Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 | /* * linux/arch/alpha/kernel/process.c * * Copyright (C) 1995 Linus Torvalds */ /* * This file handles the architecture-dependent parts of process handling. */ #include <linux/config.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/malloc.h> #include <linux/user.h> #include <linux/a.out.h> #include <linux/utsname.h> #include <linux/time.h> #include <linux/major.h> #include <linux/stat.h> #include <linux/mman.h> #include <linux/elfcore.h> #include <linux/reboot.h> #include <linux/console.h> #ifdef CONFIG_RTC #include <linux/mc146818rtc.h> #endif #include <asm/reg.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/io.h> #include <asm/pgtable.h> #include <asm/hwrpb.h> #include <asm/fpu.h> #include "proto.h" #include "pci_impl.h" /* * Initial task structure. Make this a per-architecture thing, * because different architectures tend to have different * alignment requirements and potentially different initial * setup. */ unsigned long init_user_stack[1024] = { STACK_MAGIC, }; static struct vm_area_struct init_mmap = INIT_MMAP; static struct fs_struct init_fs = INIT_FS; static struct files_struct init_files = INIT_FILES; static struct signal_struct init_signals = INIT_SIGNALS; struct mm_struct init_mm = INIT_MM(init_mm); union task_union init_task_union __attribute__((section("init_task"))) = { task: INIT_TASK(init_task_union.task) }; /* * No need to acquire the kernel lock, we're entirely local.. */ asmlinkage int sys_sethae(unsigned long hae, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, struct pt_regs regs) { (®s)->hae = hae; return 0; } void cpu_idle(void) { /* An endless idle loop with no priority at all. */ current->priority = 0; current->counter = -100; while (1) { /* FIXME -- EV6 and LCA45 know how to power down the CPU. */ /* Although we are an idle CPU, we do not want to get into the scheduler unnecessarily. */ if (current->need_resched) { schedule(); check_pgt_cache(); } } } void common_kill_arch (int mode, char *restart_cmd) { /* The following currently only has any effect on SRM. We should fix MILO to understand it. Should be pretty easy. Also we can support RESTART2 via the ipc_buffer machinations pictured below, which SRM ignores. */ if (alpha_using_srm) { struct percpu_struct *cpup; unsigned long flags; cpup = (struct percpu_struct *) ((unsigned long)hwrpb + hwrpb->processor_offset); flags = cpup->flags; /* Clear reason to "default"; clear "bootstrap in progress". */ flags &= ~0x00ff0001UL; if (mode == LINUX_REBOOT_CMD_RESTART) { if (!restart_cmd) { flags |= 0x00020000UL; /* "cold bootstrap" */ cpup->ipc_buffer[0] = 0; } else { flags |= 0x00030000UL; /* "warm bootstrap" */ strncpy((char *)cpup->ipc_buffer, restart_cmd, sizeof(cpup->ipc_buffer)); } } else { flags |= 0x00040000UL; /* "remain halted" */ } cpup->flags = flags; mb(); /* reset_for_srm(); */ set_hae(srm_hae); #ifdef CONFIG_DUMMY_CONSOLE /* This has the effect of reseting the VGA video origin. */ take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1); #endif } #ifdef CONFIG_RTC /* Reset rtc to defaults. */ { unsigned char control; cli(); /* Reset periodic interrupt frequency. */ CMOS_WRITE(0x26, RTC_FREQ_SELECT); /* Turn on periodic interrupts. */ control = CMOS_READ(RTC_CONTROL); control |= RTC_PIE; CMOS_WRITE(control, RTC_CONTROL); CMOS_READ(RTC_INTR_FLAGS); sti(); } #endif if (!alpha_using_srm && mode != LINUX_REBOOT_CMD_RESTART) { /* Unfortunately, since MILO doesn't currently understand the hwrpb bits above, we can't reliably halt the processor and keep it halted. So just loop. */ return; } if (alpha_using_srm) srm_paging_stop(); halt(); } void machine_restart(char *restart_cmd) { alpha_mv.kill_arch(LINUX_REBOOT_CMD_RESTART, restart_cmd); } void machine_halt(void) { alpha_mv.kill_arch(LINUX_REBOOT_CMD_HALT, NULL); } void machine_power_off(void) { alpha_mv.kill_arch(LINUX_REBOOT_CMD_POWER_OFF, NULL); } void show_regs(struct pt_regs * regs) { printk("\nps: %04lx pc: [<%016lx>]\n", regs->ps, regs->pc); printk("rp: [<%016lx>] sp: %p\n", regs->r26, regs+1); printk(" r0: %016lx r1: %016lx r2: %016lx r3: %016lx\n", regs->r0, regs->r1, regs->r2, regs->r3); printk(" r4: %016lx r5: %016lx r6: %016lx r7: %016lx\n", regs->r4, regs->r5, regs->r6, regs->r7); printk(" r8: %016lx r16: %016lx r17: %016lx r18: %016lx\n", regs->r8, regs->r16, regs->r17, regs->r18); printk("r19: %016lx r20: %016lx r21: %016lx r22: %016lx\n", regs->r19, regs->r20, regs->r21, regs->r22); printk("r23: %016lx r24: %016lx r25: %016lx r26: %016lx\n", regs->r23, regs->r24, regs->r25, regs->r26); printk("r27: %016lx r28: %016lx r29: %016lx hae: %016lx\n", regs->r27, regs->r28, regs->gp, regs->hae); } /* * Re-start a thread when doing execve() */ void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp) { set_fs(USER_DS); regs->pc = pc; regs->ps = 8; wrusp(sp); } /* * Free current thread data structures etc.. */ void exit_thread(void) { } void flush_thread(void) { /* Arrange for each exec'ed process to start off with a clean slate with respect to the FPU. This is all exceptions disabled. Note that EV6 defines UNFD valid only with UNDZ, which we don't want for IEEE conformance -- so that disabled bit remains in software. */ current->thread.flags &= ~IEEE_SW_MASK; wrfpcr(FPCR_DYN_NORMAL | FPCR_INVD | FPCR_DZED | FPCR_OVFD | FPCR_INED); } void release_thread(struct task_struct *dead_task) { } /* * "alpha_clone()".. By the time we get here, the * non-volatile registers have also been saved on the * stack. We do some ugly pointer stuff here.. (see * also copy_thread) * * Notice that "fork()" is implemented in terms of clone, * with parameters (SIGCHLD, 0). */ int alpha_clone(unsigned long clone_flags, unsigned long usp, struct switch_stack * swstack) { if (!usp) usp = rdusp(); return do_fork(clone_flags, usp, (struct pt_regs *) (swstack+1)); } int alpha_vfork(struct switch_stack * swstack) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), (struct pt_regs *) (swstack+1)); } /* * Copy an alpha thread.. * * Note the "stack_offset" stuff: when returning to kernel mode, we need * to have some extra stack-space for the kernel stack that still exists * after the "ret_from_sys_call". When returning to user mode, we only * want the space needed by the syscall stack frame (ie "struct pt_regs"). * Use the passed "regs" pointer to determine how much space we need * for a kernel fork(). */ int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, struct task_struct * p, struct pt_regs * regs) { extern void ret_from_sys_call(void); extern void ret_from_smp_fork(void); struct pt_regs * childregs; struct switch_stack * childstack, *stack; unsigned long stack_offset; stack_offset = PAGE_SIZE - sizeof(struct pt_regs); if (!(regs->ps & 8)) stack_offset = (PAGE_SIZE-1) & (unsigned long) regs; childregs = (struct pt_regs *) (stack_offset + PAGE_SIZE + (long)p); *childregs = *regs; childregs->r0 = 0; childregs->r19 = 0; childregs->r20 = 1; /* OSF/1 has some strange fork() semantics. */ regs->r20 = 0; stack = ((struct switch_stack *) regs) - 1; childstack = ((struct switch_stack *) childregs) - 1; *childstack = *stack; #ifdef __SMP__ childstack->r26 = (unsigned long) ret_from_smp_fork; #else childstack->r26 = (unsigned long) ret_from_sys_call; #endif p->thread.usp = usp; p->thread.ksp = (unsigned long) childstack; p->thread.pal_flags = 1; /* set FEN, clear everything else */ p->thread.flags = current->thread.flags; return 0; } /* * fill in the user structure for a core dump.. */ void dump_thread(struct pt_regs * pt, struct user * dump) { /* switch stack follows right below pt_regs: */ struct switch_stack * sw = ((struct switch_stack *) pt) - 1; dump->magic = CMAGIC; dump->start_code = current->mm->start_code; dump->start_data = current->mm->start_data; dump->start_stack = rdusp() & ~(PAGE_SIZE - 1); dump->u_tsize = ((current->mm->end_code - dump->start_code) >> PAGE_SHIFT); dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data) >> PAGE_SHIFT); dump->u_ssize = (current->mm->start_stack - dump->start_stack + PAGE_SIZE-1) >> PAGE_SHIFT; /* * We store the registers in an order/format that is * compatible with DEC Unix/OSF/1 as this makes life easier * for gdb. */ dump->regs[EF_V0] = pt->r0; dump->regs[EF_T0] = pt->r1; dump->regs[EF_T1] = pt->r2; dump->regs[EF_T2] = pt->r3; dump->regs[EF_T3] = pt->r4; dump->regs[EF_T4] = pt->r5; dump->regs[EF_T5] = pt->r6; dump->regs[EF_T6] = pt->r7; dump->regs[EF_T7] = pt->r8; dump->regs[EF_S0] = sw->r9; dump->regs[EF_S1] = sw->r10; dump->regs[EF_S2] = sw->r11; dump->regs[EF_S3] = sw->r12; dump->regs[EF_S4] = sw->r13; dump->regs[EF_S5] = sw->r14; dump->regs[EF_S6] = sw->r15; dump->regs[EF_A3] = pt->r19; dump->regs[EF_A4] = pt->r20; dump->regs[EF_A5] = pt->r21; dump->regs[EF_T8] = pt->r22; dump->regs[EF_T9] = pt->r23; dump->regs[EF_T10] = pt->r24; dump->regs[EF_T11] = pt->r25; dump->regs[EF_RA] = pt->r26; dump->regs[EF_T12] = pt->r27; dump->regs[EF_AT] = pt->r28; dump->regs[EF_SP] = rdusp(); dump->regs[EF_PS] = pt->ps; dump->regs[EF_PC] = pt->pc; dump->regs[EF_GP] = pt->gp; dump->regs[EF_A0] = pt->r16; dump->regs[EF_A1] = pt->r17; dump->regs[EF_A2] = pt->r18; memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8); } int dump_fpu (struct pt_regs * regs, elf_fpregset_t *r) { /* switch stack follows right below pt_regs: */ struct switch_stack * sw = ((struct switch_stack *) regs) - 1; memcpy(r, sw->fp, 32 * 8); return 1; } /* * sys_execve() executes a new program. * * This works due to the alpha calling sequence: the first 6 args * are gotten from registers, while the rest is on the stack, so * we get a0-a5 for free, and then magically find "struct pt_regs" * on the stack for us.. * * Don't do this at home. */ asmlinkage int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, struct pt_regs regs) { int error; char * filename; lock_kernel(); filename = getname((char *) a0); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, (char **) a1, (char **) a2, ®s); putname(filename); out: unlock_kernel(); return error; } |