Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 | /* * net/sched/sch_tbf.c Token Bucket Filter queue. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * */ #include <linux/config.h> #include <linux/module.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/bitops.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/in.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/if_ether.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/notifier.h> #include <net/ip.h> #include <net/route.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/pkt_sched.h> /* Simple Token Bucket Filter. ======================================= SOURCE. ------- None. Description. ------------ A data flow obeys TBF with rate R and depth B, if for any time interval t_i...t_f the number of transmitted bits does not exceed B + R*(t_f-t_i). Packetized version of this definition: The sequence of packets of sizes s_i served at moments t_i obeys TBF, if for any i<=k: s_i+....+s_k <= B + R*(t_k - t_i) Algorithm. ---------- Let N(t_i) be B/R initially and N(t) grow continuously with time as: N(t+delta) = min{B/R, N(t) + delta} If the first packet in queue has length S, it may be transmited only at the time t_* when S/R <= N(t_*), and in this case N(t) jumps: N(t_* + 0) = N(t_* - 0) - S/R. Actually, QoS requires two TBF to be applied to a data stream. One of them controls steady state burst size, another one with rate P (peak rate) and depth M (equal to link MTU) limits bursts at a smaller time scale. It is easy to see that P>R, and B>M. If P is infinity, this double TBF is equivalent to a single one. When TBF works in reshaping mode, latency is estimated as: lat = max ((L-B)/R, (L-M)/P) NOTES. ------ If TBF throttles, it starts a watchdog timer, which will wake it up when it is ready to transmit. Note that the minimal timer resolution is 1/HZ. If no new packets arrive during this period, or if the device is not awaken by EOI for some previous packet, TBF can stop its activity for 1/HZ. This means, that with depth B, the maximal rate is R_crit = B*HZ F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes. Note that the peak rate TBF is much more tough: with MTU 1500 P_crit = 150Kbytes/sec. So, if you need greater peak rates, use alpha with HZ=1000 :-) */ struct tbf_sched_data { /* Parameters */ u32 limit; /* Maximal length of backlog: bytes */ u32 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */ u32 mtu; u32 max_size; struct qdisc_rate_table *R_tab; struct qdisc_rate_table *P_tab; /* Variables */ long tokens; /* Current number of B tokens */ long ptokens; /* Current number of P tokens */ psched_time_t t_c; /* Time check-point */ struct timer_list wd_timer; /* Watchdog timer */ }; #define L2T(q,L) ((q)->R_tab->data[(L)>>(q)->R_tab->rate.cell_log]) #define L2T_P(q,L) ((q)->P_tab->data[(L)>>(q)->P_tab->rate.cell_log]) static int tbf_enqueue(struct sk_buff *skb, struct Qdisc* sch) { struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data; if (skb->len > q->max_size) goto drop; __skb_queue_tail(&sch->q, skb); if ((sch->stats.backlog += skb->len) <= q->limit) { sch->stats.bytes += skb->len; sch->stats.packets++; return 0; } /* Drop action: undo the things that we just did, * i.e. make tail drop */ __skb_unlink(skb, &sch->q); sch->stats.backlog -= skb->len; drop: sch->stats.drops++; #ifdef CONFIG_NET_CLS_POLICE if (sch->reshape_fail==NULL || sch->reshape_fail(skb, sch)) #endif kfree_skb(skb); return NET_XMIT_DROP; } static int tbf_requeue(struct sk_buff *skb, struct Qdisc* sch) { __skb_queue_head(&sch->q, skb); sch->stats.backlog += skb->len; return 0; } static int tbf_drop(struct Qdisc* sch) { struct sk_buff *skb; skb = __skb_dequeue_tail(&sch->q); if (skb) { sch->stats.backlog -= skb->len; sch->stats.drops++; kfree_skb(skb); return 1; } return 0; } static void tbf_watchdog(unsigned long arg) { struct Qdisc *sch = (struct Qdisc*)arg; sch->flags &= ~TCQ_F_THROTTLED; qdisc_wakeup(sch->dev); } static struct sk_buff * tbf_dequeue(struct Qdisc* sch) { struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data; struct sk_buff *skb; skb = __skb_dequeue(&sch->q); if (skb) { psched_time_t now; long toks; long ptoks = 0; PSCHED_GET_TIME(now); toks = PSCHED_TDIFF_SAFE(now, q->t_c, q->buffer, 0); if (q->P_tab) { ptoks = toks + q->ptokens; if (ptoks > (long)q->mtu) ptoks = q->mtu; ptoks -= L2T_P(q, skb->len); } toks += q->tokens; if (toks > (long)q->buffer) toks = q->buffer; toks -= L2T(q, skb->len); if ((toks|ptoks) >= 0) { q->t_c = now; q->tokens = toks; q->ptokens = ptoks; sch->stats.backlog -= skb->len; sch->flags &= ~TCQ_F_THROTTLED; return skb; } if (!sch->dev->tbusy) { long delay = PSCHED_US2JIFFIE(max(-toks, -ptoks)); if (delay == 0) delay = 1; del_timer(&q->wd_timer); q->wd_timer.expires = jiffies + delay; add_timer(&q->wd_timer); } /* Maybe we have a shorter packet in the queue, which can be sent now. It sounds cool, but, however, this is wrong in principle. We MUST NOT reorder packets under these circumstances. Really, if we split the flow into independent subflows, it would be a very good solution. This is the main idea of all FQ algorithms (cf. CSZ, HPFQ, HFSC) */ __skb_queue_head(&sch->q, skb); sch->flags |= TCQ_F_THROTTLED; sch->stats.overlimits++; } return NULL; } static void tbf_reset(struct Qdisc* sch) { struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data; skb_queue_purge(&sch->q); sch->stats.backlog = 0; PSCHED_GET_TIME(q->t_c); q->tokens = q->buffer; q->ptokens = q->mtu; sch->flags &= ~TCQ_F_THROTTLED; del_timer(&q->wd_timer); } static int tbf_change(struct Qdisc* sch, struct rtattr *opt) { int err = -EINVAL; struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data; struct rtattr *tb[TCA_TBF_PTAB]; struct tc_tbf_qopt *qopt; struct qdisc_rate_table *rtab = NULL; struct qdisc_rate_table *ptab = NULL; int max_size; if (rtattr_parse(tb, TCA_TBF_PTAB, RTA_DATA(opt), RTA_PAYLOAD(opt)) || tb[TCA_TBF_PARMS-1] == NULL || RTA_PAYLOAD(tb[TCA_TBF_PARMS-1]) < sizeof(*qopt)) goto done; qopt = RTA_DATA(tb[TCA_TBF_PARMS-1]); rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB-1]); if (rtab == NULL) goto done; if (qopt->peakrate.rate) { if (qopt->peakrate.rate > qopt->rate.rate) ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB-1]); if (ptab == NULL) goto done; } max_size = psched_mtu(sch->dev); if (ptab) { int n = max_size>>qopt->peakrate.cell_log; while (n>0 && ptab->data[n-1] > qopt->mtu) { max_size -= (1<<qopt->peakrate.cell_log); n--; } } if (rtab->data[max_size>>qopt->rate.cell_log] > qopt->buffer) goto done; sch_tree_lock(sch); q->limit = qopt->limit; q->mtu = qopt->mtu; q->max_size = max_size; q->buffer = qopt->buffer; q->tokens = q->buffer; q->ptokens = q->mtu; rtab = xchg(&q->R_tab, rtab); ptab = xchg(&q->P_tab, ptab); sch_tree_unlock(sch); err = 0; done: if (rtab) qdisc_put_rtab(rtab); if (ptab) qdisc_put_rtab(ptab); return err; } static int tbf_init(struct Qdisc* sch, struct rtattr *opt) { int err; struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data; if (opt == NULL) return -EINVAL; MOD_INC_USE_COUNT; PSCHED_GET_TIME(q->t_c); init_timer(&q->wd_timer); q->wd_timer.function = tbf_watchdog; q->wd_timer.data = (unsigned long)sch; if ((err = tbf_change(sch, opt)) != 0) { MOD_DEC_USE_COUNT; } return err; } static void tbf_destroy(struct Qdisc *sch) { struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data; del_timer(&q->wd_timer); if (q->P_tab) qdisc_put_rtab(q->P_tab); if (q->R_tab) qdisc_put_rtab(q->R_tab); MOD_DEC_USE_COUNT; } #ifdef CONFIG_RTNETLINK static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb) { struct tbf_sched_data *q = (struct tbf_sched_data *)sch->data; unsigned char *b = skb->tail; struct rtattr *rta; struct tc_tbf_qopt opt; rta = (struct rtattr*)b; RTA_PUT(skb, TCA_OPTIONS, 0, NULL); opt.limit = q->limit; opt.rate = q->R_tab->rate; if (q->P_tab) opt.peakrate = q->P_tab->rate; else memset(&opt.peakrate, 0, sizeof(opt.peakrate)); opt.mtu = q->mtu; opt.buffer = q->buffer; RTA_PUT(skb, TCA_TBF_PARMS, sizeof(opt), &opt); rta->rta_len = skb->tail - b; return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } #endif struct Qdisc_ops tbf_qdisc_ops = { NULL, NULL, "tbf", sizeof(struct tbf_sched_data), tbf_enqueue, tbf_dequeue, tbf_requeue, tbf_drop, tbf_init, tbf_reset, tbf_destroy, tbf_change, #ifdef CONFIG_RTNETLINK tbf_dump, #endif }; #ifdef MODULE int init_module(void) { return register_qdisc(&tbf_qdisc_ops); } void cleanup_module(void) { unregister_qdisc(&tbf_qdisc_ops); } #endif |