Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 | /******************************************************************************* * * (c) 1998 by Computone Corporation * ******************************************************************************** * * * PACKAGE: Linux tty Device Driver for IntelliPort family of multiport * serial I/O controllers. * * DESCRIPTION: Low-level interface code for the device driver * (This is included source code, not a separate compilation * module.) * *******************************************************************************/ //--------------------------------------------- // Function declarations private to this module //--------------------------------------------- // Functions called only indirectly through i2eBordStr entries. static int iiWriteBuf16(i2eBordStrPtr, unsigned char *, int); static int iiWriteBuf8(i2eBordStrPtr, unsigned char *, int); static int iiReadBuf16(i2eBordStrPtr, unsigned char *, int); static int iiReadBuf8(i2eBordStrPtr, unsigned char *, int); static unsigned short iiReadWord16(i2eBordStrPtr); static unsigned short iiReadWord8(i2eBordStrPtr); static void iiWriteWord16(i2eBordStrPtr, unsigned short); static void iiWriteWord8(i2eBordStrPtr, unsigned short); static int iiWaitForTxEmptyII(i2eBordStrPtr, int); static int iiWaitForTxEmptyIIEX(i2eBordStrPtr, int); static int iiTxMailEmptyII(i2eBordStrPtr); static int iiTxMailEmptyIIEX(i2eBordStrPtr); static int iiTrySendMailII(i2eBordStrPtr, unsigned char); static int iiTrySendMailIIEX(i2eBordStrPtr, unsigned char); static unsigned short iiGetMailII(i2eBordStrPtr); static unsigned short iiGetMailIIEX(i2eBordStrPtr); static void iiEnableMailIrqII(i2eBordStrPtr); static void iiEnableMailIrqIIEX(i2eBordStrPtr); static void iiWriteMaskII(i2eBordStrPtr, unsigned char); static void iiWriteMaskIIEX(i2eBordStrPtr, unsigned char); static void ii2DelayTimer(unsigned int); static void ii2DelayWakeup(unsigned long id); static void ii2Nop(void); //*************** //* Static Data * //*************** static int ii2Safe = 0; // Safe I/O address for delay routine static int iiDelayed = 0; // Set when the iiResetDelay function is // called. Cleared when ANY board is reset. static struct timer_list * pDelayTimer; // Used by iiDelayTimer static wait_queue_head_t pDelayWait; // Used by iiDelayTimer static spinlock_t Dl_spinlock; //******** //* Code * //******** //======================================================= // Initialization Routines // // iiSetAddress // iiReset // iiResetDelay // iiInitialize //======================================================= //****************************************************************************** // Function: iiEllisInit() // Parameters: None // // Returns: Nothing // // Description: // // This routine performs any required initialization of the iiEllis subsystem. // //****************************************************************************** static void iiEllisInit(void) { pDelayTimer = kmalloc ( sizeof (struct timer_list), GFP_KERNEL ); init_waitqueue_head(&pDelayWait); LOCK_INIT(&Dl_spinlock); } //****************************************************************************** // Function: iiEllisCleanup() // Parameters: None // // Returns: Nothing // // Description: // // This routine performs any required cleanup of the iiEllis subsystem. // //****************************************************************************** static void iiEllisCleanup(void) { if ( pDelayTimer != NULL ) { kfree ( pDelayTimer ); } } //****************************************************************************** // Function: iiSetAddress(pB, address, delay) // Parameters: pB - pointer to the board structure // address - the purported I/O address of the board // delay - pointer to the 1-ms delay function to use // in this and any future operations to this board // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // This routine (roughly) checks for address validity, sets the i2eValid OK and // sets the state to II_STATE_COLD which means that we haven't even sent a reset // yet. // //****************************************************************************** static int iiSetAddress( i2eBordStrPtr pB, int address, delayFunc_t delay ) { // Should any failure occur before init is finished... pB->i2eValid = I2E_INCOMPLETE; // Cannot check upper limit except extremely: Might be microchannel // Address must be on an 8-byte boundary if ((unsigned int)address <= 0x100 || (unsigned int)address >= 0xfff8 || (address & 0x7) ) { COMPLETE(pB,I2EE_BADADDR); } // Initialize accelerators pB->i2eBase = address; pB->i2eData = address + FIFO_DATA; pB->i2eStatus = address + FIFO_STATUS; pB->i2ePointer = address + FIFO_PTR; pB->i2eXMail = address + FIFO_MAIL; pB->i2eXMask = address + FIFO_MASK; // Initialize i/o address for ii2DelayIO ii2Safe = address + FIFO_NOP; // Initialize the delay routine pB->i2eDelay = ((delay != (delayFunc_t)NULL) ? delay : (delayFunc_t)ii2Nop); pB->i2eValid = I2E_MAGIC; pB->i2eState = II_STATE_COLD; COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiReset(pB) // Parameters: pB - pointer to the board structure // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Attempts to reset the board (see also i2hw.h). Normally, we would use this to // reset a board immediately after iiSetAddress(), but it is valid to reset a // board from any state, say, in order to change or re-load loadware. (Under // such circumstances, no reason to re-run iiSetAddress(), which is why it is a // separate routine and not included in this routine. // //****************************************************************************** static int iiReset(i2eBordStrPtr pB) { // Magic number should be set, else even the address is suspect if (pB->i2eValid != I2E_MAGIC) { COMPLETE(pB, I2EE_BADMAGIC); } OUTB(pB->i2eBase + FIFO_RESET, 0); // Any data will do iiDelay(pB, 50); // Pause between resets OUTB(pB->i2eBase + FIFO_RESET, 0); // Second reset // We must wait before even attempting to read anything from the FIFO: the // board's P.O.S.T may actually attempt to read and write its end of the // FIFO in order to check flags, loop back (where supported), etc. On // completion of this testing it would reset the FIFO, and on completion // of all // P.O.S.T., write the message. We must not mistake data which // might have been sent for testing as part of the reset message. To // better utilize time, say, when resetting several boards, we allow the // delay to be performed externally; in this way the caller can reset // several boards, delay a single time, then call the initialization // routine for all. pB->i2eState = II_STATE_RESET; iiDelayed = 0; // i.e., the delay routine hasn't been called since the most // recent reset. // Ensure anything which would have been of use to standard loadware is // blanked out, since board has now forgotten everything!. pB->i2eUsingIrq = IRQ_UNDEFINED; // Not set up to use an interrupt yet pB->i2eWaitingForEmptyFifo = 0; pB->i2eOutMailWaiting = 0; pB->i2eChannelPtr = NULL; pB->i2eChannelCnt = 0; pB->i2eLeadoffWord[0] = 0; pB->i2eFifoInInts = 0; pB->i2eFifoOutInts = 0; pB->i2eFatalTrap = NULL; pB->i2eFatal = 0; COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiResetDelay(pB) // Parameters: pB - pointer to the board structure // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Using the delay defined in board structure, waits two seconds (for board to // reset). // //****************************************************************************** static int iiResetDelay(i2eBordStrPtr pB) { if (pB->i2eValid != I2E_MAGIC) { COMPLETE(pB, I2EE_BADMAGIC); } if (pB->i2eState != II_STATE_RESET) { COMPLETE(pB, I2EE_BADSTATE); } iiDelay(pB,2000); /* Now we wait for two seconds. */ iiDelayed = 1; /* Delay has been called: ok to initialize */ COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiInitialize(pB) // Parameters: pB - pointer to the board structure // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Attempts to read the Power-on reset message. Initializes any remaining fields // in the pB structure. // // This should be called as the third step of a process beginning with // iiReset(), then iiResetDelay(). This routine checks to see that the structure // is "valid" and in the reset state, also confirms that the delay routine has // been called since the latest reset (to any board! overly strong!). // //****************************************************************************** static int iiInitialize(i2eBordStrPtr pB) { int itemp; unsigned char c; unsigned short utemp; unsigned int ilimit; if (pB->i2eValid != I2E_MAGIC) { COMPLETE(pB, I2EE_BADMAGIC); } if (pB->i2eState != II_STATE_RESET || !iiDelayed) { COMPLETE(pB, I2EE_BADSTATE); } // In case there is a failure short of our completely reading the power-up // message. pB->i2eValid = I2E_INCOMPLETE; // Now attempt to read the message. for (itemp = 0; itemp < sizeof(porStr); itemp++) { // We expect the entire message is ready. if (HAS_NO_INPUT(pB)) { pB->i2ePomSize = itemp; COMPLETE(pB, I2EE_PORM_SHORT); } pB->i2ePom.c[itemp] = c = BYTE_FROM(pB); // We check the magic numbers as soon as they are supposed to be read // (rather than after) to minimize effect of reading something we // already suspect can't be "us". if ( (itemp == POR_1_INDEX && c != POR_MAGIC_1) || (itemp == POR_2_INDEX && c != POR_MAGIC_2)) { pB->i2ePomSize = itemp+1; COMPLETE(pB, I2EE_BADMAGIC); } } pB->i2ePomSize = itemp; // Ensure that this was all the data... if (HAS_INPUT(pB)) COMPLETE(pB, I2EE_PORM_LONG); // For now, we'll fail to initialize if P.O.S.T reports bad chip mapper: // Implying we will not be able to download any code either: That's ok: the // condition is pretty explicit. if (pB->i2ePom.e.porDiag1 & POR_BAD_MAPPER) { COMPLETE(pB, I2EE_POSTERR); } // Determine anything which must be done differently depending on the family // of boards! switch (pB->i2ePom.e.porID & POR_ID_FAMILY) { case POR_ID_FII: // IntelliPort-II pB->i2eFifoStyle = FIFO_II; pB->i2eFifoSize = 512; // 512 bytes, always pB->i2eDataWidth16 = NO; pB->i2eMaxIrq = 15; // Because board cannot tell us it is in an 8-bit // slot, we do allow it to be done (documentation!) pB->i2eGoodMap[1] = pB->i2eGoodMap[2] = pB->i2eGoodMap[3] = pB->i2eChannelMap[1] = pB->i2eChannelMap[2] = pB->i2eChannelMap[3] = 0; switch (pB->i2ePom.e.porID & POR_ID_SIZE) { case POR_ID_II_4: pB->i2eGoodMap[0] = pB->i2eChannelMap[0] = 0x0f; // four-port // Since porPorts1 is based on the Hardware ID register, the numbers // should always be consistent for IntelliPort-II. Ditto below... if (pB->i2ePom.e.porPorts1 != 4) { COMPLETE(pB, I2EE_INCONSIST); } break; case POR_ID_II_8: case POR_ID_II_8R: pB->i2eGoodMap[0] = pB->i2eChannelMap[0] = 0xff; // Eight port if (pB->i2ePom.e.porPorts1 != 8) { COMPLETE(pB, I2EE_INCONSIST); } break; case POR_ID_II_6: pB->i2eGoodMap[0] = pB->i2eChannelMap[0] = 0x3f; // Six Port if (pB->i2ePom.e.porPorts1 != 6) { COMPLETE(pB, I2EE_INCONSIST); } break; } // Fix up the "good channel list based on any errors reported. if (pB->i2ePom.e.porDiag1 & POR_BAD_UART1) { pB->i2eGoodMap[0] &= ~0x0f; } if (pB->i2ePom.e.porDiag1 & POR_BAD_UART2) { pB->i2eGoodMap[0] &= ~0xf0; } break; // POR_ID_FII case case POR_ID_FIIEX: // IntelliPort-IIEX pB->i2eFifoStyle = FIFO_IIEX; itemp = pB->i2ePom.e.porFifoSize; // Implicit assumption that fifo would not grow beyond 32k, // nor would ever be less than 256. if (itemp < 8 || itemp > 15) { COMPLETE(pB, I2EE_INCONSIST); } pB->i2eFifoSize = (1 << itemp); // These are based on what P.O.S.T thinks should be there, based on // box ID registers ilimit = pB->i2ePom.e.porNumBoxes; if (ilimit > ABS_MAX_BOXES) { ilimit = ABS_MAX_BOXES; } // For as many boxes as EXIST, gives the type of box. // Added 8/6/93: check for the ISA-4 (asic) which looks like an // expandable but for whom "8 or 16?" is not the right question. utemp = pB->i2ePom.e.porFlags; if (utemp & POR_CEX4) { pB->i2eChannelMap[0] = 0x000f; } else { utemp &= POR_BOXES; for (itemp = 0; itemp < ilimit; itemp++) { pB->i2eChannelMap[itemp] = ((utemp & POR_BOX_16) ? 0xffff : 0x00ff); utemp >>= 1; } } // These are based on what P.O.S.T actually found. utemp = (pB->i2ePom.e.porPorts2 << 8) + pB->i2ePom.e.porPorts1; for (itemp = 0; itemp < ilimit; itemp++) { pB->i2eGoodMap[itemp] = 0; if (utemp & 1) pB->i2eGoodMap[itemp] |= 0x000f; if (utemp & 2) pB->i2eGoodMap[itemp] |= 0x00f0; if (utemp & 4) pB->i2eGoodMap[itemp] |= 0x0f00; if (utemp & 8) pB->i2eGoodMap[itemp] |= 0xf000; utemp >>= 4; } // Now determine whether we should transfer in 8 or 16-bit mode. switch (pB->i2ePom.e.porBus & (POR_BUS_SLOT16 | POR_BUS_DIP16) ) { case POR_BUS_SLOT16 | POR_BUS_DIP16: pB->i2eDataWidth16 = YES; pB->i2eMaxIrq = 15; break; case POR_BUS_SLOT16: pB->i2eDataWidth16 = NO; pB->i2eMaxIrq = 15; break; case 0: case POR_BUS_DIP16: // In an 8-bit slot, DIP switch don't care. default: pB->i2eDataWidth16 = NO; pB->i2eMaxIrq = 7; break; } break; // POR_ID_FIIEX case default: // Unknown type of board COMPLETE(pB, I2EE_BAD_FAMILY); break; } // End the switch based on family // Temporarily, claim there is no room in the outbound fifo. // We will maintain this whenever we check for an empty outbound FIFO. pB->i2eFifoRemains = 0; // Now, based on the bus type, should we expect to be able to re-configure // interrupts (say, for testing purposes). switch (pB->i2ePom.e.porBus & POR_BUS_TYPE) { case POR_BUS_T_ISA: case POR_BUS_T_UNK: // If the type of bus is undeclared, assume ok. pB->i2eChangeIrq = YES; break; case POR_BUS_T_MCA: case POR_BUS_T_EISA: pB->i2eChangeIrq = NO; break; default: COMPLETE(pB, I2EE_BADBUS); } if (pB->i2eDataWidth16 == YES) { pB->i2eWriteBuf = iiWriteBuf16; pB->i2eReadBuf = iiReadBuf16; pB->i2eWriteWord = iiWriteWord16; pB->i2eReadWord = iiReadWord16; } else { pB->i2eWriteBuf = iiWriteBuf8; pB->i2eReadBuf = iiReadBuf8; pB->i2eWriteWord = iiWriteWord8; pB->i2eReadWord = iiReadWord8; } switch(pB->i2eFifoStyle) { case FIFO_II: pB->i2eWaitForTxEmpty = iiWaitForTxEmptyII; pB->i2eTxMailEmpty = iiTxMailEmptyII; pB->i2eTrySendMail = iiTrySendMailII; pB->i2eGetMail = iiGetMailII; pB->i2eEnableMailIrq = iiEnableMailIrqII; pB->i2eWriteMask = iiWriteMaskII; break; case FIFO_IIEX: pB->i2eWaitForTxEmpty = iiWaitForTxEmptyIIEX; pB->i2eTxMailEmpty = iiTxMailEmptyIIEX; pB->i2eTrySendMail = iiTrySendMailIIEX; pB->i2eGetMail = iiGetMailIIEX; pB->i2eEnableMailIrq = iiEnableMailIrqIIEX; pB->i2eWriteMask = iiWriteMaskIIEX; break; default: COMPLETE(pB, I2EE_INCONSIST); } // Initialize state information. pB->i2eState = II_STATE_READY; // Ready to load loadware. // Some Final cleanup: // For some boards, the bootstrap firmware may perform some sort of test // resulting in a stray character pending in the incoming mailbox. If one is // there, it should be read and discarded, especially since for the standard // firmware, it's the mailbox that interrupts the host. pB->i2eStartMail = iiGetMail(pB); // Everything is ok now, return with good status/ pB->i2eValid = I2E_MAGIC; COMPLETE(pB, I2EE_GOOD); } //======================================================= // Delay Routines // // iiDelayIO // iiNop //======================================================= static void ii2DelayWakeup(unsigned long id) { wake_up_interruptible ( &pDelayWait ); } //****************************************************************************** // Function: ii2DelayTimer(mseconds) // Parameters: mseconds - number of milliseconds to delay // // Returns: Nothing // // Description: // // This routine delays for approximately mseconds milliseconds and is intended // to be called indirectly through i2Delay field in i2eBordStr. It uses the // Linux timer_list mechanism. // // The Linux timers use a unit called "jiffies" which are 10mS in the Intel // architecture. This function rounds the delay period up to the next "jiffy". // In the Alpha architecture the "jiffy" is 1mS, but this driver is not intended // for Alpha platforms at this time. // //****************************************************************************** static void ii2DelayTimer(unsigned int mseconds) { init_timer ( pDelayTimer ); pDelayTimer->expires = jiffies + ( mseconds + 9 ) / 10; pDelayTimer->function = ii2DelayWakeup; pDelayTimer->data = 0; add_timer ( pDelayTimer ); interruptible_sleep_on ( &pDelayWait ); del_timer ( pDelayTimer ); } #if 0 //static void ii2DelayIO(unsigned int); //****************************************************************************** // !!! Not Used, this is DOS crap, some of you young folks may be interested in // in how things were done in the stone age of caculating machines !!! // Function: ii2DelayIO(mseconds) // Parameters: mseconds - number of milliseconds to delay // // Returns: Nothing // // Description: // // This routine delays for approximately mseconds milliseconds and is intended // to be called indirectly through i2Delay field in i2eBordStr. It is intended // for use where a clock-based function is impossible: for example, DOS drivers. // // This function uses the IN instruction to place bounds on the timing and // assumes that ii2Safe has been set. This is because I/O instructions are not // subject to caching and will therefore take a certain minimum time. To ensure // the delay is at least long enough on fast machines, it is based on some // fastest-case calculations. On slower machines this may cause VERY long // delays. (3 x fastest case). In the fastest case, everything is cached except // the I/O instruction itself. // // Timing calculations: // The fastest bus speed for I/O operations is likely to be 10 MHz. The I/O // operation in question is a byte operation to an odd address. For 8-bit // operations, the architecture generally enforces two wait states. At 10 MHz, a // single cycle time is 100nS. A read operation at two wait states takes 6 // cycles for a total time of 600nS. Therefore approximately 1666 iterations // would be required to generate a single millisecond delay. The worst // (reasonable) case would be an 8MHz system with no cacheing. In this case, the // I/O instruction would take 125nS x 6 cyles = 750 nS. More importantly, code // fetch of other instructions in the loop would take time (zero wait states, // however) and would be hard to estimate. This is minimized by using in-line // assembler for the in inner loop of IN instructions. This consists of just a // few bytes. So we'll guess about four code fetches per loop. Each code fetch // should take four cycles, so we have 125nS * 8 = 1000nS. Worst case then is // that what should have taken 1 mS takes instead 1666 * (1750) = 2.9 mS. // // So much for theoretical timings: results using 1666 value on some actual // machines: // IBM 286 6MHz 3.15 mS // Zenith 386 33MHz 2.45 mS // (brandX) 386 33MHz 1.90 mS (has cache) // (brandY) 486 33MHz 2.35 mS // NCR 486 ?? 1.65 mS (microchannel) // // For most machines, it is probably safe to scale this number back (remember, // for robust operation use an actual timed delay if possible), so we are using // a value of 1190. This yields 1.17 mS for the fastest machine in our sample, // 1.75 mS for typical 386 machines, and 2.25 mS the absolute slowest machine. // // 1/29/93: // The above timings are too slow. Actual cycle times might be faster. ISA cycle // times could approach 500 nS, and ... // The IBM model 77 being microchannel has no wait states for 8-bit reads and // seems to be accessing the I/O at 440 nS per access (from start of one to // start of next). This would imply we need 1000/.440 = 2272 iterations to // guarantee we are fast enough. In actual testing, we see that 2 * 1190 are in // fact enough. For diagnostics, we keep the level at 1190, but developers note // this needs tuning. // // Safe assumption: 2270 i/o reads = 1 millisecond // //****************************************************************************** static int ii2DelValue = 1190; // See timing calculations below // 1666 for fastest theoretical machine // 1190 safe for most fast 386 machines // 1000 for fastest machine tested here // 540 (sic) for AT286/6Mhz static void ii2DelayIO(unsigned int mseconds) { if (!ii2Safe) return; /* Do nothing if this variable uninitialized */ while(mseconds--) { int i = ii2DelValue; while ( i-- ) { INB ( ii2Safe ); } } } #endif //****************************************************************************** // Function: ii2Nop() // Parameters: None // // Returns: Nothing // // Description: // // iiInitialize will set i2eDelay to this if the delay parameter is NULL. This // saves checking for a NULL pointer at every call. //****************************************************************************** static void ii2Nop(void) { return; // no mystery here } //======================================================= // Routines which are available in 8/16-bit versions, or // in different fifo styles. These are ALL called // indirectly through the board structure. //======================================================= //****************************************************************************** // Function: iiWriteBuf16(pB, address, count) // Parameters: pB - pointer to board structure // address - address of data to write // count - number of data bytes to write // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Writes 'count' bytes from 'address' to the data fifo specified by the board // structure pointer pB. Should count happen to be odd, an extra pad byte is // sent (identity unknown...). Uses 16-bit (word) operations. Is called // indirectly through pB->i2eWriteBuf. // //****************************************************************************** static int iiWriteBuf16(i2eBordStrPtr pB, unsigned char *address, int count) { // Rudimentary sanity checking here. if (pB->i2eValid != I2E_MAGIC) COMPLETE(pB, I2EE_INVALID); OUTSW ( pB->i2eData, address, count); COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiWriteBuf8(pB, address, count) // Parameters: pB - pointer to board structure // address - address of data to write // count - number of data bytes to write // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Writes 'count' bytes from 'address' to the data fifo specified by the board // structure pointer pB. Should count happen to be odd, an extra pad byte is // sent (identity unknown...). This is to be consistant with the 16-bit version. // Uses 8-bit (byte) operations. Is called indirectly through pB->i2eWriteBuf. // //****************************************************************************** static int iiWriteBuf8(i2eBordStrPtr pB, unsigned char *address, int count) { /* Rudimentary sanity checking here */ if (pB->i2eValid != I2E_MAGIC) COMPLETE(pB, I2EE_INVALID); OUTSB ( pB->i2eData, address, count ); COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiReadBuf16(pB, address, count) // Parameters: pB - pointer to board structure // address - address to put data read // count - number of data bytes to read // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Reads 'count' bytes into 'address' from the data fifo specified by the board // structure pointer pB. Should count happen to be odd, an extra pad byte is // received (identity unknown...). Uses 16-bit (word) operations. Is called // indirectly through pB->i2eReadBuf. // //****************************************************************************** static int iiReadBuf16(i2eBordStrPtr pB, unsigned char *address, int count) { // Rudimentary sanity checking here. if (pB->i2eValid != I2E_MAGIC) COMPLETE(pB, I2EE_INVALID); INSW ( pB->i2eData, address, count); COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiReadBuf8(pB, address, count) // Parameters: pB - pointer to board structure // address - address to put data read // count - number of data bytes to read // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Reads 'count' bytes into 'address' from the data fifo specified by the board // structure pointer pB. Should count happen to be odd, an extra pad byte is // received (identity unknown...). This to match the 16-bit behaviour. Uses // 8-bit (byte) operations. Is called indirectly through pB->i2eReadBuf. // //****************************************************************************** static int iiReadBuf8(i2eBordStrPtr pB, unsigned char *address, int count) { // Rudimentary sanity checking here. if (pB->i2eValid != I2E_MAGIC) COMPLETE(pB, I2EE_INVALID); INSB ( pB->i2eData, address, count); COMPLETE(pB, I2EE_GOOD); } //****************************************************************************** // Function: iiReadWord16(pB) // Parameters: pB - pointer to board structure // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Returns the word read from the data fifo specified by the board-structure // pointer pB. Uses a 16-bit operation. Is called indirectly through // pB->i2eReadWord. // //****************************************************************************** static unsigned short iiReadWord16(i2eBordStrPtr pB) { return (unsigned short)( INW(pB->i2eData) ); } //****************************************************************************** // Function: iiReadWord8(pB) // Parameters: pB - pointer to board structure // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Returns the word read from the data fifo specified by the board-structure // pointer pB. Uses two 8-bit operations. Bytes are assumed to be LSB first. Is // called indirectly through pB->i2eReadWord. // //****************************************************************************** static unsigned short iiReadWord8(i2eBordStrPtr pB) { unsigned short urs; urs = INB ( pB->i2eData ); return ( ( INB ( pB->i2eData ) << 8 ) | urs ); } //****************************************************************************** // Function: iiWriteWord16(pB, value) // Parameters: pB - pointer to board structure // value - data to write // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Writes the word 'value' to the data fifo specified by the board-structure // pointer pB. Uses 16-bit operation. Is called indirectly through // pB->i2eWriteWord. // //****************************************************************************** static void iiWriteWord16(i2eBordStrPtr pB, unsigned short value) { WORD_TO(pB, (int)value); } //****************************************************************************** // Function: iiWriteWord8(pB, value) // Parameters: pB - pointer to board structure // value - data to write // // Returns: True if everything appears copacetic. // False if there is any error: the pB->i2eError field has the error // // Description: // // Writes the word 'value' to the data fifo specified by the board-structure // pointer pB. Uses two 8-bit operations (writes LSB first). Is called // indirectly through pB->i2eWriteWord. // //****************************************************************************** static void iiWriteWord8(i2eBordStrPtr pB, unsigned short value) { BYTE_TO(pB, (char)value); BYTE_TO(pB, (char)(value >> 8) ); } //****************************************************************************** // Function: iiWaitForTxEmptyII(pB, mSdelay) // Parameters: pB - pointer to board structure // mSdelay - period to wait before returning // // Returns: True if the FIFO is empty. // False if it not empty in the required time: the pB->i2eError // field has the error. // // Description: // // Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if // not empty by the required time, returns false and error in pB->i2eError, // otherwise returns true. // // mSdelay == 0 is taken to mean must be empty on the first test. // // This version operates on IntelliPort-II - style FIFO's // // Note this routine is organized so that if status is ok there is no delay at // all called either before or after the test. Is called indirectly through // pB->i2eWaitForTxEmpty. // //****************************************************************************** static int iiWaitForTxEmptyII(i2eBordStrPtr pB, int mSdelay) { unsigned long flags; int itemp; for (;;) { // This routine hinges on being able to see the "other" status register // (as seen by the local processor). His incoming fifo is our outgoing // FIFO. // // By the nature of this routine, you would be using this as part of a // larger atomic context: i.e., you would use this routine to ensure the // fifo empty, then act on this information. Between these two halves, // you will generally not want to service interrupts or in any way // disrupt the assumptions implicit in the larger context. // // Even worse, however, this routine "shifts" the status register to // point to the local status register which is not the usual situation. // Therefore for extra safety, we force the critical section to be // completely atomic, and pick up after ourselves before allowing any // interrupts of any kind. WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags) OUTB(pB->i2ePointer, SEL_COMMAND); OUTB(pB->i2ePointer, SEL_CMD_SH); itemp = INB(pB->i2eStatus); OUTB(pB->i2ePointer, SEL_COMMAND); OUTB(pB->i2ePointer, SEL_CMD_UNSH); if (itemp & ST_IN_EMPTY) { UPDATE_FIFO_ROOM(pB); WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) COMPLETE(pB, I2EE_GOOD); } WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) if (mSdelay-- == 0) break; iiDelay(pB, 1); /* 1 mS granularity on checking condition */ } COMPLETE(pB, I2EE_TXE_TIME); } //****************************************************************************** // Function: iiWaitForTxEmptyIIEX(pB, mSdelay) // Parameters: pB - pointer to board structure // mSdelay - period to wait before returning // // Returns: True if the FIFO is empty. // False if it not empty in the required time: the pB->i2eError // field has the error. // // Description: // // Waits up to "mSdelay" milliseconds for the outgoing FIFO to become empty; if // not empty by the required time, returns false and error in pB->i2eError, // otherwise returns true. // // mSdelay == 0 is taken to mean must be empty on the first test. // // This version operates on IntelliPort-IIEX - style FIFO's // // Note this routine is organized so that if status is ok there is no delay at // all called either before or after the test. Is called indirectly through // pB->i2eWaitForTxEmpty. // //****************************************************************************** static int iiWaitForTxEmptyIIEX(i2eBordStrPtr pB, int mSdelay) { unsigned long flags; for (;;) { // By the nature of this routine, you would be using this as part of a // larger atomic context: i.e., you would use this routine to ensure the // fifo empty, then act on this information. Between these two halves, // you will generally not want to service interrupts or in any way // disrupt the assumptions implicit in the larger context. WRITE_LOCK_IRQSAVE(&Dl_spinlock,flags) if (INB(pB->i2eStatus) & STE_OUT_MT) { UPDATE_FIFO_ROOM(pB); WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) COMPLETE(pB, I2EE_GOOD); } WRITE_UNLOCK_IRQRESTORE(&Dl_spinlock,flags) if (mSdelay-- == 0) break; iiDelay(pB, 1); // 1 mS granularity on checking condition } COMPLETE(pB, I2EE_TXE_TIME); } //****************************************************************************** // Function: iiTxMailEmptyII(pB) // Parameters: pB - pointer to board structure // // Returns: True if the transmit mailbox is empty. // False if it not empty. // // Description: // // Returns true or false according to whether the transmit mailbox is empty (and // therefore able to accept more mail) // // This version operates on IntelliPort-II - style FIFO's // //****************************************************************************** static int iiTxMailEmptyII(i2eBordStrPtr pB) { int port = pB->i2ePointer; OUTB ( port, SEL_OUTMAIL ); return ( INB(port) == 0 ); } //****************************************************************************** // Function: iiTxMailEmptyIIEX(pB) // Parameters: pB - pointer to board structure // // Returns: True if the transmit mailbox is empty. // False if it not empty. // // Description: // // Returns true or false according to whether the transmit mailbox is empty (and // therefore able to accept more mail) // // This version operates on IntelliPort-IIEX - style FIFO's // //****************************************************************************** static int iiTxMailEmptyIIEX(i2eBordStrPtr pB) { return !(INB(pB->i2eStatus) & STE_OUT_MAIL); } //****************************************************************************** // Function: iiTrySendMailII(pB,mail) // Parameters: pB - pointer to board structure // mail - value to write to mailbox // // Returns: True if the transmit mailbox is empty, and mail is sent. // False if it not empty. // // Description: // // If outgoing mailbox is empty, sends mail and returns true. If outgoing // mailbox is not empty, returns false. // // This version operates on IntelliPort-II - style FIFO's // //****************************************************************************** static int iiTrySendMailII(i2eBordStrPtr pB, unsigned char mail) { int port = pB->i2ePointer; OUTB(port, SEL_OUTMAIL); if (INB(port) == 0) { OUTB(port, SEL_OUTMAIL); OUTB(port, mail); return 1; } return 0; } //****************************************************************************** // Function: iiTrySendMailIIEX(pB,mail) // Parameters: pB - pointer to board structure // mail - value to write to mailbox // // Returns: True if the transmit mailbox is empty, and mail is sent. // False if it not empty. // // Description: // // If outgoing mailbox is empty, sends mail and returns true. If outgoing // mailbox is not empty, returns false. // // This version operates on IntelliPort-IIEX - style FIFO's // //****************************************************************************** static int iiTrySendMailIIEX(i2eBordStrPtr pB, unsigned char mail) { if(INB(pB->i2eStatus) & STE_OUT_MAIL) { return 0; } OUTB(pB->i2eXMail, mail); return 1; } //****************************************************************************** // Function: iiGetMailII(pB,mail) // Parameters: pB - pointer to board structure // // Returns: Mailbox data or NO_MAIL_HERE. // // Description: // // If no mail available, returns NO_MAIL_HERE otherwise returns the data from // the mailbox, which is guaranteed != NO_MAIL_HERE. // // This version operates on IntelliPort-II - style FIFO's // //****************************************************************************** static unsigned short iiGetMailII(i2eBordStrPtr pB) { if (HAS_MAIL(pB)) { OUTB(pB->i2ePointer, SEL_INMAIL); return INB(pB->i2ePointer); } else { return NO_MAIL_HERE; } } //****************************************************************************** // Function: iiGetMailIIEX(pB,mail) // Parameters: pB - pointer to board structure // // Returns: Mailbox data or NO_MAIL_HERE. // // Description: // // If no mail available, returns NO_MAIL_HERE otherwise returns the data from // the mailbox, which is guaranteed != NO_MAIL_HERE. // // This version operates on IntelliPort-IIEX - style FIFO's // //****************************************************************************** static unsigned short iiGetMailIIEX(i2eBordStrPtr pB) { if (HAS_MAIL(pB)) { return INB(pB->i2eXMail); } else { return NO_MAIL_HERE; } } //****************************************************************************** // Function: iiEnableMailIrqII(pB) // Parameters: pB - pointer to board structure // // Returns: Nothing // // Description: // // Enables board to interrupt host (only) by writing to host's in-bound mailbox. // // This version operates on IntelliPort-II - style FIFO's // //****************************************************************************** static void iiEnableMailIrqII(i2eBordStrPtr pB) { OUTB(pB->i2ePointer, SEL_MASK); OUTB(pB->i2ePointer, ST_IN_MAIL); } //****************************************************************************** // Function: iiEnableMailIrqIIEX(pB) // Parameters: pB - pointer to board structure // // Returns: Nothing // // Description: // // Enables board to interrupt host (only) by writing to host's in-bound mailbox. // // This version operates on IntelliPort-IIEX - style FIFO's // //****************************************************************************** static void iiEnableMailIrqIIEX(i2eBordStrPtr pB) { OUTB(pB->i2eXMask, MX_IN_MAIL); } //****************************************************************************** // Function: iiWriteMaskII(pB) // Parameters: pB - pointer to board structure // // Returns: Nothing // // Description: // // Writes arbitrary value to the mask register. // // This version operates on IntelliPort-II - style FIFO's // //****************************************************************************** static void iiWriteMaskII(i2eBordStrPtr pB, unsigned char value) { OUTB(pB->i2ePointer, SEL_MASK); OUTB(pB->i2ePointer, value); } //****************************************************************************** // Function: iiWriteMaskIIEX(pB) // Parameters: pB - pointer to board structure // // Returns: Nothing // // Description: // // Writes arbitrary value to the mask register. // // This version operates on IntelliPort-IIEX - style FIFO's // //****************************************************************************** static void iiWriteMaskIIEX(i2eBordStrPtr pB, unsigned char value) { OUTB(pB->i2eXMask, value); } //****************************************************************************** // Function: iiDownloadBlock(pB, pSource, isStandard) // Parameters: pB - pointer to board structure // pSource - loadware block to download // isStandard - True if "standard" loadware, else false. // // Returns: Success or Failure // // Description: // // Downloads a single block (at pSource)to the board referenced by pB. Caller // sets isStandard to true/false according to whether the "standard" loadware is // what's being loaded. The normal process, then, is to perform an iiInitialize // to the board, then perform some number of iiDownloadBlocks using the returned // state to determine when download is complete. // // Possible return values: (see I2ELLIS.H) // II_DOWN_BADVALID // II_DOWN_BADFILE // II_DOWN_CONTINUING // II_DOWN_GOOD // II_DOWN_BAD // II_DOWN_BADSTATE // II_DOWN_TIMEOUT // // Uses the i2eState and i2eToLoad fields (initialized at iiInitialize) to // determine whether this is the first block, whether to check for magic // numbers, how many blocks there are to go... // //****************************************************************************** static int iiDownloadBlock ( i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard) { int itemp; int loadedFirst; if (pB->i2eValid != I2E_MAGIC) return II_DOWN_BADVALID; switch(pB->i2eState) { case II_STATE_READY: // Loading the first block after reset. Must check the magic number of the // loadfile, store the number of blocks we expect to load. if (pSource->e.loadMagic != MAGIC_LOADFILE) { return II_DOWN_BADFILE; } // Next we store the total number of blocks to load, including this one. pB->i2eToLoad = 1 + pSource->e.loadBlocksMore; // Set the state, store the version numbers. ('Cause this may have come // from a file - we might want to report these versions and revisions in // case of an error! pB->i2eState = II_STATE_LOADING; pB->i2eLVersion = pSource->e.loadVersion; pB->i2eLRevision = pSource->e.loadRevision; pB->i2eLSub = pSource->e.loadSubRevision; // The time and date of compilation is also available but don't bother // storing it for normal purposes. loadedFirst = 1; break; case II_STATE_LOADING: loadedFirst = 0; break; default: return II_DOWN_BADSTATE; } // Now we must be in the II_STATE_LOADING state, and we assume i2eToLoad // must be positive still, because otherwise we would have cleaned up last // time and set the state to II_STATE_LOADED. if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) { return II_DOWN_TIMEOUT; } if (!iiWriteBuf(pB, pSource->c, LOADWARE_BLOCK_SIZE)) { return II_DOWN_BADVALID; } // If we just loaded the first block, wait for the fifo to empty an extra // long time to allow for any special startup code in the firmware, like // sending status messages to the LCD's. if (loadedFirst) { if (!iiWaitForTxEmpty(pB, MAX_DLOAD_START_TIME)) { return II_DOWN_TIMEOUT; } } // Determine whether this was our last block! if (--(pB->i2eToLoad)) { return II_DOWN_CONTINUING; // more to come... } // It WAS our last block: Clean up operations... // ...Wait for last buffer to drain from the board... if (!iiWaitForTxEmpty(pB, MAX_DLOAD_READ_TIME)) { return II_DOWN_TIMEOUT; } // If there were only a single block written, this would come back // immediately and be harmless, though not strictly necessary. itemp = MAX_DLOAD_ACK_TIME/10; while (--itemp) { if (HAS_INPUT(pB)) { switch(BYTE_FROM(pB)) { case LOADWARE_OK: pB->i2eState = isStandard ? II_STATE_STDLOADED :II_STATE_LOADED; // Some revisions of the bootstrap firmware (e.g. ISA-8 1.0.2) // will, // if there is a debug port attached, require some // time to send information to the debug port now. It will do // this before // executing any of the code we just downloaded. // It may take up to 700 milliseconds. if (pB->i2ePom.e.porDiag2 & POR_DEBUG_PORT) { iiDelay(pB, 700); } return II_DOWN_GOOD; case LOADWARE_BAD: default: return II_DOWN_BAD; } } iiDelay(pB, 10); // 10 mS granularity on checking condition } // Drop-through --> timed out waiting for firmware confirmation pB->i2eState = II_STATE_BADLOAD; return II_DOWN_TIMEOUT; } //****************************************************************************** // Function: iiDownloadAll(pB, pSource, isStandard, size) // Parameters: pB - pointer to board structure // pSource - loadware block to download // isStandard - True if "standard" loadware, else false. // size - size of data to download (in bytes) // // Returns: Success or Failure // // Description: // // Given a pointer to a board structure, a pointer to the beginning of some // loadware, whether it is considered the "standard loadware", and the size of // the array in bytes loads the entire array to the board as loadware. // // Assumes the board has been freshly reset and the power-up reset message read. // (i.e., in II_STATE_READY). Complains if state is bad, or if there seems to be // too much or too little data to load, or if iiDownloadBlock complains. //****************************************************************************** static int iiDownloadAll(i2eBordStrPtr pB, loadHdrStrPtr pSource, int isStandard, int size) { int status; // We know (from context) board should be ready for the first block of // download. Complain if not. if (pB->i2eState != II_STATE_READY) return II_DOWN_BADSTATE; while (size > 0) { size -= LOADWARE_BLOCK_SIZE; // How much data should there be left to // load after the following operation ? // Note we just bump pSource by "one", because its size is actually that // of an entire block, same as LOADWARE_BLOCK_SIZE. status = iiDownloadBlock(pB, pSource++, isStandard); switch(status) { case II_DOWN_GOOD: return ( (size > 0) ? II_DOWN_OVER : II_DOWN_GOOD); case II_DOWN_CONTINUING: break; default: return status; } } // We shouldn't drop out: it means "while" caught us with nothing left to // download, yet the previous DownloadBlock did not return complete. Ergo, // not enough data to match the size byte in the header. return II_DOWN_UNDER; } |