Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 | /* drivers/net/eepro100.c: An Intel i82557-559 Ethernet driver for Linux. */ /* NOTICE: this version tested with kernels 1.3.72 and later only! Written 1996-1999 by Donald Becker. This software may be used and distributed according to the terms of the GNU Public License, incorporated herein by reference. This driver is for the Intel EtherExpress Pro100 (Speedo3) design. It should work with all i82557/558/559 boards. To use as a module, use the compile-command at the end of the file. The author may be reached as becker@CESDIS.usra.edu, or C/O Center of Excellence in Space Data and Information Sciences Code 930.5, NASA Goddard Space Flight Center, Greenbelt MD 20771 For updates see http://cesdis.gsfc.nasa.gov/linux/drivers/eepro100.html For installation instructions http://cesdis.gsfc.nasa.gov/linux/misc/modules.html There is a Majordomo mailing list based at linux-eepro100@cesdis.gsfc.nasa.gov */ static const char *version = "eepro100.c:v1.09j 7/27/99 Donald Becker http://cesdis.gsfc.nasa.gov/linux/drivers/eepro100.html\n"; /* A few user-configurable values that apply to all boards. First set is undocumented and spelled per Intel recommendations. */ static int congenb = 0; /* Enable congestion control in the DP83840. */ static int txfifo = 8; /* Tx FIFO threshold in 4 byte units, 0-15 */ static int rxfifo = 8; /* Rx FIFO threshold, default 32 bytes. */ /* Tx/Rx DMA burst length, 0-127, 0 == no preemption, tx==128 -> disabled. */ static int txdmacount = 128; static int rxdmacount = 0; /* Set the copy breakpoint for the copy-only-tiny-buffer Rx method. Lower values use more memory, but are faster. */ static int rx_copybreak = 200; /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static int max_interrupt_work = 20; /* Maximum number of multicast addresses to filter (vs. rx-all-multicast) */ static int multicast_filter_limit = 64; /* 'options' is used to pass a transceiver override or full-duplex flag e.g. "options=16" for FD, "options=32" for 100mbps-only. */ static int full_duplex[] = {-1, -1, -1, -1, -1, -1, -1, -1}; static int options[] = {-1, -1, -1, -1, -1, -1, -1, -1}; #ifdef MODULE static int debug = -1; /* The debug level */ #endif /* A few values that may be tweaked. */ /* The ring sizes should be a power of two for efficiency. */ #define TX_RING_SIZE 32 /* Effectively 2 entries fewer. */ #define RX_RING_SIZE 32 /* Actual number of TX packets queued, must be <= TX_RING_SIZE-2. */ #define TX_QUEUE_LIMIT 12 /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (2*HZ) /* Size of an pre-allocated Rx buffer: <Ethernet MTU> + slack.*/ #define PKT_BUF_SZ 1536 #if !defined(__OPTIMIZE__) || !defined(__KERNEL__) #warning You must compile this file with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif #include <linux/version.h> #include <linux/module.h> #ifdef MODVERSIONS #include <linux/modversions.h> #endif #include <linux/kernel.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/malloc.h> #include <linux/interrupt.h> #ifdef HAS_PCI_NETIF #include "pci-netif.h" #else #include <linux/pci.h> #if LINUX_VERSION_CODE < 0x20155 #include <linux/bios32.h> /* Ignore the bogus warning in 2.1.100+ */ #endif #endif #include <asm/spinlock.h> #include <asm/bitops.h> #include <asm/io.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/delay.h> #if LINUX_VERSION_CODE > 0x20118 && defined(MODULE) MODULE_AUTHOR("Donald Becker <becker@cesdis.gsfc.nasa.gov>"); MODULE_DESCRIPTION("Intel i82557/i82558 PCI EtherExpressPro driver"); MODULE_PARM(debug, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(congenb, "i"); MODULE_PARM(txfifo, "i"); MODULE_PARM(rxfifo, "i"); MODULE_PARM(txdmacount, "i"); MODULE_PARM(rxdmacount, "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM(multicast_filter_limit, "i"); #endif #define RUN_AT(x) (jiffies + (x)) /* Condensed bus+endian portability operations. */ #define virt_to_le32bus(addr) cpu_to_le32(virt_to_bus(addr)) #define le32bus_to_virt(addr) bus_to_virt(le32_to_cpu(addr)) #if (LINUX_VERSION_CODE < 0x20123) #define test_and_set_bit(val, addr) set_bit(val, addr) #define le16_to_cpu(val) (val) #define cpu_to_le16(val) (val) #define le32_to_cpu(val) (val) #define cpu_to_le32(val) (val) #define spin_lock_irqsave(&sp->lock, flags) save_flags(flags); cli(); #define spin_unlock_irqrestore(&sp->lock, flags); restore_flags(flags); #endif #if LINUX_VERSION_CODE < 0x20159 #define dev_free_skb(skb) dev_kfree_skb(skb, FREE_WRITE); #else #define dev_free_skb(skb) dev_kfree_skb(skb); #endif #if ! defined(CAP_NET_ADMIN) #define capable(CAP_XXX) (suser()) #endif #if ! defined(HAS_NETIF_QUEUE) #define netif_wake_queue(dev) mark_bh(NET_BH); #endif /* The total I/O port extent of the board. The registers beyond 0x18 only exist on the i82558. */ #define SPEEDO3_TOTAL_SIZE 0x20 int speedo_debug = 1; /* Theory of Operation I. Board Compatibility This device driver is designed for the Intel i82557 "Speedo3" chip, Intel's single-chip fast Ethernet controller for PCI, as used on the Intel EtherExpress Pro 100 adapter. II. Board-specific settings PCI bus devices are configured by the system at boot time, so no jumpers need to be set on the board. The system BIOS should be set to assign the PCI INTA signal to an otherwise unused system IRQ line. While it's possible to share PCI interrupt lines, it negatively impacts performance and only recent kernels support it. III. Driver operation IIIA. General The Speedo3 is very similar to other Intel network chips, that is to say "apparently designed on a different planet". This chips retains the complex Rx and Tx descriptors and multiple buffers pointers as previous chips, but also has simplified Tx and Rx buffer modes. This driver uses the "flexible" Tx mode, but in a simplified lower-overhead manner: it associates only a single buffer descriptor with each frame descriptor. Despite the extra space overhead in each receive skbuff, the driver must use the simplified Rx buffer mode to assure that only a single data buffer is associated with each RxFD. The driver implements this by reserving space for the Rx descriptor at the head of each Rx skbuff. The Speedo-3 has receive and command unit base addresses that are added to almost all descriptor pointers. The driver sets these to zero, so that all pointer fields are absolute addresses. The System Control Block (SCB) of some previous Intel chips exists on the chip in both PCI I/O and memory space. This driver uses the I/O space registers, but might switch to memory mapped mode to better support non-x86 processors. IIIB. Transmit structure The driver must use the complex Tx command+descriptor mode in order to have a indirect pointer to the skbuff data section. Each Tx command block (TxCB) is associated with two immediately appended Tx Buffer Descriptor (TxBD). A fixed ring of these TxCB+TxBD pairs are kept as part of the speedo_private data structure for each adapter instance. The newer i82558 explicitly supports this structure, and can read the two TxBDs in the same PCI burst as the TxCB. This ring structure is used for all normal transmit packets, but the transmit packet descriptors aren't long enough for most non-Tx commands such as CmdConfigure. This is complicated by the possibility that the chip has already loaded the link address in the previous descriptor. So for these commands we convert the next free descriptor on the ring to a NoOp, and point that descriptor's link to the complex command. An additional complexity of these non-transmit commands are that they may be added asynchronous to the normal transmit queue, so we disable interrupts whenever the Tx descriptor ring is manipulated. A notable aspect of these special configure commands is that they do work with the normal Tx ring entry scavenge method. The Tx ring scavenge is done at interrupt time using the 'dirty_tx' index, and checking for the command-complete bit. While the setup frames may have the NoOp command on the Tx ring marked as complete, but not have completed the setup command, this is not a problem. The tx_ring entry can be still safely reused, as the tx_skbuff[] entry is always empty for config_cmd and mc_setup frames. Commands may have bits set e.g. CmdSuspend in the command word to either suspend or stop the transmit/command unit. This driver always flags the last command with CmdSuspend, erases the CmdSuspend in the previous command, and then issues a CU_RESUME. Note: Watch out for the potential race condition here: imagine erasing the previous suspend the chip processes the previous command the chip processes the final command, and suspends doing the CU_RESUME the chip processes the next-yet-valid post-final-command. So blindly sending a CU_RESUME is only safe if we do it immediately after after erasing the previous CmdSuspend, without the possibility of an intervening delay. Thus the resume command is always within the interrupts-disabled region. This is a timing dependence, but handling this condition in a timing-independent way would considerably complicate the code. Note: In previous generation Intel chips, restarting the command unit was a notoriously slow process. This is presumably no longer true. IIIC. Receive structure Because of the bus-master support on the Speedo3 this driver uses the new SKBUFF_RX_COPYBREAK scheme, rather than a fixed intermediate receive buffer. This scheme allocates full-sized skbuffs as receive buffers. The value SKBUFF_RX_COPYBREAK is used as the copying breakpoint: it is chosen to trade-off the memory wasted by passing the full-sized skbuff to the queue layer for all frames vs. the copying cost of copying a frame to a correctly-sized skbuff. For small frames the copying cost is negligible (esp. considering that we are pre-loading the cache with immediately useful header information), so we allocate a new, minimally-sized skbuff. For large frames the copying cost is non-trivial, and the larger copy might flush the cache of useful data, so we pass up the skbuff the packet was received into. IIID. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and other software. The send packet thread has partial control over the Tx ring and 'dev->tbusy' flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next queue slot is empty, it clears the tbusy flag when finished otherwise it sets the 'sp->tx_full' flag. The interrupt handler has exclusive control over the Rx ring and records stats from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so we can't avoid the interrupt overhead by having the Tx routine reap the Tx stats.) After reaping the stats, it marks the queue entry as empty by setting the 'base' to zero. Iff the 'sp->tx_full' flag is set, it clears both the tx_full and tbusy flags. IV. Notes Thanks to Steve Williams of Intel for arranging the non-disclosure agreement that stated that I could disclose the information. But I still resent having to sign an Intel NDA when I'm helping Intel sell their own product! */ /* This table drives the PCI probe routines. */ static struct net_device * speedo_found1(int pci_bus, int pci_devfn, struct net_device *dev, long ioaddr, int irq, int chip_idx, int fnd_cnt); #ifdef USE_IO #define SPEEDO_IOTYPE PCI_USES_MASTER|PCI_USES_IO|PCI_ADDR1 #define SPEEDO_SIZE 32 #else #define SPEEDO_IOTYPE PCI_USES_MASTER|PCI_USES_MEM|PCI_ADDR0 #define SPEEDO_SIZE 0x1000 #endif #if defined(HAS_PCI_NETIF) struct pci_id_info static pci_tbl[] = { { "Intel PCI EtherExpress Pro100", { 0x12298086, 0xffffffff,}, SPEEDO_IOTYPE, SPEEDO_SIZE, 0, speedo_found1 }, {0,}, /* 0 terminated list. */ }; #else enum pci_flags_bit { PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4, PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3, }; struct pci_id_info { const char *name; u16 vendor_id, device_id, device_id_mask, flags; int io_size; struct net_device *(*probe1)(int pci_bus, int pci_devfn, struct net_device *dev, long ioaddr, int irq, int chip_idx, int fnd_cnt); } static pci_tbl[] = { { "Intel PCI EtherExpress Pro100", 0x8086, 0x1229, 0xffff, PCI_USES_IO|PCI_USES_MASTER, 32, speedo_found1 }, {0,}, /* 0 terminated list. */ }; #endif #ifndef USE_IO #define inb readb #define inw readw #define inl readl #define outb writeb #define outw writew #define outl writel #endif /* How to wait for the command unit to accept a command. Typically this takes 0 ticks. */ static inline void wait_for_cmd_done(long cmd_ioaddr) { int wait = 100; do ; while(inb(cmd_ioaddr) && --wait >= 0); } /* Offsets to the various registers. All accesses need not be longword aligned. */ enum speedo_offsets { SCBStatus = 0, SCBCmd = 2, /* Rx/Command Unit command and status. */ SCBPointer = 4, /* General purpose pointer. */ SCBPort = 8, /* Misc. commands and operands. */ SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */ SCBCtrlMDI = 16, /* MDI interface control. */ SCBEarlyRx = 20, /* Early receive byte count. */ }; /* Commands that can be put in a command list entry. */ enum commands { CmdNOp = 0, CmdIASetup = 0x10000, CmdConfigure = 0x20000, CmdMulticastList = 0x30000, CmdTx = 0x40000, CmdTDR = 0x50000, CmdDump = 0x60000, CmdDiagnose = 0x70000, CmdSuspend = 0x40000000, /* Suspend after completion. */ CmdIntr = 0x20000000, /* Interrupt after completion. */ CmdTxFlex = 0x00080000, /* Use "Flexible mode" for CmdTx command. */ }; /* Do atomically if possible. */ #if defined(__i386__) || defined(__alpha__) #define clear_suspend(cmd) clear_bit(30, &(cmd)->cmd_status) #elif defined(__powerpc__) #define clear_suspend(cmd) clear_bit(6, &(cmd)->cmd_status) #else #define clear_suspend(cmd) (cmd)->cmd_status &= cpu_to_le32(~CmdSuspend) #endif enum SCBCmdBits { SCBMaskCmdDone=0x8000, SCBMaskRxDone=0x4000, SCBMaskCmdIdle=0x2000, SCBMaskRxSuspend=0x1000, SCBMaskEarlyRx=0x0800, SCBMaskFlowCtl=0x0400, SCBTriggerIntr=0x0200, SCBMaskAll=0x0100, /* The rest are Rx and Tx commands. */ CUStart=0x0010, CUResume=0x0020, CUStatsAddr=0x0040, CUShowStats=0x0050, CUCmdBase=0x0060, /* CU Base address (set to zero) . */ CUDumpStats=0x0070, /* Dump then reset stats counters. */ RxStart=0x0001, RxResume=0x0002, RxAbort=0x0004, RxAddrLoad=0x0006, RxResumeNoResources=0x0007, }; enum SCBPort_cmds { PortReset=0, PortSelfTest=1, PortPartialReset=2, PortDump=3, }; /* The Speedo3 Rx and Tx frame/buffer descriptors. */ struct descriptor { /* A generic descriptor. */ s32 cmd_status; /* All command and status fields. */ u32 link; /* struct descriptor * */ unsigned char params[0]; }; /* The Speedo3 Rx and Tx buffer descriptors. */ struct RxFD { /* Receive frame descriptor. */ s32 status; u32 link; /* struct RxFD * */ u32 rx_buf_addr; /* void * */ u32 count; }; /* Selected elements of the Tx/RxFD.status word. */ enum RxFD_bits { RxComplete=0x8000, RxOK=0x2000, RxErrCRC=0x0800, RxErrAlign=0x0400, RxErrTooBig=0x0200, RxErrSymbol=0x0010, RxEth2Type=0x0020, RxNoMatch=0x0004, RxNoIAMatch=0x0002, TxUnderrun=0x1000, StatusComplete=0x8000, }; struct TxFD { /* Transmit frame descriptor set. */ s32 status; u32 link; /* void * */ u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */ s32 count; /* # of TBD (=1), Tx start thresh., etc. */ /* This constitutes two "TBD" entries -- we only use one. */ u32 tx_buf_addr0; /* void *, frame to be transmitted. */ s32 tx_buf_size0; /* Length of Tx frame. */ u32 tx_buf_addr1; /* void *, frame to be transmitted. */ s32 tx_buf_size1; /* Length of Tx frame. */ }; /* Elements of the dump_statistics block. This block must be lword aligned. */ struct speedo_stats { u32 tx_good_frames; u32 tx_coll16_errs; u32 tx_late_colls; u32 tx_underruns; u32 tx_lost_carrier; u32 tx_deferred; u32 tx_one_colls; u32 tx_multi_colls; u32 tx_total_colls; u32 rx_good_frames; u32 rx_crc_errs; u32 rx_align_errs; u32 rx_resource_errs; u32 rx_overrun_errs; u32 rx_colls_errs; u32 rx_runt_errs; u32 done_marker; }; /* Do not change the position (alignment) of the first few elements! The later elements are grouped for cache locality. */ struct speedo_private { struct TxFD tx_ring[TX_RING_SIZE]; /* Commands (usually CmdTxPacket). */ struct RxFD *rx_ringp[RX_RING_SIZE]; /* Rx descriptor, used as ring. */ /* The addresses of a Tx/Rx-in-place packets/buffers. */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; struct sk_buff* rx_skbuff[RX_RING_SIZE]; struct descriptor *last_cmd; /* Last command sent. */ unsigned int cur_tx, dirty_tx; /* The ring entries to be free()ed. */ spinlock_t lock; /* Group with Tx control cache line. */ u32 tx_threshold; /* The value for txdesc.count. */ struct RxFD *last_rxf; /* Last command sent. */ unsigned int cur_rx, dirty_rx; /* The next free ring entry */ long last_rx_time; /* Last Rx, in jiffies, to handle Rx hang. */ const char *product_name; struct net_device *next_module; void *priv_addr; /* Unaligned address for kfree */ struct enet_statistics stats; struct speedo_stats lstats; int chip_id; unsigned char pci_bus, pci_devfn, acpi_pwr; struct timer_list timer; /* Media selection timer. */ int mc_setup_frm_len; /* The length of an allocated.. */ struct descriptor *mc_setup_frm; /* ..multicast setup frame. */ int mc_setup_busy; /* Avoid double-use of setup frame. */ int in_interrupt; /* Word-aligned dev->interrupt */ char rx_mode; /* Current PROMISC/ALLMULTI setting. */ unsigned int tx_full:1; /* The Tx queue is full. */ unsigned int full_duplex:1; /* Full-duplex operation requested. */ unsigned int flow_ctrl:1; /* Use 802.3x flow control. */ unsigned int rx_bug:1; /* Work around receiver hang errata. */ unsigned int rx_bug10:1; /* Receiver might hang at 10mbps. */ unsigned int rx_bug100:1; /* Receiver might hang at 100mbps. */ unsigned char default_port:8; /* Last dev->if_port value. */ unsigned short phy[2]; /* PHY media interfaces available. */ unsigned short advertising; /* Current PHY advertised caps. */ unsigned short partner; /* Link partner caps. */ long last_reset; }; /* The parameters for a CmdConfigure operation. There are so many options that it would be difficult to document each bit. We mostly use the default or recommended settings. */ const char i82557_config_cmd[22] = { 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */ 0, 0x2E, 0, 0x60, 0, 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */ 0x3f, 0x05, }; const char i82558_config_cmd[22] = { 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */ 0, 0x2E, 0, 0x60, 0x08, 0x88, 0x68, 0, 0x40, 0xf2, 0xBD, /* 0xBD->0xFD=Force full-duplex */ 0x31, 0x05, }; /* PHY media interface chips. */ static const char *phys[] = { "None", "i82553-A/B", "i82553-C", "i82503", "DP83840", "80c240", "80c24", "i82555", "unknown-8", "unknown-9", "DP83840A", "unknown-11", "unknown-12", "unknown-13", "unknown-14", "unknown-15", }; enum phy_chips { NonSuchPhy=0, I82553AB, I82553C, I82503, DP83840, S80C240, S80C24, I82555, DP83840A=10, }; static const char is_mii[] = { 0, 1, 1, 0, 1, 1, 0, 1 }; #define EE_READ_CMD (6) static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len); static int mdio_read(long ioaddr, int phy_id, int location); static int mdio_write(long ioaddr, int phy_id, int location, int value); static int speedo_open(struct net_device *dev); static void speedo_resume(struct net_device *dev); static void speedo_timer(unsigned long data); static void speedo_init_rx_ring(struct net_device *dev); static void speedo_tx_timeout(struct net_device *dev); static int speedo_start_xmit(struct sk_buff *skb, struct net_device *dev); static int speedo_rx(struct net_device *dev); static void speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs); static int speedo_close(struct net_device *dev); static struct enet_statistics *speedo_get_stats(struct net_device *dev); static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static void set_rx_mode(struct net_device *dev); #ifdef honor_default_port /* Optional driver feature to allow forcing the transceiver setting. Not recommended. */ static int mii_ctrl[8] = { 0x3300, 0x3100, 0x0000, 0x0100, 0x2000, 0x2100, 0x0400, 0x3100}; #endif /* A list of all installed Speedo devices, for removing the driver module. */ static struct net_device *root_speedo_dev = NULL; #if ! defined(HAS_PCI_NETIF) int eepro100_init(struct net_device *dev) { int cards_found = 0; static int pci_index = 0; if (! pcibios_present()) return cards_found; for (; pci_index < 8; pci_index++) { unsigned char pci_bus, pci_device_fn, pci_latency; u32 pciaddr; long ioaddr; int irq; u16 pci_command, new_command; if (pcibios_find_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557, pci_index, &pci_bus, &pci_device_fn)) break; #if LINUX_VERSION_CODE >= 0x20155 || PCI_SUPPORT_1 { struct pci_dev *pdev = pci_find_slot(pci_bus, pci_device_fn); #ifdef USE_IO pciaddr = pdev->resource[1].start; #else pciaddr = pdev->resource[0].start; #endif irq = pdev->irq; } #else { u8 pci_irq_line; pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_INTERRUPT_LINE, &pci_irq_line); /* Note: BASE_ADDRESS_0 is for memory-mapping the registers. */ #ifdef USE_IO pcibios_read_config_dword(pci_bus, pci_device_fn, PCI_BASE_ADDRESS_1, &pciaddr); #else pcibios_read_config_dword(pci_bus, pci_device_fn, PCI_BASE_ADDRESS_0, &pciaddr); #endif irq = pci_irq_line; } #endif /* Remove I/O space marker in bit 0. */ if (pciaddr & 1) { ioaddr = pciaddr & ~3; if (check_region(ioaddr, 32)) continue; } else if ((ioaddr = (long)ioremap(pciaddr & ~0xf, 0x1000)) == 0) { printk(KERN_INFO "Failed to map PCI address %#x.\n", pciaddr); continue; } if (speedo_debug > 2) printk("Found Intel i82557 PCI Speedo at I/O %#lx, IRQ %d.\n", ioaddr, irq); /* Get and check the bus-master and latency values. */ pcibios_read_config_word(pci_bus, pci_device_fn, PCI_COMMAND, &pci_command); new_command = pci_command | PCI_COMMAND_MASTER|PCI_COMMAND_IO; if (pci_command != new_command) { printk(KERN_INFO " The PCI BIOS has not enabled this" " device! Updating PCI command %4.4x->%4.4x.\n", pci_command, new_command); pcibios_write_config_word(pci_bus, pci_device_fn, PCI_COMMAND, new_command); } pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency < 32) { printk(" PCI latency timer (CFLT) is unreasonably low at %d." " Setting to 32 clocks.\n", pci_latency); pcibios_write_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, 32); } else if (speedo_debug > 1) printk(" PCI latency timer (CFLT) is %#x.\n", pci_latency); speedo_found1(pci_bus, pci_device_fn, dev, ioaddr, irq, 0,cards_found); dev = NULL; cards_found++; } return cards_found; } #endif static struct net_device * speedo_found1(int pci_bus, int pci_devfn, struct net_device *dev, long ioaddr, int irq, int chip_idx, int card_idx) { struct speedo_private *sp; const char *product; int i, option; u16 eeprom[0x100]; int acpi_idle_state = 0; #ifndef MODULE static int did_version = 0; /* Already printed version info. */ if (speedo_debug > 0 && did_version++ == 0) printk(version); #endif dev = init_etherdev(dev, sizeof(struct speedo_private)); if (dev->mem_start > 0) option = dev->mem_start; else if (card_idx >= 0 && options[card_idx] >= 0) option = options[card_idx]; else option = 0; #if defined(HAS_PCI_NETIF) acpi_idle_state = acpi_set_pwr_state(pci_bus, pci_devfn, ACPI_D0); #endif /* Read the station address EEPROM before doing the reset. Nominally his should even be done before accepting the device, but then we wouldn't have a device name with which to report the error. The size test is for 6 bit vs. 8 bit address serial EEPROMs. */ { u16 sum = 0; int j; int read_cmd, ee_size; if ((do_eeprom_cmd(ioaddr, EE_READ_CMD << 24, 27) & 0xffe0000) == 0xffe0000) { ee_size = 0x100; read_cmd = EE_READ_CMD << 24; } else { ee_size = 0x40; read_cmd = EE_READ_CMD << 22; } for (j = 0, i = 0; i < ee_size; i++) { u16 value = do_eeprom_cmd(ioaddr, read_cmd | (i << 16), 27); eeprom[i] = value; sum += value; if (i < 3) { dev->dev_addr[j++] = value; dev->dev_addr[j++] = value >> 8; } } if (sum != 0xBABA) printk(KERN_WARNING "%s: Invalid EEPROM checksum %#4.4x, " "check settings before activating this device!\n", dev->name, sum); /* Don't unregister_netdev(dev); as the EEPro may actually be usable, especially if the MAC address is set later. */ } /* Reset the chip: stop Tx and Rx processes and clear counters. This takes less than 10usec and will easily finish before the next action. */ outl(PortReset, ioaddr + SCBPort); if (eeprom[3] & 0x0100) product = "OEM i82557/i82558 10/100 Ethernet"; else product = pci_tbl[chip_idx].name; printk(KERN_INFO "%s: %s at %#3lx, ", dev->name, product, ioaddr); for (i = 0; i < 5; i++) printk("%2.2X:", dev->dev_addr[i]); printk("%2.2X, IRQ %d.\n", dev->dev_addr[i], irq); #ifndef kernel_bloat /* OK, this is pure kernel bloat. I don't like it when other drivers waste non-pageable kernel space to emit similar messages, but I need them for bug reports. */ { const char *connectors[] = {" RJ45", " BNC", " AUI", " MII"}; /* The self-test results must be paragraph aligned. */ s32 str[6], *volatile self_test_results; int boguscnt = 16000; /* Timeout for set-test. */ if (eeprom[3] & 0x03) printk(KERN_INFO " Receiver lock-up bug exists -- enabling" " work-around.\n"); printk(KERN_INFO " Board assembly %4.4x%2.2x-%3.3d, Physical" " connectors present:", eeprom[8], eeprom[9]>>8, eeprom[9] & 0xff); for (i = 0; i < 4; i++) if (eeprom[5] & (1<<i)) printk(connectors[i]); printk("\n"KERN_INFO" Primary interface chip %s PHY #%d.\n", phys[(eeprom[6]>>8)&15], eeprom[6] & 0x1f); if (eeprom[7] & 0x0700) printk(KERN_INFO " Secondary interface chip %s.\n", phys[(eeprom[7]>>8)&7]); if (((eeprom[6]>>8) & 0x3f) == DP83840 || ((eeprom[6]>>8) & 0x3f) == DP83840A) { int mdi_reg23 = mdio_read(ioaddr, eeprom[6] & 0x1f, 23) | 0x0422; if (congenb) mdi_reg23 |= 0x0100; printk(KERN_INFO" DP83840 specific setup, setting register 23 to %4.4x.\n", mdi_reg23); mdio_write(ioaddr, eeprom[6] & 0x1f, 23, mdi_reg23); } if ((option >= 0) && (option & 0x70)) { printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n", (option & 0x20 ? 100 : 10), (option & 0x10 ? "full" : "half")); mdio_write(ioaddr, eeprom[6] & 0x1f, 0, ((option & 0x20) ? 0x2000 : 0) | /* 100mbps? */ ((option & 0x10) ? 0x0100 : 0)); /* Full duplex? */ } /* Perform a system self-test. */ self_test_results = (s32*) ((((long) str) + 15) & ~0xf); self_test_results[0] = 0; self_test_results[1] = -1; outl(virt_to_bus(self_test_results) | PortSelfTest, ioaddr + SCBPort); do { udelay(10); } while (self_test_results[1] == -1 && --boguscnt >= 0); if (boguscnt < 0) { /* Test optimized out. */ printk(KERN_ERR "Self test failed, status %8.8x:\n" KERN_ERR " Failure to initialize the i82557.\n" KERN_ERR " Verify that the card is a bus-master" " capable slot.\n", self_test_results[1]); } else printk(KERN_INFO " General self-test: %s.\n" KERN_INFO " Serial sub-system self-test: %s.\n" KERN_INFO " Internal registers self-test: %s.\n" KERN_INFO " ROM checksum self-test: %s (%#8.8x).\n", self_test_results[1] & 0x1000 ? "failed" : "passed", self_test_results[1] & 0x0020 ? "failed" : "passed", self_test_results[1] & 0x0008 ? "failed" : "passed", self_test_results[1] & 0x0004 ? "failed" : "passed", self_test_results[0]); } #endif /* kernel_bloat */ outl(PortReset, ioaddr + SCBPort); #if defined(HAS_PCI_NETIF) /* Return the chip to its original power state. */ acpi_set_pwr_state(pci_bus, pci_devfn, acpi_idle_state); #endif /* We do a request_region() only to register /proc/ioports info. */ request_region(ioaddr, SPEEDO3_TOTAL_SIZE, "Intel Speedo3 Ethernet"); dev->base_addr = ioaddr; dev->irq = irq; sp = dev->priv; if (dev->priv == NULL) { void *mem = kmalloc(sizeof(*sp), GFP_KERNEL); dev->priv = sp = mem; /* Cache align here if kmalloc does not. */ sp->priv_addr = mem; } memset(sp, 0, sizeof(*sp)); sp->next_module = root_speedo_dev; root_speedo_dev = dev; sp->pci_bus = pci_bus; sp->pci_devfn = pci_devfn; sp->chip_id = chip_idx; sp->acpi_pwr = acpi_idle_state; sp->full_duplex = option >= 0 && (option & 0x10) ? 1 : 0; if (card_idx >= 0) { if (full_duplex[card_idx] >= 0) sp->full_duplex = full_duplex[card_idx]; } sp->default_port = option >= 0 ? (option & 0x0f) : 0; sp->phy[0] = eeprom[6]; sp->phy[1] = eeprom[7]; sp->rx_bug = (eeprom[3] & 0x03) == 3 ? 0 : 1; if (sp->rx_bug) printk(KERN_INFO " Receiver lock-up workaround activated.\n"); /* The Speedo-specific entries in the device structure. */ dev->open = &speedo_open; dev->hard_start_xmit = &speedo_start_xmit; dev->stop = &speedo_close; dev->get_stats = &speedo_get_stats; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &speedo_ioctl; return dev; } /* Serial EEPROM section. A "bit" grungy, but we work our way through bit-by-bit :->. */ /* EEPROM_Ctrl bits. */ #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */ #define EE_CS 0x02 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ #define EE_ENB (0x4800 | EE_CS) #define EE_WRITE_0 0x4802 #define EE_WRITE_1 0x4806 #define EE_OFFSET SCBeeprom /* Delay between EEPROM clock transitions. The code works with no delay on 33Mhz PCI. */ #define eeprom_delay() inw(ee_addr) static int do_eeprom_cmd(long ioaddr, int cmd, int cmd_len) { unsigned retval = 0; long ee_addr = ioaddr + SCBeeprom; outw(EE_ENB | EE_SHIFT_CLK, ee_addr); /* Shift the command bits out. */ do { short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0; outw(dataval, ee_addr); eeprom_delay(); outw(dataval | EE_SHIFT_CLK, ee_addr); eeprom_delay(); retval = (retval << 1) | ((inw(ee_addr) & EE_DATA_READ) ? 1 : 0); } while (--cmd_len >= 0); outw(EE_ENB, ee_addr); /* Terminate the EEPROM access. */ outw(EE_ENB & ~EE_CS, ee_addr); return retval; } static int mdio_read(long ioaddr, int phy_id, int location) { int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */ outl(0x08000000 | (location<<16) | (phy_id<<21), ioaddr + SCBCtrlMDI); do { val = inl(ioaddr + SCBCtrlMDI); if (--boguscnt < 0) { printk(KERN_ERR " mdio_read() timed out with val = %8.8x.\n", val); break; } } while (! (val & 0x10000000)); return val & 0xffff; } static int mdio_write(long ioaddr, int phy_id, int location, int value) { int val, boguscnt = 64*10; /* <64 usec. to complete, typ 27 ticks */ outl(0x04000000 | (location<<16) | (phy_id<<21) | value, ioaddr + SCBCtrlMDI); do { val = inl(ioaddr + SCBCtrlMDI); if (--boguscnt < 0) { printk(KERN_ERR" mdio_write() timed out with val = %8.8x.\n", val); break; } } while (! (val & 0x10000000)); return val & 0xffff; } static int speedo_open(struct net_device *dev) { struct speedo_private *sp = (struct speedo_private *)dev->priv; long ioaddr = dev->base_addr; #if defined(HAS_PCI_NETIF) acpi_set_pwr_state(sp->pci_bus, sp->pci_devfn, ACPI_D0); #endif if (speedo_debug > 1) printk(KERN_DEBUG "%s: speedo_open() irq %d.\n", dev->name, dev->irq); /* Set up the Tx queue early.. */ sp->cur_tx = 0; sp->dirty_tx = 0; sp->last_cmd = 0; sp->tx_full = 0; sp->lock = (spinlock_t) SPIN_LOCK_UNLOCKED; sp->in_interrupt = 0; /* .. we can safely take handler calls during init. */ if (request_irq(dev->irq, &speedo_interrupt, SA_SHIRQ, dev->name, dev)) { return -EAGAIN; } MOD_INC_USE_COUNT; dev->if_port = sp->default_port; #if 0 /* With some transceivers we must retrigger negotiation to reset power-up errors. */ if ((sp->phy[0] & 0x8000) == 0) { int phy_addr = sp->phy[0] & 0x1f ; /* Use 0x3300 for restarting NWay, other values to force xcvr: 0x0000 10-HD 0x0100 10-FD 0x2000 100-HD 0x2100 100-FD */ #ifdef honor_default_port mdio_write(ioaddr, phy_addr, 0, mii_ctrl[dev->default_port & 7]); #else mdio_write(ioaddr, phy_addr, 0, 0x3300); #endif } #endif speedo_init_rx_ring(dev); /* Fire up the hardware. */ speedo_resume(dev); dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; /* Setup the chip and configure the multicast list. */ sp->mc_setup_frm = NULL; sp->mc_setup_frm_len = 0; sp->mc_setup_busy = 0; sp->rx_mode = -1; /* Invalid -> always reset the mode. */ sp->flow_ctrl = sp->partner = 0; set_rx_mode(dev); if ((sp->phy[0] & 0x8000) == 0) sp->advertising = mdio_read(ioaddr, sp->phy[0] & 0x1f, 4); if (speedo_debug > 2) { printk(KERN_DEBUG "%s: Done speedo_open(), status %8.8x.\n", dev->name, inw(ioaddr + SCBStatus)); } /* Set the timer. The timer serves a dual purpose: 1) to monitor the media interface (e.g. link beat) and perhaps switch to an alternate media type 2) to monitor Rx activity, and restart the Rx process if the receiver hangs. */ init_timer(&sp->timer); sp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */ sp->timer.data = (unsigned long)dev; sp->timer.function = &speedo_timer; /* timer handler */ add_timer(&sp->timer); /* No need to wait for the command unit to accept here. */ if ((sp->phy[0] & 0x8000) == 0) mdio_read(ioaddr, sp->phy[0] & 0x1f, 0); return 0; } /* Start the chip hardware after a full reset. */ static void speedo_resume(struct net_device *dev) { struct speedo_private *sp = (struct speedo_private *)dev->priv; long ioaddr = dev->base_addr; outw(SCBMaskAll, ioaddr + SCBCmd); /* Start with a Tx threshold of 256 (0x..20.... 8 byte units). */ sp->tx_threshold = 0x01208000; /* Set the segment registers to '0'. */ wait_for_cmd_done(ioaddr + SCBCmd); outl(0, ioaddr + SCBPointer); outb(RxAddrLoad, ioaddr + SCBCmd); wait_for_cmd_done(ioaddr + SCBCmd); outb(CUCmdBase, ioaddr + SCBCmd); wait_for_cmd_done(ioaddr + SCBCmd); /* Load the statistics block and rx ring addresses. */ outl(virt_to_bus(&sp->lstats), ioaddr + SCBPointer); outb(CUStatsAddr, ioaddr + SCBCmd); sp->lstats.done_marker = 0; wait_for_cmd_done(ioaddr + SCBCmd); outl(virt_to_bus(sp->rx_ringp[sp->cur_rx % RX_RING_SIZE]), ioaddr + SCBPointer); outb(RxStart, ioaddr + SCBCmd); wait_for_cmd_done(ioaddr + SCBCmd); outb(CUDumpStats, ioaddr + SCBCmd); /* Fill the first command with our physical address. */ { int entry = sp->cur_tx++ % TX_RING_SIZE; struct descriptor *cur_cmd = (struct descriptor *)&sp->tx_ring[entry]; /* Avoid a bug(?!) here by marking the command already completed. */ cur_cmd->cmd_status = cpu_to_le32((CmdSuspend | CmdIASetup) | 0xa000); cur_cmd->link = virt_to_le32bus(&sp->tx_ring[sp->cur_tx % TX_RING_SIZE]); memcpy(cur_cmd->params, dev->dev_addr, 6); if (sp->last_cmd) clear_suspend(sp->last_cmd); sp->last_cmd = cur_cmd; } /* Start the chip's Tx process and unmask interrupts. */ wait_for_cmd_done(ioaddr + SCBCmd); outl(virt_to_bus(&sp->tx_ring[sp->dirty_tx % TX_RING_SIZE]), ioaddr + SCBPointer); outw(CUStart, ioaddr + SCBCmd); } /* Media monitoring and control. */ static void speedo_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct speedo_private *sp = (struct speedo_private *)dev->priv; long ioaddr = dev->base_addr; int phy_num = sp->phy[0] & 0x1f; /* We have MII and lost link beat. */ if ((sp->phy[0] & 0x8000) == 0) { int partner = mdio_read(ioaddr, phy_num, 5); if (partner != sp->partner) { int flow_ctrl = sp->advertising & partner & 0x0400 ? 1 : 0; sp->partner = partner; if (flow_ctrl != sp->flow_ctrl) { sp->flow_ctrl = flow_ctrl; sp->rx_mode = -1; /* Trigger a reload. */ } /* Clear sticky bit. */ mdio_read(ioaddr, phy_num, 1); /* If link beat has returned... */ if (mdio_read(ioaddr, phy_num, 1) & 0x0004) dev->flags |= IFF_RUNNING; else dev->flags &= ~IFF_RUNNING; } } if (speedo_debug > 3) { printk(KERN_DEBUG "%s: Media control tick, status %4.4x.\n", dev->name, inw(ioaddr + SCBStatus)); } /* This has a small false-trigger window. */ if (test_bit(0, (void*)&dev->tbusy) && (jiffies - dev->trans_start) > TX_TIMEOUT) { speedo_tx_timeout(dev); sp->last_reset = jiffies; } if (sp->rx_mode < 0 || (sp->rx_bug && jiffies - sp->last_rx_time > 2*HZ)) { /* We haven't received a packet in a Long Time. We might have been bitten by the receiver hang bug. This can be cleared by sending a set multicast list command. */ set_rx_mode(dev); } /* We must continue to monitor the media. */ sp->timer.expires = RUN_AT(2*HZ); /* 2.0 sec. */ add_timer(&sp->timer); } static void speedo_show_state(struct net_device *dev) { struct speedo_private *sp = (struct speedo_private *)dev->priv; long ioaddr = dev->base_addr; int phy_num = sp->phy[0] & 0x1f; int i; /* Print a few items for debugging. */ if (speedo_debug > 0) { int i; printk(KERN_DEBUG "%s: Tx ring dump, Tx queue %d / %d:\n", dev->name, sp->cur_tx, sp->dirty_tx); for (i = 0; i < TX_RING_SIZE; i++) printk(KERN_DEBUG "%s: %c%c%d %8.8x.\n", dev->name, i == sp->dirty_tx % TX_RING_SIZE ? '*' : ' ', i == sp->cur_tx % TX_RING_SIZE ? '=' : ' ', i, sp->tx_ring[i].status); } printk(KERN_DEBUG "%s:Printing Rx ring (next to receive into %d).\n", dev->name, sp->cur_rx); for (i = 0; i < RX_RING_SIZE; i++) printk(KERN_DEBUG " Rx ring entry %d %8.8x.\n", i, (int)sp->rx_ringp[i]->status); for (i = 0; i < 16; i++) { if (i == 6) i = 21; printk(KERN_DEBUG " PHY index %d register %d is %4.4x.\n", phy_num, i, mdio_read(ioaddr, phy_num, i)); } } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void speedo_init_rx_ring(struct net_device *dev) { struct speedo_private *sp = (struct speedo_private *)dev->priv; struct RxFD *rxf, *last_rxf = NULL; int i; sp->cur_rx = 0; for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb; skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD)); sp->rx_skbuff[i] = skb; if (skb == NULL) break; /* OK. Just initially short of Rx bufs. */ skb->dev = dev; /* Mark as being used by this device. */ rxf = (struct RxFD *)skb->tail; sp->rx_ringp[i] = rxf; skb_reserve(skb, sizeof(struct RxFD)); if (last_rxf) last_rxf->link = virt_to_le32bus(rxf); last_rxf = rxf; rxf->status = cpu_to_le32(0x00000001); /* '1' is flag value only. */ rxf->link = 0; /* None yet. */ /* This field unused by i82557, we use it as a consistency check. */ #ifdef final_version rxf->rx_buf_addr = 0xffffffff; #else rxf->rx_buf_addr = virt_to_bus(skb->tail); #endif rxf->count = cpu_to_le32(PKT_BUF_SZ << 16); } sp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); /* Mark the last entry as end-of-list. */ last_rxf->status = cpu_to_le32(0xC0000002); /* '2' is flag value only. */ sp->last_rxf = last_rxf; } static void speedo_tx_timeout(struct net_device *dev) { struct speedo_private *sp = (struct speedo_private *)dev->priv; long ioaddr = dev->base_addr; int status = inw(ioaddr + SCBStatus); /* Trigger a stats dump to give time before the reset. */ speedo_get_stats(dev); printk(KERN_WARNING "%s: Transmit timed out: status %4.4x " " %4.4x at %d/%d command %8.8x.\n", dev->name, status, inw(ioaddr + SCBCmd), sp->dirty_tx, sp->cur_tx, sp->tx_ring[sp->dirty_tx % TX_RING_SIZE].status); speedo_show_state(dev); if ((status & 0x00C0) != 0x0080 && (status & 0x003C) == 0x0010) { /* Only the command unit has stopped. */ printk(KERN_WARNING "%s: Trying to restart the transmitter...\n", dev->name); outl(virt_to_bus(&sp->tx_ring[sp->dirty_tx % TX_RING_SIZE]), ioaddr + SCBPointer); outw(CUStart, ioaddr + SCBCmd); } else { /* Reset the Tx and Rx units. */ outl(PortReset, ioaddr + SCBPort); if (speedo_debug > 0) speedo_show_state(dev); udelay(10); speedo_resume(dev); } /* Reset the MII transceiver, suggested by Fred Young @ scalable.com. */ if ((sp->phy[0] & 0x8000) == 0) { int phy_addr = sp->phy[0] & 0x1f; mdio_write(ioaddr, phy_addr, 0, 0x0400); mdio_write(ioaddr, phy_addr, 1, 0x0000); mdio_write(ioaddr, phy_addr, 4, 0x0000); mdio_write(ioaddr, phy_addr, 0, 0x8000); #ifdef honor_default_port mdio_write(ioaddr, phy_addr, 0, mii_ctrl[dev->default_port & 7]); #endif } sp->stats.tx_errors++; dev->trans_start = jiffies; return; } static int speedo_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct speedo_private *sp = (struct speedo_private *)dev->priv; long ioaddr = dev->base_addr; int entry; /* Block a timer-based transmit from overlapping. This could better be done with atomic_swap(1, dev->tbusy), but set_bit() works as well. If this ever occurs the queue layer is doing something evil! */ if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) { int tickssofar = jiffies - dev->trans_start; if (tickssofar < TX_TIMEOUT - 2) return 1; if (tickssofar < TX_TIMEOUT) { /* Reap sent packets from the full Tx queue. */ outw(SCBTriggerIntr, ioaddr + SCBCmd); return 1; } speedo_tx_timeout(dev); return 1; } /* Caution: the write order is important here, set the base address with the "ownership" bits last. */ { /* Prevent interrupts from changing the Tx ring from underneath us. */ unsigned long flags; spin_lock_irqsave(&sp->lock, flags); /* Calculate the Tx descriptor entry. */ entry = sp->cur_tx++ % TX_RING_SIZE; sp->tx_skbuff[entry] = skb; /* Todo: be a little more clever about setting the interrupt bit. */ sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdTx | CmdTxFlex); sp->tx_ring[entry].link = virt_to_le32bus(&sp->tx_ring[sp->cur_tx % TX_RING_SIZE]); sp->tx_ring[entry].tx_desc_addr = virt_to_le32bus(&sp->tx_ring[entry].tx_buf_addr0); /* The data region is always in one buffer descriptor. */ sp->tx_ring[entry].count = cpu_to_le32(sp->tx_threshold); sp->tx_ring[entry].tx_buf_addr0 = virt_to_le32bus(skb->data); sp->tx_ring[entry].tx_buf_size0 = cpu_to_le32(skb->len); /* Todo: perhaps leave the interrupt bit set if the Tx queue is more than half full. Argument against: we should be receiving packets and scavenging the queue. Argument for: if so, it shouldn't matter. */ /* Trigger the command unit resume. */ { struct descriptor *last_cmd = sp->last_cmd; sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry]; clear_suspend(last_cmd); } if (sp->cur_tx - sp->dirty_tx >= TX_QUEUE_LIMIT) sp->tx_full = 1; else clear_bit(0, (void*)&dev->tbusy); spin_unlock_irqrestore(&sp->lock, flags); } wait_for_cmd_done(ioaddr + SCBCmd); outw(CUResume, ioaddr + SCBCmd); dev->trans_start = jiffies; return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void speedo_interrupt(int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *dev = (struct net_device *)dev_instance; struct speedo_private *sp; long ioaddr, boguscnt = max_interrupt_work; unsigned short status; #ifndef final_version if (dev == NULL) { printk(KERN_ERR "speedo_interrupt(): irq %d for unknown device.\n", irq); return; } #endif ioaddr = dev->base_addr; sp = (struct speedo_private *)dev->priv; #ifndef final_version /* A lock to prevent simultaneous entry on SMP machines. */ if (test_and_set_bit(0, (void*)&sp->in_interrupt)) { printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n", dev->name); sp->in_interrupt = 0; /* Avoid halting machine. */ return; } dev->interrupt = 1; #endif do { status = inw(ioaddr + SCBStatus); /* Acknowledge all of the current interrupt sources ASAP. */ outw(status & 0xfc00, ioaddr + SCBStatus); if (speedo_debug > 4) printk(KERN_DEBUG "%s: interrupt status=%#4.4x.\n", dev->name, status); if ((status & 0xfc00) == 0) break; if (status & 0x4000) /* Packet received. */ speedo_rx(dev); if (status & 0x1000) { if ((status & 0x003c) == 0x0028) /* No more Rx buffers. */ outw(RxResumeNoResources, ioaddr + SCBCmd); else if ((status & 0x003c) == 0x0008) { /* No resources (why?!) */ /* No idea of what went wrong. Restart the receiver. */ outl(virt_to_bus(sp->rx_ringp[sp->cur_rx % RX_RING_SIZE]), ioaddr + SCBPointer); outw(RxStart, ioaddr + SCBCmd); } sp->stats.rx_errors++; } /* User interrupt, Command/Tx unit interrupt or CU not active. */ if (status & 0xA400) { unsigned int dirty_tx; spin_lock(&sp->lock); dirty_tx = sp->dirty_tx; while (sp->cur_tx - dirty_tx > 0) { int entry = dirty_tx % TX_RING_SIZE; int status = le32_to_cpu(sp->tx_ring[entry].status); if (speedo_debug > 5) printk(KERN_DEBUG " scavenge candidate %d status %4.4x.\n", entry, status); if ((status & StatusComplete) == 0) break; /* It still hasn't been processed. */ if (status & TxUnderrun) if (sp->tx_threshold < 0x01e08000) sp->tx_threshold += 0x00040000; /* Free the original skb. */ if (sp->tx_skbuff[entry]) { sp->stats.tx_packets++; /* Count only user packets. */ #if LINUX_VERSION_CODE > 0x20127 sp->stats.tx_bytes += sp->tx_skbuff[entry]->len; #endif dev_free_skb(sp->tx_skbuff[entry]); sp->tx_skbuff[entry] = 0; } else if ((status & 0x70000) == CmdNOp) sp->mc_setup_busy = 0; dirty_tx++; } #ifndef final_version if (sp->cur_tx - dirty_tx > TX_RING_SIZE) { printk(KERN_ERR "out-of-sync dirty pointer, %d vs. %d," " full=%d.\n", dirty_tx, sp->cur_tx, sp->tx_full); dirty_tx += TX_RING_SIZE; } #endif sp->dirty_tx = dirty_tx; if (sp->tx_full && sp->cur_tx - dirty_tx < TX_QUEUE_LIMIT - 1) { /* The ring is no longer full, clear tbusy. */ sp->tx_full = 0; clear_bit(0, (void*)&dev->tbusy); spin_unlock(&sp->lock); netif_wake_queue(dev); } else spin_unlock(&sp->lock); } if (--boguscnt < 0) { printk(KERN_ERR "%s: Too much work at interrupt, status=0x%4.4x.\n", dev->name, status); /* Clear all interrupt sources. */ outl(0xfc00, ioaddr + SCBStatus); break; } } while (1); if (speedo_debug > 3) printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", dev->name, inw(ioaddr + SCBStatus)); dev->interrupt = 0; clear_bit(0, (void*)&sp->in_interrupt); return; } static int speedo_rx(struct net_device *dev) { struct speedo_private *sp = (struct speedo_private *)dev->priv; int entry = sp->cur_rx % RX_RING_SIZE; int status; int rx_work_limit = sp->dirty_rx + RX_RING_SIZE - sp->cur_rx; if (speedo_debug > 4) printk(KERN_DEBUG " In speedo_rx().\n"); /* If we own the next entry, it's a new packet. Send it up. */ while (sp->rx_ringp[entry] != NULL && (status = le32_to_cpu(sp->rx_ringp[entry]->status)) & RxComplete) { int pkt_len = le32_to_cpu(sp->rx_ringp[entry]->count) & 0x3fff; if (--rx_work_limit < 0) break; if (speedo_debug > 4) printk(KERN_DEBUG " speedo_rx() status %8.8x len %d.\n", status, pkt_len); if ((status & (RxErrTooBig|RxOK|0x0f90)) != RxOK) { if (status & RxErrTooBig) printk(KERN_ERR "%s: Ethernet frame overran the Rx buffer, " "status %8.8x!\n", dev->name, status); else if ( ! (status & RxOK)) { /* There was a fatal error. This *should* be impossible. */ sp->stats.rx_errors++; printk(KERN_ERR "%s: Anomalous event in speedo_rx(), " "status %8.8x.\n", dev->name, status); } } else { struct sk_buff *skb; /* Check if the packet is long enough to just accept without copying to a properly sized skbuff. */ if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) { skb->dev = dev; skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ /* 'skb_put()' points to the start of sk_buff data area. */ #if 1 || USE_IP_CSUM /* Packet is in one chunk -- we can copy + cksum. */ eth_copy_and_sum(skb, sp->rx_skbuff[entry]->tail, pkt_len, 0); skb_put(skb, pkt_len); #else memcpy(skb_put(skb, pkt_len), sp->rx_skbuff[entry]->tail, pkt_len); #endif } else { void *temp; /* Pass up the already-filled skbuff. */ skb = sp->rx_skbuff[entry]; if (skb == NULL) { printk(KERN_ERR "%s: Inconsistent Rx descriptor chain.\n", dev->name); break; } sp->rx_skbuff[entry] = NULL; temp = skb_put(skb, pkt_len); #if !defined(final_version) && !defined(__powerpc__) if (bus_to_virt(sp->rx_ringp[entry]->rx_buf_addr) != temp) printk(KERN_ERR "%s: Rx consistency error -- the skbuff " "addresses do not match in speedo_rx: %p vs. %p " "/ %p.\n", dev->name, bus_to_virt(sp->rx_ringp[entry]->rx_buf_addr), skb->head, temp); #endif sp->rx_ringp[entry] = NULL; } skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); sp->stats.rx_packets++; #if LINUX_VERSION_CODE > 0x20127 sp->stats.rx_bytes += pkt_len; #endif } entry = (++sp->cur_rx) % RX_RING_SIZE; } /* Refill the Rx ring buffers. */ for (; sp->cur_rx - sp->dirty_rx > 0; sp->dirty_rx++) { struct RxFD *rxf; entry = sp->dirty_rx % RX_RING_SIZE; if (sp->rx_skbuff[entry] == NULL) { struct sk_buff *skb; /* Get a fresh skbuff to replace the consumed one. */ skb = dev_alloc_skb(PKT_BUF_SZ + sizeof(struct RxFD)); sp->rx_skbuff[entry] = skb; if (skb == NULL) { sp->rx_ringp[entry] = NULL; break; /* Better luck next time! */ } rxf = sp->rx_ringp[entry] = (struct RxFD *)skb->tail; skb->dev = dev; skb_reserve(skb, sizeof(struct RxFD)); rxf->rx_buf_addr = virt_to_le32bus(skb->tail); } else { rxf = sp->rx_ringp[entry]; } rxf->status = cpu_to_le32(0xC0000001); /* '1' for driver use only. */ rxf->link = 0; /* None yet. */ rxf->count = cpu_to_le32(PKT_BUF_SZ << 16); sp->last_rxf->link = virt_to_le32bus(rxf); sp->last_rxf->status &= cpu_to_le32(~0xC0000000); sp->last_rxf = rxf; } sp->last_rx_time = jiffies; return 0; } static int speedo_close(struct net_device *dev) { long ioaddr = dev->base_addr; struct speedo_private *sp = (struct speedo_private *)dev->priv; int i; dev->start = 0; dev->tbusy = 1; if (speedo_debug > 1) printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n", dev->name, inw(ioaddr + SCBStatus)); /* Shut off the media monitoring timer. */ del_timer(&sp->timer); /* Disable interrupts, and stop the chip's Rx process. */ outw(SCBMaskAll, ioaddr + SCBCmd); outw(SCBMaskAll | RxAbort, ioaddr + SCBCmd); free_irq(dev->irq, dev); /* Free all the skbuffs in the Rx and Tx queues. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = sp->rx_skbuff[i]; sp->rx_skbuff[i] = 0; /* Clear the Rx descriptors. */ if (skb) { #if LINUX_VERSION_CODE < 0x20100 skb->free = 1; #endif dev_free_skb(skb); } } for (i = 0; i < TX_RING_SIZE; i++) { struct sk_buff *skb = sp->tx_skbuff[i]; sp->tx_skbuff[i] = 0; /* Clear the Tx descriptors. */ if (skb) dev_free_skb(skb); } if (sp->mc_setup_frm) { kfree(sp->mc_setup_frm); sp->mc_setup_frm_len = 0; } /* Print a few items for debugging. */ if (speedo_debug > 3) speedo_show_state(dev); #if defined(HAS_PCI_NETIF) /* Alt: acpi_set_pwr_state(pci_bus, pci_devfn, sp->acpi_pwr); */ acpi_set_pwr_state(sp->pci_bus, sp->pci_devfn, ACPI_D2); #endif MOD_DEC_USE_COUNT; return 0; } /* The Speedo-3 has an especially awkward and unusable method of getting statistics out of the chip. It takes an unpredictable length of time for the dump-stats command to complete. To avoid a busy-wait loop we update the stats with the previous dump results, and then trigger a new dump. These problems are mitigated by the current /proc implementation, which calls this routine first to judge the output length, and then to emit the output. Oh, and incoming frames are dropped while executing dump-stats! */ static struct enet_statistics * speedo_get_stats(struct net_device *dev) { struct speedo_private *sp = (struct speedo_private *)dev->priv; long ioaddr = dev->base_addr; /* Update only if the previous dump finished. */ if (sp->lstats.done_marker == le32_to_cpu(0xA007)) { sp->stats.tx_aborted_errors += le32_to_cpu(sp->lstats.tx_coll16_errs); sp->stats.tx_window_errors += le32_to_cpu(sp->lstats.tx_late_colls); sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats.tx_underruns); sp->stats.tx_fifo_errors += le32_to_cpu(sp->lstats.tx_lost_carrier); /*sp->stats.tx_deferred += le32_to_cpu(sp->lstats.tx_deferred);*/ sp->stats.collisions += le32_to_cpu(sp->lstats.tx_total_colls); sp->stats.rx_crc_errors += le32_to_cpu(sp->lstats.rx_crc_errs); sp->stats.rx_frame_errors += le32_to_cpu(sp->lstats.rx_align_errs); sp->stats.rx_over_errors += le32_to_cpu(sp->lstats.rx_resource_errs); sp->stats.rx_fifo_errors += le32_to_cpu(sp->lstats.rx_overrun_errs); sp->stats.rx_length_errors += le32_to_cpu(sp->lstats.rx_runt_errs); sp->lstats.done_marker = 0x0000; if (dev->start) { wait_for_cmd_done(ioaddr + SCBCmd); outw(CUDumpStats, ioaddr + SCBCmd); } } return &sp->stats; } static int speedo_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct speedo_private *sp = (struct speedo_private *)dev->priv; long ioaddr = dev->base_addr; u16 *data = (u16 *)&rq->ifr_data; int phy = sp->phy[0] & 0x1f; #if defined(HAS_PCI_NETIF) int saved_acpi; #endif switch(cmd) { case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */ data[0] = phy; case SIOCDEVPRIVATE+1: /* Read the specified MII register. */ #if defined(HAS_PCI_NETIF) saved_acpi = acpi_set_pwr_state(sp->pci_bus, sp->pci_devfn, ACPI_D0); data[3] = mdio_read(ioaddr, data[0], data[1]); acpi_set_pwr_state(sp->pci_bus, sp->pci_devfn, saved_acpi); #else data[3] = mdio_read(ioaddr, data[0], data[1]); #endif return 0; case SIOCDEVPRIVATE+2: /* Write the specified MII register */ if (!capable(CAP_NET_ADMIN)) return -EPERM; #if defined(HAS_PCI_NETIF) saved_acpi = acpi_set_pwr_state(sp->pci_bus, sp->pci_devfn, ACPI_D0); mdio_write(ioaddr, data[0], data[1], data[2]); acpi_set_pwr_state(sp->pci_bus, sp->pci_devfn, saved_acpi); #else mdio_write(ioaddr, data[0], data[1], data[2]); #endif return 0; default: return -EOPNOTSUPP; } } /* Set or clear the multicast filter for this adaptor. This is very ugly with Intel chips -- we usually have to execute an entire configuration command, plus process a multicast command. This is complicated. We must put a large configuration command and an arbitrarily-sized multicast command in the transmit list. To minimize the disruption -- the previous command might have already loaded the link -- we convert the current command block, normally a Tx command, into a no-op and link it to the new command. */ static void set_rx_mode(struct net_device *dev) { struct speedo_private *sp = (struct speedo_private *)dev->priv; long ioaddr = dev->base_addr; struct descriptor *last_cmd; char new_rx_mode; unsigned long flags; int entry, i; if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ new_rx_mode = 3; } else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > multicast_filter_limit) { new_rx_mode = 1; } else new_rx_mode = 0; if (sp->cur_tx - sp->dirty_tx >= TX_RING_SIZE - 1) { /* The Tx ring is full -- don't add anything! Presumably the new mode is in config_cmd_data and will be added anyway. */ sp->rx_mode = -1; return; } if (new_rx_mode != sp->rx_mode) { u8 *config_cmd_data; spin_lock_irqsave(&sp->lock, flags); entry = sp->cur_tx++ % TX_RING_SIZE; last_cmd = sp->last_cmd; sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry]; sp->tx_skbuff[entry] = 0; /* Redundant. */ sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdConfigure); sp->tx_ring[entry].link = virt_to_le32bus(&sp->tx_ring[(entry + 1) % TX_RING_SIZE]); config_cmd_data = (void *)&sp->tx_ring[entry].tx_desc_addr; /* Construct a full CmdConfig frame. */ memcpy(config_cmd_data, i82558_config_cmd, sizeof(i82558_config_cmd)); config_cmd_data[1] = (txfifo << 4) | rxfifo; config_cmd_data[4] = rxdmacount; config_cmd_data[5] = txdmacount + 0x80; config_cmd_data[15] |= (new_rx_mode & 2) ? 1 : 0; config_cmd_data[19] = sp->flow_ctrl ? 0xBD : 0x80; config_cmd_data[19] |= sp->full_duplex ? 0x40 : 0; config_cmd_data[21] = (new_rx_mode & 1) ? 0x0D : 0x05; if (sp->phy[0] & 0x8000) { /* Use the AUI port instead. */ config_cmd_data[15] |= 0x80; config_cmd_data[8] = 0; } /* Trigger the command unit resume. */ wait_for_cmd_done(ioaddr + SCBCmd); clear_suspend(last_cmd); outw(CUResume, ioaddr + SCBCmd); spin_unlock_irqrestore(&sp->lock, flags); } if (new_rx_mode == 0 && dev->mc_count < 4) { /* The simple case of 0-3 multicast list entries occurs often, and fits within one tx_ring[] entry. */ struct dev_mc_list *mclist; u16 *setup_params, *eaddrs; spin_lock_irqsave(&sp->lock, flags); entry = sp->cur_tx++ % TX_RING_SIZE; last_cmd = sp->last_cmd; sp->last_cmd = (struct descriptor *)&sp->tx_ring[entry]; sp->tx_skbuff[entry] = 0; sp->tx_ring[entry].status = cpu_to_le32(CmdSuspend | CmdMulticastList); sp->tx_ring[entry].link = virt_to_le32bus(&sp->tx_ring[(entry + 1) % TX_RING_SIZE]); sp->tx_ring[entry].tx_desc_addr = 0; /* Really MC list count. */ setup_params = (u16 *)&sp->tx_ring[entry].tx_desc_addr; *setup_params++ = cpu_to_le16(dev->mc_count*6); /* Fill in the multicast addresses. */ for (i = 0, mclist = dev->mc_list; i < dev->mc_count; i++, mclist = mclist->next) { eaddrs = (u16 *)mclist->dmi_addr; *setup_params++ = *eaddrs++; *setup_params++ = *eaddrs++; *setup_params++ = *eaddrs++; } wait_for_cmd_done(ioaddr + SCBCmd); clear_suspend(last_cmd); /* Immediately trigger the command unit resume. */ outw(CUResume, ioaddr + SCBCmd); spin_unlock_irqrestore(&sp->lock, flags); } else if (new_rx_mode == 0) { struct dev_mc_list *mclist; u16 *setup_params, *eaddrs; struct descriptor *mc_setup_frm = sp->mc_setup_frm; int i; if (sp->mc_setup_frm_len < 10 + dev->mc_count*6 || sp->mc_setup_frm == NULL) { /* Allocate a full setup frame, 10bytes + <max addrs>. */ if (sp->mc_setup_frm) kfree(sp->mc_setup_frm); sp->mc_setup_busy = 0; sp->mc_setup_frm_len = 10 + multicast_filter_limit*6; sp->mc_setup_frm = kmalloc(sp->mc_setup_frm_len, GFP_ATOMIC); if (sp->mc_setup_frm == NULL) { printk(KERN_ERR "%s: Failed to allocate a setup frame.\n", dev->name); sp->rx_mode = -1; /* We failed, try again. */ return; } } /* If we are busy, someone might be quickly adding to the MC list. Try again later when the list updates stop. */ if (sp->mc_setup_busy) { sp->rx_mode = -1; return; } mc_setup_frm = sp->mc_setup_frm; /* Fill the setup frame. */ if (speedo_debug > 1) printk(KERN_DEBUG "%s: Constructing a setup frame at %p, " "%d bytes.\n", dev->name, sp->mc_setup_frm, sp->mc_setup_frm_len); mc_setup_frm->cmd_status = cpu_to_le32(CmdSuspend | CmdIntr | CmdMulticastList); /* Link set below. */ setup_params = (u16 *)&mc_setup_frm->params; *setup_params++ = cpu_to_le16(dev->mc_count*6); /* Fill in the multicast addresses. */ for (i = 0, mclist = dev->mc_list; i < dev->mc_count; i++, mclist = mclist->next) { eaddrs = (u16 *)mclist->dmi_addr; *setup_params++ = *eaddrs++; *setup_params++ = *eaddrs++; *setup_params++ = *eaddrs++; } /* Disable interrupts while playing with the Tx Cmd list. */ spin_lock_irqsave(&sp->lock, flags); entry = sp->cur_tx++ % TX_RING_SIZE; last_cmd = sp->last_cmd; sp->last_cmd = mc_setup_frm; sp->mc_setup_busy++; /* Change the command to a NoOp, pointing to the CmdMulti command. */ sp->tx_skbuff[entry] = 0; sp->tx_ring[entry].status = cpu_to_le32(CmdNOp); sp->tx_ring[entry].link = virt_to_le32bus(mc_setup_frm); /* Set the link in the setup frame. */ mc_setup_frm->link = virt_to_le32bus(&(sp->tx_ring[(entry+1) % TX_RING_SIZE])); wait_for_cmd_done(ioaddr + SCBCmd); clear_suspend(last_cmd); /* Immediately trigger the command unit resume. */ outw(CUResume, ioaddr + SCBCmd); spin_unlock_irqrestore(&sp->lock, flags); if (speedo_debug > 5) printk(" CmdMCSetup frame length %d in entry %d.\n", dev->mc_count, entry); } sp->rx_mode = new_rx_mode; } #ifdef MODULE int init_module(void) { int cards_found; if (debug >= 0) speedo_debug = debug; /* Always emit the version message. */ if (speedo_debug) printk(KERN_INFO "%s", version); #if defined(HAS_PCI_NETIF) cards_found = netif_pci_probe(pci_tbl, NULL); if (cards_found < 0) printk(KERN_INFO "eepro100: No cards found, driver not installed.\n"); return cards_found; #else cards_found = eepro100_init(NULL); if (cards_found <= 0) { printk(KERN_INFO "eepro100: No cards found, driver not installed.\n"); return -ENODEV; } #endif return 0; } void cleanup_module(void) { struct net_device *next_dev; /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_speedo_dev) { struct speedo_private *sp = (void *)root_speedo_dev->priv; unregister_netdev(root_speedo_dev); #ifdef USE_IO release_region(root_speedo_dev->base_addr, SPEEDO3_TOTAL_SIZE); #else iounmap((char *)root_speedo_dev->base_addr); #endif #if defined(HAS_PCI_NETIF) acpi_set_pwr_state(sp->pci_bus, sp->pci_devfn, sp->acpi_pwr); #endif next_dev = sp->next_module; if (sp->priv_addr) kfree(sp->priv_addr); kfree(root_speedo_dev); root_speedo_dev = next_dev; } } #else /* not MODULE */ int eepro100_probe(struct net_device *dev) { int cards_found = 0; cards_found = eepro100_init(dev); /* Only emit the version if the driver is being used. */ if (speedo_debug > 0 && cards_found) printk(version); return cards_found ? 0 : -ENODEV; } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c eepro100.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS` `[ -f ./pci-netif.h ] && echo -DHAS_PCI_NETIF`" * SMP-compile-command: "gcc -D__SMP__ -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c eepro100.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`" * simple-compile-command: "gcc -DMODULE -D__KERNEL__ -O6 -c eepro100.c" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */ |