Tx buffer descriptors. */
struct starfire_rx_desc {
	u32 rxaddr;					/* Optionally 64 bits. */
};
enum rx_desc_bits {
	RxDescValid=1, RxDescEndRing=2,
};

/* Completion queue entry.
   You must update the page allocation, init_ring and the shift count in rx()
   if using a larger format. */
struct rx_done_desc {
	u32 status;					/* Low 16 bits is length. */
#ifdef full_rx_status
	u32 status2;
	u16 vlanid;
	u16 csum; 			/* partial checksum */
	u32 timestamp;
#endif
};
enum rx_done_bits {
	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
};

/* Type 1 Tx descriptor. */
struct starfire_tx_desc {
	u32 status;					/* Upper bits are status, lower 16 length. */
	u32 addr;
};
enum tx_desc_bits {
	TxDescID=0xB1010000,		/* Also marks single fragment, add CRC.  */
	TxDescIntr=0x08000000, TxRingWrap=0x04000000,
};
struct tx_done_report {
	u32 status;					/* timestamp, index. */
#if 0
	u32 intrstatus;				/* interrupt status */
#endif
};

struct netdev_private {
	/* Descriptor rings first for alignment. */
	struct starfire_rx_desc *rx_ring;
	struct starfire_tx_desc *tx_ring;
	struct net_device *next_module;			/* Link for devices of this type. */
	const char *product_name;
	/* The addresses of rx/tx-in-place skbuffs. */
	struct sk_buff* rx_skbuff[RX_RING_SIZE];
	struct sk_buff* tx_skbuff[TX_RING_SIZE];
	/* Pointers to completion queues (full pages).  I should cache line pad..*/
	u8 pad0[100];
	struct rx_done_desc *rx_done_q;
	unsigned int rx_done;
	struct tx_done_report *tx_done_q;
	unsigned int tx_done;
	struct net_device_stats stats;
	struct timer_list timer;	/* Media monitoring timer. */
	/* Frequently used values: keep some adjacent for cache effect. */
	int chip_id;
	unsigned char pci_bus, pci_devfn;
	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
	unsigned int cur_tx, dirty_tx;
	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
	unsigned int tx_full:1;				/* The Tx queue is full. */
	/* These values are keep track of the transceiver/media in use. */
	unsigned int duplex_lock:1;
	unsigned int full_duplex:1,			/* Full-duplex operation requested. */
		rx_flowctrl:1,
		tx_flowctrl:1;					/* Use 802.3x flow control. */
	unsigned int medialock:1;			/* Do not sense media. */
	unsigned int default_port:4;		/* Last dev->if_port value. */
	u32 tx_mode;
	u8 tx_threshold;
	/* MII transceiver section. */
	int mii_cnt;						/* MII device addresses. */
	u16 advertising;					/* NWay media advertisement */
	unsigned char phys[2];				/* MII device addresses. */
	u32 pad[4];							/* Used for 32-byte alignment */
};

static int  mdio_read(struct net_device *dev, int phy_id, int location);
static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
static int  netdev_open(struct net_device *dev);
static void check_duplex(struct net_device *dev, int startup);
static void netdev_timer(unsigned long data);
static void tx_timeout(struct net_device *dev);
static void init_ring(struct net_device *dev);
static int  start_tx(struct sk_buff *skb, struct net_device *dev);
static void intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
static void netdev_error(struct net_device *dev, int intr_status);
static int  netdev_rx(struct net_device *dev);
static void netdev_error(struct net_device *dev, int intr_status);
static void set_rx_mode(struct net_device *dev);
static struct net_device_stats *get_stats(struct net_device *dev);
static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int  netdev_close(struct net_device *dev);



/* A list of our installed devices, for removing the driver module. */
static struct net_device *root_net_dev = NULL;

/* Ideally we would detect all network cards in slot order.  That would
   be best done a central PCI probe dispatch, which wouldn't work
   well when dynamically adding drivers.  So instead we detect just the
   cards we know about in slot order. */

static int pci_etherdev_probe(struct pci_id_info pci_tbl[])
{
	int cards_found = 0;
	int pci_index = 0;
	unsigned char pci_bus, pci_device_fn;
	struct net_device *dev;

	if ( ! pcibios_present())
		return -ENODEV;

	for (;pci_index < 0xff; pci_index++) {
		u16 vendor, device, pci_command, new_command;
		int chip_idx, irq;
		long pciaddr;
		long ioaddr;

		if (pcibios_find_class (PCI_CLASS_NETWORK_ETHERNET << 8, pci_index,
								&pci_bus, &pci_device_fn)
			!= PCIBIOS_SUCCESSFUL)
			break;
		pcibios_read_config_word(pci_bus, pci_device_fn,
								 PCI_VENDOR_ID, &vendor);
		pcibios_read_config_word(pci_bus, pci_device_fn,
								 PCI_DEVICE_ID, &device);

		for (chip_idx = 0; pci_tbl[chip_idx].vendor_id; chip_idx++)
			if (vendor == pci_tbl[chip_idx].vendor_id
				&& (device & pci_tbl[chip_idx].device_id_mask) ==
				pci_tbl[chip_idx].device_id)
				break;
		if (pci_tbl[chip_idx].vendor_id == 0) 		/* Compiled out! */
			continue;

		{
			struct pci_dev *pdev = pci_find_slot(pci_bus, pci_device_fn);

			pciaddr = pdev->resource[0].start;
#if defined(ADDR_64BITS) && defined(__alpha__)
			pciaddr |= ((long)pdev->base_address[1]) << 32;
#endif
			irq = pdev->irq;
		}

		if (debug > 2)
			printk(KERN_INFO "Found %s at PCI address %#lx, IRQ %d.\n",
				   pci_tbl[chip_idx].name, pciaddr, irq);

		if ((pci_tbl[chip_idx].flags & PCI_USES_IO)) {
			if (check_region(pciaddr, pci_tbl[chip_idx].io_size))
				continue;
			ioaddr = pciaddr;
		} else if ((ioaddr = (long)ioremap(pciaddr&~0xf, MEM_ADDR_SZ)) == 0) {
			printk(KERN_INFO "Failed to map PCI address %#lx.\n",
				   pciaddr);
			continue;
		}

		pcibios_read_config_word(pci_bus, pci_device_fn,
								 PCI_COMMAND, &pci_command);
		new_command = pci_command | (pci_tbl[chip_idx].flags & 7);
		if (pci_command != new_command) {
			printk(KERN_INFO "  The PCI BIOS has not enabled the"
				   " device at %d/%d!  Updating PCI command %4.4x->%4.4x.\n",
				   pci_bus, pci_device_fn, pci_command, new_command);
			pcibios_write_config_word(pci_bus, pci_device_fn,
									  PCI_COMMAND, new_command);
		}

		dev = pci_tbl[chip_idx].probe1(pci_bus, pci_device_fn, ioaddr,
									   irq, chip_idx, cards_found);

		if (dev  && (pci_tbl[chip_idx].flags & PCI_COMMAND_MASTER)) {
			u8 pci_latency;
			pcibios_read_config_byte(pci_bus, pci_device_fn,
									 PCI_LATENCY_TIMER, &pci_latency);
			if (pci_latency < min_pci_latency) {
				printk(KERN_INFO "  PCI latency timer (CFLT) is "
					   "unreasonably low at %d.  Setting to %d clocks.\n",
					   pci_latency, min_pci_latency);
				pcibios_write_config_byte(pci_bus, pci_device_fn,
										  PCI_LATENCY_TIMER, min_pci_latency);
			}
		}
		cards_found++;
	}

	return cards_found ? 0 : -ENODEV;
}

int starfire_probe(void)
{
	if (pci_etherdev_probe(pci_tbl) < 0)
		return -ENODEV;
	printk(KERN_INFO "%s" KERN_INFO "%s", versionA, versionB);
	return 0;
}


static struct net_device *
starfire_probe1(int pci_bus, int pci_devfn, long ioaddr, int irq, int chip_id, int card_idx)
{
	struct netdev_private *np;
	int i, option = card_idx < MAX_UNITS ? options[card_idx] : 0;
	struct net_device *dev = init_etherdev(NULL, sizeof(struct netdev_private));

	printk(KERN_INFO "%s: %s at 0x%lx, ",
		   dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr);

	/* Serial EEPROM reads are hidden by the hardware. */
	for (i = 0; i < 6; i++)
		dev->dev_addr[i] = readb(ioaddr + EEPROMCtrl + 20-i);
	for (i = 0; i < 5; i++)
			printk("%2.2x:", dev->dev_addr[i]);
	printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);

#if ! defined(final_version) /* Dump the EEPROM contents during development. */
	if (debug > 4)
		for (i = 0; i < 0x20; i++)
			printk("%2.2x%s", readb(ioaddr + EEPROMCtrl + i),
				   i % 16 != 15 ? " " : "\n");
#endif

	/* Reset the chip to erase previous misconfiguration. */
	writel(1, ioaddr + PCIDeviceConfig);

	dev->base_addr = ioaddr;
	dev->irq = irq;

	/* Make certain the descriptor lists are aligned. */
	np = (void *)(((long)kmalloc(sizeof(*np), GFP_KERNEL) + 15) & ~15);
	memset(np, 0, sizeof(*np));
	dev->priv = np;

	np->next_module = root_net_dev;
	root_net_dev = dev;

	np->pci_bus = pci_bus;
	np->pci_devfn = pci_devfn;
	np->chip_id = chip_id;

	if (dev->mem_start)
		option = dev->mem_start;

	/* The lower four bits are the media type. */
	if (option > 0) {
		if (option & 0x200)
			np->full_duplex = 1;
		np->default_port = option & 15;
		if (np->default_port)
			np->medialock = 1;
	}
	if (card_idx < MAX_UNITS  &&  full_duplex[card_idx] > 0)
		np->full_duplex = 1;

	if (np->full_duplex)
		np->duplex_lock = 1;

	/* The chip-specific entries in the device structure. */
	dev->open = &netdev_open;
	dev->hard_start_xmit = &start_tx;
	dev->stop = &netdev_close;
	dev->get_stats = &get_stats;
	dev->set_multicast_list = &set_rx_mode;
	dev->do_ioctl = &mii_ioctl;

	if (mtu)
		dev->mtu = mtu;

	if (skel_netdrv_tbl[np->chip_id].flags & CanHaveMII) {
		int phy, phy_idx = 0;
		for (phy = 0; phy < 32 && phy_idx < 4; phy++) {
			int mii_status = mdio_read(dev, phy, 1);
			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
				np->phys[phy_idx++] = phy;
				np->advertising = mdio_read(dev, phy, 4);
				printk(KERN_INFO "%s: MII PHY found at address %d, status "
					   "0x%4.4x advertising %4.4x.\n",
					   dev->name, phy, mii_status, np->advertising);
			}
		}
		np->mii_cnt = phy_idx;
	}

	return dev;
}


/* Read the MII Management Data I/O (MDIO) interfaces. */

static int mdio_read(struct net_device *dev, int phy_id, int location)
{
	long mdio_addr = dev->base_addr + MIICtrl + (phy_id<<7) + (location<<2);
	int result, boguscnt=1000;
	/* ??? Must add a busy-wait here. */
	do
		result = readl(mdio_addr);
	while ((result & 0xC0000000) != 0x80000000 && --boguscnt >= 0);
	return result & 0xffff;
}

static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
{
	long mdio_addr = dev->base_addr + MIICtrl + (phy_id<<7) + (location<<2);
	writel(value, mdio_addr);
	/* The busy-wait will occur before a read. */
	return;
}


static int netdev_open(struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int i;

	/* Do we need to reset the chip??? */

	if (request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev))
		return -EAGAIN;

	/* Disable the Rx and Tx, and reset the chip. */
	writel(0, ioaddr + GenCtrl);
	writel(1, ioaddr + PCIDeviceConfig);
	if (debug > 1)
		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
			   dev->name, dev->irq);
	/* Allocate the various queues, failing gracefully. */
	if (np->tx_done_q == 0)
		np->tx_done_q = (struct tx_done_report *)get_free_page(GFP_KERNEL);
	if (np->rx_done_q == 0)
		np->rx_done_q = (struct rx_done_desc *)get_free_page(GFP_KERNEL);
	if (np->tx_ring == 0)
		np->tx_ring = (struct starfire_tx_desc *)get_free_page(GFP_KERNEL);
	if (np->rx_ring == 0)
		np->rx_ring = (struct starfire_rx_desc *)get_free_page(GFP_KERNEL);
	if (np->tx_done_q == 0  ||  np->rx_done_q == 0
		|| np->rx_ring == 0 ||  np->tx_ring == 0)
		return -ENOMEM;

	MOD_INC_USE_COUNT;

	init_ring(dev);
	/* Set the size of the Rx buffers. */
	writel((np->rx_buf_sz<<16) | 0xA000, ioaddr + RxDescQCtrl);

	/* Set Tx descriptor to type 1 and padding to 0 bytes. */
	writel(0x02000401, ioaddr + TxDescCtrl);

#if defined(ADDR_64BITS) && defined(__alpha__)
	writel(virt_to_bus(np->rx_ring) >> 32, ioaddr + RxDescQHiAddr);
	writel(virt_to_bus(np->tx_ring) >> 32, ioaddr + TxRingHiAddr);
#else
	writel(0, ioaddr + RxDescQHiAddr);
	writel(0, ioaddr + TxRingHiAddr);
	writel(0, ioaddr + CompletionHiAddr);
#endif
	writel(virt_to_bus(np->rx_ring), ioaddr + RxDescQAddr);
	writel(virt_to_bus(np->tx_ring), ioaddr + TxRingPtr);

	writel(virt_to_bus(np->tx_done_q), ioaddr + TxCompletionAddr);
	writel(virt_to_bus(np->rx_done_q), ioaddr + RxCompletionAddr);

	if (debug > 1)
		printk(KERN_DEBUG "%s:  Filling in the station address.\n", dev->name);

	/* Fill both the unused Tx SA register and the Rx perfect filter. */
	for (i = 0; i < 6; i++)
		writeb(dev->dev_addr[i], ioaddr + StationAddr + 6-i);
	for (i = 0; i < 16; i++) {
		u16 *eaddrs = (u16 *)dev->dev_addr;
		long setup_frm = ioaddr + 0x56000 + i*16;
		writew(eaddrs[0], setup_frm); setup_frm += 4;
		writew(eaddrs[1], setup_frm); setup_frm += 4;
		writew(eaddrs[2], setup_frm); setup_frm += 4;
	}

	/* Initialize other registers. */
	/* Configure the PCI bus bursts and FIFO thresholds. */
	np->tx_threshold = 4;
	writel(np->tx_threshold, ioaddr + TxThreshold);
	writel(interrupt_mitigation, ioaddr + IntrTimerCtrl);

	if (dev->if_port == 0)
		dev->if_port = np->default_port;

	dev->tbusy = 0;
	dev->interrupt = 0;

	if (debug > 1)
		printk(KERN_DEBUG "%s:  Setting the Rx and Tx modes.\n", dev->name);
	set_rx_mode(dev);

	check_duplex(dev, 1);

	dev->start = 1;

	/* Set the interrupt mask and enable PCI interrupts. */
	writel(IntrRxDone | IntrRxEmpty | IntrRxPCIErr |
		   IntrTxDone | IntrTxEmpty | IntrTxPCIErr |
		   StatsMax | LinkChange | IntrNormalSummary | IntrAbnormalSummary
		   | 0x0010 , ioaddr + IntrEnable);
	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
		   ioaddr + PCIDeviceConfig);

	/* Enable the Rx and Tx units. */
	writel(0x000F, ioaddr + GenCtrl);

	if (debug > 2)
		printk(KERN_DEBUG "%s: Done netdev_open().\n",
			   dev->name);

	/* Set the timer to check for link beat. */
	init_timer(&np->timer);
	np->timer.expires = RUN_AT(3*HZ);
	np->timer.data = (unsigned long)dev;
	np->timer.function = &netdev_timer;				/* timer handler */
	add_timer(&np->timer);

	return 0;
}

static void check_duplex(struct net_device *dev, int startup)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int mii_reg5 = mdio_read(dev, np->phys[0], 5);
	int duplex, new_tx_mode ;

	new_tx_mode = 0x0C04 | (np->tx_flowctrl ? 0x0800:0) | (np->rx_flowctrl ? 0x0400:0);
	if (np->duplex_lock)
		duplex = 1;
	else
		duplex = (mii_reg5 & 0x0100) || (mii_reg5 & 0x01C0) == 0x0040;
	if (duplex)
		new_tx_mode |= 2;
	if (np->full_duplex != duplex) {
		np->full_duplex = duplex;
		if (debug)
			printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link"
				   " partner capability of %4.4x.\n", dev->name,
				   duplex ? "full" : "half", np->phys[0], mii_reg5);
	}
	if (new_tx_mode != np->tx_mode) {
		np->tx_mode = new_tx_mode;
		writel(np->tx_mode | 0x8000, ioaddr + TxMode);
		writel(np->tx_mode, ioaddr + TxMode);
	}
}

static void netdev_timer(unsigned long data)
{
	struct net_device *dev = (struct net_device *)data;
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	long ioaddr = dev->base_addr;
	int next_tick = 60*HZ;		/* Check before driver release. */

	if (debug > 3) {
		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x.\n",
			   dev->name, readl(ioaddr + IntrStatus));
	}
	check_duplex(dev, 0);
#if ! defined(final_version)
	/* This is often falsely triggered. */
	if (readl(ioaddr + IntrStatus) & 1) {
		int new_status = readl(ioaddr + IntrStatus);
		/* Bogus hardware IRQ: Fake an interrupt handler call. */
		if (new_status & 1) {
			printk(KERN_ERR "%s: Interrupt blocked, status %8.8x/%8.8x.\n",
				   dev->name, new_status, readl(ioaddr + IntrStatus));
			intr_handler(dev->irq, dev, 0);
		}
	}
#endif

	np->timer.expires = RUN_AT(next_tick);
	add_timer(&np->timer);
}

static void tx_timeout(struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	long ioaddr = dev->base_addr;

	printk(KERN_WARNING "%s: Transmit timed out, status %8.8x,"
		   " resetting...\n", dev->name, readl(ioaddr + IntrStatus));

#ifndef __alpha__
	{
		int i;
		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
		for (i = 0; i < RX_RING_SIZE; i++)
			printk(" %8.8x", (unsigned int)le32_to_cpu(np->rx_ring[i].rxaddr));
		printk("\n"KERN_DEBUG"  Tx ring %p: ", np->tx_ring);
		for (i = 0; i < TX_RING_SIZE; i++)
			printk(" %4.4x", le32_to_cpu(np->tx_ring[i].status));
		printk("\n");
	}
#endif

  /* Perhaps we should reinitialize the hardware here. */
  dev->if_port = 0;
  /* Stop and restart the chip's Tx processes . */

  /* Trigger an immediate transmit demand. */

  dev->trans_start = jiffies;
  np->stats.tx_errors++;
  return;
}


/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void init_ring(struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	int i;

	np->tx_full = 0;
	np->cur_rx = np->cur_tx = 0;
	np->dirty_rx = np->rx_done = np->dirty_tx = np->tx_done = 0;

	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);

	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
		np->rx_skbuff[i] = skb;
		if (skb == NULL)
			break;
		skb->dev = dev;			/* Mark as being used by this device. */
		/* Grrr, we cannot offset to correctly align the IP header. */
		np->rx_ring[i].rxaddr = cpu_to_le32(virt_to_bus(skb->tail) | RxDescValid);
	}
	writew(i-1, dev->base_addr + RxDescQIdx);
	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);

	/* Clear the remainder of the Rx buffer ring. */
	for (  ; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].rxaddr = 0;
		np->rx_skbuff[i] = 0;
	}
	/* Mark the last entry as wrapping the ring. */
	np->rx_ring[i-1].rxaddr |= cpu_to_le32(RxDescEndRing);

	/* Clear the completion rings. */
	for (i = 0; i < DONE_Q_SIZE; i++) {
		np->rx_done_q[i].status = 0;
		np->tx_done_q[i].status = 0;
	}

	for (i = 0; i < TX_RING_SIZE; i++) {
		np->tx_skbuff[i] = 0;
		np->tx_ring[i].status = 0;
	}
	return;
}

static int start_tx(struct sk_buff *skb, struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	unsigned entry;

	/* Block a timer-based transmit from overlapping.  This could better be
	   done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */
	if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) {
		if (jiffies - dev->trans_start < TX_TIMEOUT)
			return 1;
		tx_timeout(dev);
		return 1;
	}

	/* Caution: the write order is important here, set the field
	   with the "ownership" bits last. */

	/* Calculate the next Tx descriptor entry. */
	entry = np->cur_tx % TX_RING_SIZE;

	np->tx_skbuff[entry] = skb;

	np->tx_ring[entry].addr = cpu_to_le32(virt_to_bus(skb->data));
	/* Add  |TxDescIntr to generate Tx-done interrupts. */
	np->tx_ring[entry].status = cpu_to_le32(skb->len | TxDescID);
	if (debug > 5) {
		printk(KERN_DEBUG "%s: Tx #%d slot %d  %8.8x %8.8x.\n",
			   dev->name, np->cur_tx, entry,
			   le32_to_cpu(np->tx_ring[entry].status),
			   le32_to_cpu(np->tx_ring[entry].addr));
	}
	np->cur_tx++;
#if 1
	if (entry >= TX_RING_SIZE-1) {		 /* Wrap ring */
		np->tx_ring[entry].status |= cpu_to_le32(TxRingWrap | TxDescIntr);
		entry = -1;
	}
#endif

	/* Non-x86: explicitly flush descriptor cache lines here. */

	/* Update the producer index. */
	writel(++entry, dev->base_addr + TxProducerIdx);

	if (np->cur_tx - np->dirty_tx >= TX_RING_SIZE - 1)
		np->tx_full = 1;
	if (! np->tx_full)
		clear_bit(0, (void*)&dev->tbusy);
	dev->trans_start = jiffies;

	if (debug > 4) {
		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
			   dev->name, np->cur_tx, entry);
	}
	return 0;
}

/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */
static void intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
{
	struct net_device *dev = (struct net_device *)dev_instance;
	struct netdev_private *np;
	long ioaddr, boguscnt = max_interrupt_work;

#ifndef final_version			/* Can never occur. */
	if (dev == NULL) {
		printk (KERN_ERR "Netdev interrupt handler(): IRQ %d for unknown "
				"device.\n", irq);
		return;
	}
#endif

	ioaddr = dev->base_addr;
	np = (struct netdev_private *)dev->priv;
#if defined(__i386__)
	/* A lock to prevent simultaneous entry bug on Intel SMP machines. */
	if (test_and_set_bit(0, (void*)&dev->interrupt)) {
		printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n",
			   dev->name);
		dev->interrupt = 0;	/* Avoid halting machine. */
		return;
	}
#else
	if (dev->interrupt) {
		printk(KERN_ERR "%s: Re-entering the interrupt handler.\n", dev->name);
		return;
	}
	dev->interrupt = 1;
#endif

	do {
		u32 intr_status = readl(ioaddr + IntrClear);

		if (debug > 4)
			printk(KERN_DEBUG "%s: Interrupt status %4.4x.\n",
				   dev->name, intr_status);

		if (intr_status == 0)
			break;

		if (intr_status & IntrRxDone)
			netdev_rx(dev);

		/* Scavenge the skbuff list based on the Tx-done queue.
		   There are redundant checks here that may be cleaned up when
		   after the driver has proven reliable. */
		{
			int consumer = readl(ioaddr + TxConsumerIdx);
			int tx_status;
			if (debug > 4)
				printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
					   dev->name, consumer);
#if 0
			if (np->tx_done >= 250  || np->tx_done == 0)
				printk(KERN_DEBUG "%s: Tx completion entry %d is %8.8x, "
					   "%d is %8.8x.\n", dev->name,
					   np->tx_done, le32_to_cpu(np->tx_done_q[np->tx_done].status),
					   (np->tx_done+1) & (DONE_Q_SIZE-1),
					   le32_to_cpu(np->tx_done_q[(np->tx_done+1)&(DONE_Q_SIZE-1)].status));
#endif
			while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
				if (debug > 4)
					printk(KERN_DEBUG "%s: Tx completion entry %d is %8.8x.\n",
						   dev->name, np->tx_done, tx_status);
				if ((tx_status & 0xe0000000) == 0xa0000000) {
					np->stats.tx_packets++;
				} else if ((tx_status & 0xe0000000) == 0x80000000) {
					u16 entry = tx_status; 		/* Implicit truncate */
					entry >>= 3;
					/* Scavenge the descriptor. */
					dev_kfree_skb(np->tx_skbuff[entry]);
					np->tx_skbuff[entry] = 0;
					np->dirty_tx++;
				}
				np->tx_done_q[np->tx_done].status = 0;
				np->tx_done = (np->tx_done+1) & (DONE_Q_SIZE-1);
			}
			writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
		}
		if (np->tx_full && np->cur_tx - np->dirty_tx < TX_RING_SIZE - 4) {
			/* The ring is no longer full, clear tbusy. */
			np->tx_full = 0;
			clear_bit(0, (void*)&dev->tbusy);
			mark_bh(NET_BH);
		}

		/* Abnormal error summary/uncommon events handlers. */
		if (intr_status & IntrAbnormalSummary)
			netdev_error(dev, intr_status);

		if (--boguscnt < 0) {
			printk(KERN_WARNING "%s: Too much work at interrupt, "
				   "status=0x%4.4x.\n",
				   dev->name, intr_status);
			break;
		}
	} while (1);

	if (debug > 4)
		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
			   dev->name, readl(ioaddr + IntrStatus));

#ifndef final_version
	/* Code that should never be run!  Remove after testing.. */
	{
		static int stopit = 10;
		if (dev->start == 0  &&  --stopit < 0) {
			printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n",
				   dev->name);
			free_irq(irq, dev);
		}
	}
#endif

#if defined(__i386__)
	clear_bit(0, (void*)&dev->interrupt);
#else
	dev->interrupt = 0;
#endif
	return;
}

/* This routine is logically part of the interrupt handler, but seperated
   for clarity and better register allocation. */
static int netdev_rx(struct net_device *dev)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
	u32 desc_status;
	if (np->rx_done_q == 0) {
		printk(KERN_ERR "%s:  rx_done_q is NULL!  rx_done is %d. %p.\n",
			   dev->name, np->rx_done, np->tx_done_q);
		return 0;
	}

	/* If EOP is set on the next entry, it's a new packet. Send it up. */
	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
		if (debug > 4)
			printk(KERN_DEBUG "  netdev_rx() status of %d was %8.8x.\n",
				   np->rx_done, desc_status);
		if (--boguscnt < 0)
			break;
		if (! (desc_status & RxOK)) {
			/* There was a error. */
			if (debug > 2)
				printk(KERN_DEBUG "  netdev_rx() Rx error was %8.8x.\n",
					   desc_status);
			np->stats.rx_errors++;
			if (desc_status & RxFIFOErr)
				np->stats.rx_fifo_errors++;
		} else {
			struct sk_buff *skb;
			u16 pkt_len = desc_status;			/* Implicitly Truncate */
			int entry = (desc_status >> 16) & 0x7ff;

#ifndef final_version
			if (debug > 4)
				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
					   ", bogus_cnt %d.\n",
					   pkt_len, boguscnt);
#endif
			/* Check if the packet is long enough to accept without copying
			   to a minimally-sized skbuff. */
			if (pkt_len < rx_copybreak
				&& (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
				skb->dev = dev;
				skb_reserve(skb, 2);	/* 16 byte align the IP header */
#if HAS_IP_COPYSUM			/* Call copy + cksum if available. */
				eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0);
				skb_put(skb, pkt_len);
#else
				memcpy(skb_put(skb, pkt_len), np->rx_skbuff[entry]->tail,
					   pkt_len);
#endif
			} else {
				char *temp = skb_put(skb = np->rx_skbuff[entry], pkt_len);
				np->rx_skbuff[entry] = NULL;
#ifndef final_version				/* Remove after testing. */
				if (bus_to_virt(le32_to_cpu(np->rx_ring[entry].rxaddr) & ~3) != temp)
					printk(KERN_ERR "%s: Internal fault: The skbuff addresses "
						   "do not match in netdev_rx: %p vs. %p / %p.\n",
						   dev->name, bus_to_virt(le32_to_cpu(np->rx_ring[entry].rxaddr)),
						   skb->head, temp);
#endif
			}
#ifndef final_version				/* Remove after testing. */
			/* You will want this info for the initial debug. */
			if (debug > 5)
				printk(KERN_DEBUG "  Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:"
					   "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x "
					   "%d.%d.%d.%d.\n",
					   skb->data[0], skb->data[1], skb->data[2], skb->data[3],
					   skb->data[4], skb->data[5], skb->data[6], skb->data[7],
					   skb->data[8], skb->data[9], skb->data[10],
					   skb->data[11], skb->data[12], skb->data[13],
					   skb->data[14], skb->data[15], skb->data[16],
					   skb->data[17]);
#endif
			skb->protocol = eth_type_trans(skb, dev);
#ifdef full_rx_status
			if (le32_to_cpu(np->rx_done_q[np->rx_done].status2) & 0x01000000)
				skb->ip_summed = CHECKSUM_UNNECESSARY;
#endif
			netif_rx(skb);
			dev->last_rx = jiffies;
			np->stats.rx_packets++;
		}
		np->cur_rx++;
		np->rx_done_q[np->rx_done].status = 0;
		np->rx_done = (np->rx_done + 1) & (DONE_Q_SIZE-1);
	}
	writew(np->rx_done, dev->base_addr + CompletionQConsumerIdx);

	/* Refill the Rx ring buffers. */
	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
		struct sk_buff *skb;
		int entry = np->dirty_rx % RX_RING_SIZE;
		if (np->rx_skbuff[entry] == NULL) {
			skb = dev_alloc_skb(np->rx_buf_sz);
			np->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;			/* Better luck next round. */
			skb->dev = dev;			/* Mark as being used by this device. */
			np->rx_ring[entry].rxaddr = cpu_to_le32(virt_to_bus(skb->tail) | RxDescValid);
		}
		if (entry == RX_RING_SIZE - 1)
			np->rx_ring[entry].rxaddr |= cpu_to_le32(RxDescEndRing);
		/* We could defer this until later... */
		writew(entry, dev->base_addr + RxDescQIdx);
	}

	if (debug > 5
		|| memcmp(np->pad0, np->pad0 + 1, sizeof(np->pad0) -1))
		printk(KERN_DEBUG "  exiting netdev_rx() status of %d was %8.8x %d.\n",
			   np->rx_done, desc_status,
			   memcmp(np->pad0, np->pad0 + 1, sizeof(np->pad0) -1));

	/* Restart Rx engine if stopped. */
	return 0;
}

static void netdev_error(struct net_device *dev, int intr_status)
{
	struct netdev_private *np = (struct netdev_private *)dev->priv;

	if (intr_status & LinkChange) {
		printk(KERN_ERR "%s: Link changed: Autonegotiation advertising"
			   " %4.4x  partner %4.4x.\n", dev->name,
			   mdio_read(dev, np->phys[0], 4),
			   mdio_read(dev, np->phys[0], 5));
		check_duplex(dev, 0);
	}
	if (intr_status & StatsMax) {
		get_stats(dev);
	}
	/* Came close to underrunning the Tx FIFO, increase threshold. */
	if (intr_status & IntrTxDataLow)
		writel(++np->tx_threshold, dev->base_addr + TxThreshold);
	if ((intr_status &
		 ~(IntrAbnormalSummary|LinkChange|StatsMax|IntrTxDataLow|1)) && debug)
		printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
			   dev->name, intr_status);
	/* Hmmmmm, it's not clear how to recover from PCI faults. */
	if (intr_status & IntrTxPCIErr)
		np->stats.tx_fifo_errors++;
	if (intr_status & IntrRxPCIErr)
		np->stats.rx_fifo_errors++;
}

static struct enet_statistics *get_stats(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = (struct netdev_private *)dev->priv;

	/* We should lock this segment of code for SMP eventually, although
	   the vulnerability window is very small and statistics are
	   non-critical. */
#if LINUX_VERSION_CODE > 0x20119
	np->stats.tx_bytes = readl(ioaddr + 0x57010);
	np->stats.rx_bytes = readl(ioaddr + 0x57044);
#endif
	np->stats.tx_packets = readl(ioaddr + 0x57000);
	np->stats.tx_aborted_errors =
		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
	np->stats.tx_window_errors = readl(ioaddr + 0x57018);
	np->stats.collisions = readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);

	/* The chip only need report frame silently dropped. */
	np->stats.rx_dropped	   += readw(ioaddr + RxDMAStatus);
	writew(0, ioaddr + RxDMAStatus);
	np->stats.rx_crc_errors	   = readl(ioaddr + 0x5703C);
	np->stats.rx_frame_errors = readl(ioaddr + 0x57040);
	np->stats.rx_length_errors = readl(ioaddr + 0x57058);
	np->stats.rx_missed_errors = readl(ioaddr + 0x5707C);

	return &np->stats;
}

/* The little-endian AUTODIN II ethernet CRC calculations.
   A big-endian version is also available.
   This is slow but compact code.  Do not use this routine for bulk data,
   use a table-based routine instead.
   This is common code and should be moved to net/core/crc.c.
   Chips may use the upper or lower CRC bits, and may reverse and/or invert
   them.  Select the endian-ness that results in minimal calculations.
*/
static unsigned const ethernet_polynomial_le = 0xedb88320U;
static inline unsigned ether_crc_le(int length, unsigned char *data)
{
	unsigned int crc = 0xffffffff;	/* Initial value. */
	while(--length >= 0) {
		unsigned char current_octet = *data++;
		int bit;
		for (bit = 8; --bit >= 0; current_octet >>= 1) {
			if ((crc ^ current_octet) & 1) {
				crc >>= 1;
				crc ^= ethernet_polynomial_le;
			} else
				crc >>= 1;
		}
	}
	return crc;
}

static void set_rx_mode(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	u32 rx_mode;
	struct dev_mc_list *mclist;
	int i;

	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		/* Unconditionally log net taps. */
		printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
		rx_mode = AcceptBroadcast|AcceptAllMulticast|AcceptAll|AcceptMyPhys;
	} else if ((dev->mc_count > multicast_filter_limit)
			   ||  (dev->flags & IFF_ALLMULTI)) {
		/* Too many to match, or accept all multicasts. */
		rx_mode = AcceptBroadcast|AcceptAllMulticast|AcceptMyPhys;
	} else if (dev->mc_count <= 15) {
		/* Use the 16 element perfect filter. */
		long filter_addr = ioaddr + 0x56000 + 1*16;
		for (i = 1, mclist = dev->mc_list; mclist  &&  i <= dev->mc_count;
			 i++, mclist = mclist->next) {
			u16 *eaddrs = (u16 *)mclist->dmi_addr;
			writew(*eaddrs++, filter_addr); filter_addr += 4;
			writew(*eaddrs++, filter_addr); filter_addr += 4;
			writew(*eaddrs++, filter_addr); filter_addr += 8;
		}
		while (i++ < 16) {
			writew(0xffff, filter_addr); filter_addr += 4;
			writew(0xffff, filter_addr); filter_addr += 4;
			writew(0xffff, filter_addr); filter_addr += 8;
		}
		rx_mode = AcceptBroadcast | AcceptMyPhys;
	} else {
		/* Must use a multicast hash table. */
		long filter_addr;
		u16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */

		memset(mc_filter, 0, sizeof(mc_filter));
		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
			 i++, mclist = mclist->next) {
			set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr) >> 23, mc_filter);
		}
		/* Clear the perfect filter list. */
		filter_addr = ioaddr + 0x56000 + 1*16;
		for (i = 1; i < 16; i++) {
			writew(0xffff, filter_addr); filter_addr += 4;
			writew(0xffff, filter_addr); filter_addr += 4;
			writew(0xffff, filter_addr); filter_addr += 8;
		}
		for (filter_addr=ioaddr + 0x56100, i=0; i < 32; filter_addr+= 16, i++)
			writew(mc_filter[i], filter_addr);
		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
	}
	writel(rx_mode|AcceptAll, ioaddr + RxFilterMode);
}

static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	u16 *data = (u16 *)&rq->ifr_data;

	switch(cmd) {
	case SIOCDEVPRIVATE:		/* Get the address of the PHY in use. */
		data[0] = ((struct netdev_private *)dev->priv)->phys[0] & 0x1f;
		/* Fall Through */
	case SIOCDEVPRIVATE+1:		/* Read the specified MII register. */
		data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f);
		return 0;
	case SIOCDEVPRIVATE+2:		/* Write the specified MII register */
		if (!capable(CAP_NET_ADMIN))
			return -EPERM;
		mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]);
		return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static int netdev_close(struct net_device *dev)
{
	long ioaddr = dev->base_addr;
	struct netdev_private *np = (struct netdev_private *)dev->priv;
	int i;

	dev->start = 0;
	dev->tbusy = 1;

	if (debug > 1) {
		printk(KERN_DEBUG "%s: Shutting down ethercard, status was Int %4.4x.\n",
			   dev->name, readl(ioaddr + IntrStatus));
		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
			   dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
	}

	/* Disable interrupts by clearing the interrupt mask. */
	writel(0, ioaddr + IntrEnable);

	/* Stop the chip's Tx and Rx processes. */

	del_timer(&np->timer);

#ifdef __i386__
	if (debug > 2) {
		printk("\n"KERN_DEBUG"  Tx ring at %8.8x:\n",
			   (int)virt_to_bus(np->tx_ring));
		for (i = 0; i < 8 /* TX_RING_SIZE */; i++)
			printk(KERN_DEBUG " #%d desc. %8.8x %8.8x -> %8.8x.\n",
				   i, le32_to_cpu(np->tx_ring[i].status),
				   le32_to_cpu(np->tx_ring[i].addr),
				   le32_to_cpu(np->tx_done_q[i].status));
		printk(KERN_DEBUG "  Rx ring at %8.8x -> %p:\n",
			   (int)virt_to_bus(np->rx_ring), np->rx_done_q);
		if (np->rx_done_q)
			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
				printk(KERN_DEBUG " #%d desc. %8.8x -> %8.8x\n",
					   i, le32_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
		}
	}
#endif /* __i386__ debugging only */

	free_irq(dev->irq, dev);

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		np->rx_ring[i].rxaddr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
		if (np->rx_skbuff[i]) {
#if LINUX_VERSION_CODE < 0x20100
			np->rx_skbuff[i]->free = 1;
#endif
			dev_kfree_skb(np->rx_skbuff[i]);
		}
		np->rx_skbuff[i] = 0;
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		if (np->tx_skbuff[i])
			dev_kfree_skb(np->tx_skbuff[i]);
		np->tx_skbuff[i] = 0;
	}

	MOD_DEC_USE_COUNT;

	return 0;
}


#ifdef MODULE
int init_module(void)
{
	if (debug)					/* Emit version even if no cards detected. */
		printk(KERN_INFO "%s" KERN_INFO "%s", versionA, versionB);
#ifdef CARDBUS
	register_driver(&etherdev_ops);
	return 0;
#else
	if (pci_etherdev_probe(pci_tbl)) {
		printk(KERN_INFO " No Starfire adapters detected, driver not loaded.\n");
		return -ENODEV;
	}
	return 0;
#endif
}

void cleanup_module(void)
{
	struct net_device *next_dev;

#ifdef CARDBUS
	unregister_driver(&etherdev_ops);
#endif

	/* No need to check MOD_IN_USE, as sys_delete_module() checks. */
	while (root_net_dev) {
		struct netdev_private *np =
			(struct netdev_private *)root_net_dev->priv;
		next_dev = np->next_module;
		unregister_netdev(root_net_dev);
		iounmap((char *)root_net_dev->base_addr);
		if (np->tx_done_q) free_page((long)np->tx_done_q);
		if (np->rx_done_q) free_page((long)np->rx_done_q);
		kfree(root_net_dev);
		root_net_dev = next_dev;
	}
}

#endif  /* MODULE */

/*
 * Local variables:
 *  compile-command: "gcc -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c starfire.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"
 *  SMP-compile-command: "gcc -D__SMP__ -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c starfire.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`"
 *  simple-compile-command: "gcc -DMODULE -D__KERNEL__ -O6 -c starfire.c"
 *  c-indent-level: 4
 *  c-basic-offset: 4
 *  tab-width: 4
 * End:
 */