/*
* NET3 IP device support routines.
*
* Version: $Id: devinet.c,v 1.32 1999/06/09 11:15:33 davem Exp $
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Derived from the IP parts of dev.c 1.0.19
* Authors: Ross Biro, <bir7@leland.Stanford.Edu>
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
*
* Additional Authors:
* Alan Cox, <gw4pts@gw4pts.ampr.org>
* Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* Changes:
* Alexey Kuznetsov: pa_* fields are replaced with ifaddr lists.
* Cyrus Durgin: updated for kmod
*/
#include <linux/config.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/init.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/igmp.h>
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
#ifdef CONFIG_KMOD
#include <linux/kmod.h>
#endif
#include <net/ip.h>
#include <net/route.h>
#include <net/ip_fib.h>
struct ipv4_devconf ipv4_devconf = { 1, 1, 1, 1, 0, };
static struct ipv4_devconf ipv4_devconf_dflt = { 1, 1, 1, 1, 1, };
#ifdef CONFIG_RTNETLINK
static void rtmsg_ifa(int event, struct in_ifaddr *);
#else
#define rtmsg_ifa(a,b) do { } while(0)
#endif
static struct notifier_block *inetaddr_chain;
static void inet_del_ifa(struct in_device *in_dev, struct in_ifaddr **ifap, int destroy);
#ifdef CONFIG_SYSCTL
static void devinet_sysctl_register(struct in_device *in_dev, struct ipv4_devconf *p);
static void devinet_sysctl_unregister(struct ipv4_devconf *p);
#endif
int inet_ifa_count;
int inet_dev_count;
static struct in_ifaddr * inet_alloc_ifa(void)
{
struct in_ifaddr *ifa;
ifa = kmalloc(sizeof(*ifa), GFP_KERNEL);
if (ifa) {
memset(ifa, 0, sizeof(*ifa));
inet_ifa_count++;
}
return ifa;
}
static __inline__ void inet_free_ifa(struct in_ifaddr *ifa)
{
kfree_s(ifa, sizeof(*ifa));
inet_ifa_count--;
}
struct in_device *inetdev_init(struct net_device *dev)
{
struct in_device *in_dev;
in_dev = kmalloc(sizeof(*in_dev), GFP_KERNEL);
if (!in_dev)
return NULL;
inet_dev_count++;
memset(in_dev, 0, sizeof(*in_dev));
memcpy(&in_dev->cnf, &ipv4_devconf_dflt, sizeof(in_dev->cnf));
in_dev->cnf.sysctl = NULL;
in_dev->dev = dev;
if ((in_dev->arp_parms = neigh_parms_alloc(dev, &arp_tbl)) == NULL) {
kfree(in_dev);
return NULL;
}
#ifdef CONFIG_SYSCTL
neigh_sysctl_register(dev, in_dev->arp_parms, NET_IPV4, NET_IPV4_NEIGH, "ipv4");
#endif
dev->ip_ptr = in_dev;
#ifdef CONFIG_SYSCTL
devinet_sysctl_register(in_dev, &in_dev->cnf);
#endif
if (dev->flags&IFF_UP)
ip_mc_up(in_dev);
return in_dev;
}
static void inetdev_destroy(struct in_device *in_dev)
{
struct in_ifaddr *ifa;
ip_mc_destroy_dev(in_dev);
while ((ifa = in_dev->ifa_list) != NULL) {
inet_del_ifa(in_dev, &in_dev->ifa_list, 0);
inet_free_ifa(ifa);
}
#ifdef CONFIG_SYSCTL
devinet_sysctl_unregister(&in_dev->cnf);
#endif
in_dev->dev->ip_ptr = NULL;
synchronize_bh();
neigh_parms_release(&arp_tbl, in_dev->arp_parms);
kfree(in_dev);
}
struct in_ifaddr * inet_addr_onlink(struct in_device *in_dev, u32 a, u32 b)
{
for_primary_ifa(in_dev) {
if (inet_ifa_match(a, ifa)) {
if (!b || inet_ifa_match(b, ifa))
return ifa;
}
} endfor_ifa(in_dev);
return NULL;
}
static void
inet_del_ifa(struct in_device *in_dev, struct in_ifaddr **ifap, int destroy)
{
struct in_ifaddr *ifa1 = *ifap;
/* 1. Deleting primary ifaddr forces deletion all secondaries */
if (!(ifa1->ifa_flags&IFA_F_SECONDARY)) {
struct in_ifaddr *ifa;
struct in_ifaddr **ifap1 = &ifa1->ifa_next;
while ((ifa=*ifap1) != NULL) {
if (!(ifa->ifa_flags&IFA_F_SECONDARY) ||
ifa1->ifa_mask != ifa->ifa_mask ||
!inet_ifa_match(ifa1->ifa_address, ifa)) {
ifap1 = &ifa->ifa_next;
continue;
}
*ifap1 = ifa->ifa_next;
synchronize_bh();
rtmsg_ifa(RTM_DELADDR, ifa);
notifier_call_chain(&inetaddr_chain, NETDEV_DOWN, ifa);
inet_free_ifa(ifa);
}
}
/* 2. Unlink it */
*ifap = ifa1->ifa_next;
synchronize_bh();
/* 3. Announce address deletion */
/* Send message first, then call notifier.
At first sight, FIB update triggered by notifier
will refer to already deleted ifaddr, that could confuse
netlink listeners. It is not true: look, gated sees
that route deleted and if it still thinks that ifaddr
is valid, it will try to restore deleted routes... Grr.
So that, this order is correct.
*/
rtmsg_ifa(RTM_DELADDR, ifa1);
notifier_call_chain(&inetaddr_chain, NETDEV_DOWN, ifa1);
if (destroy) {
inet_free_ifa(ifa1);
if (in_dev->ifa_list == NULL)
inetdev_destroy(in_dev);
}
}
static int
inet_insert_ifa(struct in_device *in_dev, struct in_ifaddr *ifa)
{
struct in_ifaddr *ifa1, **ifap, **last_primary;
if (ifa->ifa_local == 0) {
inet_free_ifa(ifa);
return 0;
}
ifa->ifa_flags &= ~IFA_F_SECONDARY;
last_primary = &in_dev->ifa_list;
for (ifap=&in_dev->ifa_list; (ifa1=*ifap)!=NULL; ifap=&ifa1->ifa_next) {
if (!(ifa1->ifa_flags&IFA_F_SECONDARY) && ifa->ifa_scope <= ifa1->ifa_scope)
last_primary = &ifa1->ifa_next;
if (ifa1->ifa_mask == ifa->ifa_mask && inet_ifa_match(ifa1->ifa_address, ifa)) {
if (ifa1->ifa_local == ifa->ifa_local) {
inet_free_ifa(ifa);
return -EEXIST;
}
if (ifa1->ifa_scope != ifa->ifa_scope) {
inet_free_ifa(ifa);
return -EINVAL;
}
ifa->ifa_flags |= IFA_F_SECONDARY;
}
}
if (!(ifa->ifa_flags&IFA_F_SECONDARY)) {
net_srandom(ifa->ifa_local);
ifap = last_primary;
}
ifa->ifa_next = *ifap;
wmb();
*ifap = ifa;
/* Send message first, then call notifier.
Notifier will trigger FIB update, so that
listeners of netlink will know about new ifaddr */
rtmsg_ifa(RTM_NEWADDR, ifa);
notifier_call_chain(&inetaddr_chain, NETDEV_UP, ifa);
return 0;
}
static int
inet_set_ifa(struct net_device *dev, struct in_ifaddr *ifa)
{
struct in_device *in_dev = dev->ip_ptr;
if (in_dev == NULL) {
in_dev = inetdev_init(dev);
if (in_dev == NULL) {
inet_free_ifa(ifa);
return -ENOBUFS;
}
}
ifa->ifa_dev = in_dev;
if (LOOPBACK(ifa->ifa_local))
ifa->ifa_scope = RT_SCOPE_HOST;
return inet_insert_ifa(in_dev, ifa);
}
struct in_device *inetdev_by_index(int ifindex)
{
struct net_device *dev;
dev = dev_get_by_index(ifindex);
if (dev)
return dev->ip_ptr;
return NULL;
}
struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, u32 prefix, u32 mask)
{
for_primary_ifa(in_dev) {
if (ifa->ifa_mask == mask && inet_ifa_match(prefix, ifa))
return ifa;
} endfor_ifa(in_dev);
return NULL;
}
#ifdef CONFIG_RTNETLINK
/* rtm_{add|del} functions are not reenterable, so that
this structure can be made static
*/
int
inet_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct rtattr **rta = arg;
struct in_device *in_dev;
struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
struct in_ifaddr *ifa, **ifap;
if ((in_dev = inetdev_by_index(ifm->ifa_index)) == NULL)
return -EADDRNOTAVAIL;
for (ifap=&in_dev->ifa_list; (ifa=*ifap)!=NULL; ifap=&ifa->ifa_next) {
if ((rta[IFA_LOCAL-1] && memcmp(RTA_DATA(rta[IFA_LOCAL-1]), &ifa->ifa_local, 4)) ||
(rta[IFA_LABEL-1] && strcmp(RTA_DATA(rta[IFA_LABEL-1]), ifa->ifa_label)) ||
(rta[IFA_ADDRESS-1] &&
(ifm->ifa_prefixlen != ifa->ifa_prefixlen ||
!inet_ifa_match(*(u32*)RTA_DATA(rta[IFA_ADDRESS-1]), ifa))))
continue;
inet_del_ifa(in_dev, ifap, 1);
return 0;
}
return -EADDRNOTAVAIL;
}
int
inet_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct rtattr **rta = arg;
struct net_device *dev;
struct in_device *in_dev;
struct ifaddrmsg *ifm = NLMSG_DATA(nlh);
struct in_ifaddr *ifa;
if (ifm->ifa_prefixlen > 32 || rta[IFA_LOCAL-1] == NULL)
return -EINVAL;
if ((dev = dev_get_by_index(ifm->ifa_index)) == NULL)
return -ENODEV;
if ((in_dev = dev->ip_ptr) == NULL) {
in_dev = inetdev_init(dev);
if (!in_dev)
return -ENOBUFS;
}
if ((ifa = inet_alloc_ifa()) == NULL)
return -ENOBUFS;
if (rta[IFA_ADDRESS-1] == NULL)
rta[IFA_ADDRESS-1] = rta[IFA_LOCAL-1];
memcpy(&ifa->ifa_local, RTA_DATA(rta[IFA_LOCAL-1]), 4);
memcpy(&ifa->ifa_address, RTA_DATA(rta[IFA_ADDRESS-1]), 4);
ifa->ifa_prefixlen = ifm->ifa_prefixlen;
ifa->ifa_mask = inet_make_mask(ifm->ifa_prefixlen);
if (rta[IFA_BROADCAST-1])
memcpy(&ifa->ifa_broadcast, RTA_DATA(rta[IFA_BROADCAST-1]), 4);
if (rta[IFA_ANYCAST-1])
memcpy(&ifa->ifa_anycast, RTA_DATA(rta[IFA_ANYCAST-1]), 4);
ifa->ifa_flags = ifm->ifa_flags;
ifa->ifa_scope = ifm->ifa_scope;
ifa->ifa_dev = in_dev;
if (rta[IFA_LABEL-1])
memcpy(ifa->ifa_label, RTA_DATA(rta[IFA_LABEL-1]), IFNAMSIZ);
else
memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
return inet_insert_ifa(in_dev, ifa);
}
#endif
/*
* Determine a default network mask, based on the IP address.
*/
static __inline__ int inet_abc_len(u32 addr)
{
if (ZERONET(addr))
return 0;
addr = ntohl(addr);
if (IN_CLASSA(addr))
return 8;
if (IN_CLASSB(addr))
return 16;
if (IN_CLASSC(addr))
return 24;
/*
* Something else, probably a multicast.
*/
return -1;
}
int devinet_ioctl(unsigned int cmd, void *arg)
{
struct ifreq ifr;
struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
struct in_device *in_dev;
struct in_ifaddr **ifap = NULL;
struct in_ifaddr *ifa = NULL;
struct net_device *dev;
#ifdef CONFIG_IP_ALIAS
char *colon;
#endif
int exclusive = 0;
int ret = 0;
/*
* Fetch the caller's info block into kernel space
*/
if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
return -EFAULT;
ifr.ifr_name[IFNAMSIZ-1] = 0;
#ifdef CONFIG_IP_ALIAS
colon = strchr(ifr.ifr_name, ':');
if (colon)
*colon = 0;
#endif
#ifdef CONFIG_KMOD
dev_load(ifr.ifr_name);
#endif
switch(cmd) {
case SIOCGIFADDR: /* Get interface address */
case SIOCGIFBRDADDR: /* Get the broadcast address */
case SIOCGIFDSTADDR: /* Get the destination address */
case SIOCGIFNETMASK: /* Get the netmask for the interface */
/* Note that this ioctls will not sleep,
so that we do not impose a lock.
One day we will be forced to put shlock here (I mean SMP)
*/
memset(sin, 0, sizeof(*sin));
sin->sin_family = AF_INET;
break;
case SIOCSIFFLAGS:
if (!capable(CAP_NET_ADMIN))
return -EACCES;
rtnl_lock();
exclusive = 1;
break;
case SIOCSIFADDR: /* Set interface address (and family) */
case SIOCSIFBRDADDR: /* Set the broadcast address */
case SIOCSIFDSTADDR: /* Set the destination address */
case SIOCSIFNETMASK: /* Set the netmask for the interface */
if (!capable(CAP_NET_ADMIN))
return -EACCES;
if (sin->sin_family != AF_INET)
return -EINVAL;
rtnl_lock();
exclusive = 1;
break;
default:
return -EINVAL;
}
if ((dev = dev_get(ifr.ifr_name)) == NULL) {
ret = -ENODEV;
goto done;
}
#ifdef CONFIG_IP_ALIAS
if (colon)
*colon = ':';
#endif
if ((in_dev=dev->ip_ptr) != NULL) {
for (ifap=&in_dev->ifa_list; (ifa=*ifap) != NULL; ifap=&ifa->ifa_next)
if (strcmp(ifr.ifr_name, ifa->ifa_label) == 0)
break;
}
if (ifa == NULL && cmd != SIOCSIFADDR && cmd != SIOCSIFFLAGS) {
ret = -EADDRNOTAVAIL;
goto done;
}
switch(cmd) {
case SIOCGIFADDR: /* Get interface address */
sin->sin_addr.s_addr = ifa->ifa_local;
goto rarok;
case SIOCGIFBRDADDR: /* Get the broadcast address */
sin->sin_addr.s_addr = ifa->ifa_broadcast;
goto rarok;
case SIOCGIFDSTADDR: /* Get the destination address */
sin->sin_addr.s_addr = ifa->ifa_address;
goto rarok;
case SIOCGIFNETMASK: /* Get the netmask for the interface */
sin->sin_addr.s_addr = ifa->ifa_mask;
goto rarok;
case SIOCSIFFLAGS:
#ifdef CONFIG_IP_ALIAS
if (colon) {
if (ifa == NULL) {
ret = -EADDRNOTAVAIL;
break;
}
if (!(ifr.ifr_flags&IFF_UP))
inet_del_ifa(in_dev, ifap, 1);
break;
}
#endif
ret = dev_change_flags(dev, ifr.ifr_flags);
break;
case SIOCSIFADDR: /* Set interface address (and family) */
if (inet_abc_len(sin->sin_addr.s_addr) < 0) {
ret = -EINVAL;
break;
}
if (!ifa) {
if ((ifa = inet_alloc_ifa()) == NULL) {
ret = -ENOBUFS;
break;
}
#ifdef CONFIG_IP_ALIAS
if (colon)
memcpy(ifa->ifa_label, ifr.ifr_name, IFNAMSIZ);
else
#endif
memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
} else {
ret = 0;
if (ifa->ifa_local == sin->sin_addr.s_addr)
break;
inet_del_ifa(in_dev, ifap, 0);
ifa->ifa_broadcast = 0;
ifa->ifa_anycast = 0;
}
ifa->ifa_address =
ifa->ifa_local = sin->sin_addr.s_addr;
if (!(dev->flags&IFF_POINTOPOINT)) {
ifa->ifa_prefixlen = inet_abc_len(ifa->ifa_address);
ifa->ifa_mask = inet_make_mask(ifa->ifa_prefixlen);
if ((dev->flags&IFF_BROADCAST) && ifa->ifa_prefixlen < 31)
ifa->ifa_broadcast = ifa->ifa_address|~ifa->ifa_mask;
} else {
ifa->ifa_prefixlen = 32;
ifa->ifa_mask = inet_make_mask(32);
}
ret = inet_set_ifa(dev, ifa);
break;
case SIOCSIFBRDADDR: /* Set the broadcast address */
if (ifa->ifa_broadcast != sin->sin_addr.s_addr) {
inet_del_ifa(in_dev, ifap, 0);
ifa->ifa_broadcast = sin->sin_addr.s_addr;
inet_insert_ifa(in_dev, ifa);
}
break;
case SIOCSIFDSTADDR: /* Set the destination address */
if (ifa->ifa_address != sin->sin_addr.s_addr) {
if (inet_abc_len(sin->sin_addr.s_addr) < 0) {
ret = -EINVAL;
break;
}
inet_del_ifa(in_dev, ifap, 0);
ifa->ifa_address = sin->sin_addr.s_addr;
inet_insert_ifa(in_dev, ifa);
}
break;
case SIOCSIFNETMASK: /* Set the netmask for the interface */
/*
* The mask we set must be legal.
*/
if (bad_mask(sin->sin_addr.s_addr, 0)) {
ret = -EINVAL;
break;
}
if (ifa->ifa_mask != sin->sin_addr.s_addr) {
inet_del_ifa(in_dev, ifap, 0);
ifa->ifa_mask = sin->sin_addr.s_addr;
ifa->ifa_prefixlen = inet_mask_len(ifa->ifa_mask);
inet_set_ifa(dev, ifa);
}
break;
}
done:
if (exclusive)
rtnl_unlock();
return ret;
rarok:
if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
return -EFAULT;
return 0;
}
static int
inet_gifconf(struct net_device *dev, char *buf, int len)
{
struct in_device *in_dev = dev->ip_ptr;
struct in_ifaddr *ifa;
struct ifreq *ifr = (struct ifreq *) buf;
int done=0;
if (in_dev==NULL || (ifa=in_dev->ifa_list)==NULL)
return 0;
for ( ; ifa; ifa = ifa->ifa_next) {
if (!ifr) {
done += sizeof(ifr);
continue;
}
if (len < (int) sizeof(ifr))
return done;
memset(ifr, 0, sizeof(struct ifreq));
if (ifa->ifa_label)
strcpy(ifr->ifr_name, ifa->ifa_label);
else
strcpy(ifr->ifr_name, dev->name);
(*(struct sockaddr_in *) &ifr->ifr_addr).sin_family = AF_INET;
(*(struct sockaddr_in *) &ifr->ifr_addr).sin_addr.s_addr = ifa->ifa_local;
ifr++;
len -= sizeof(struct ifreq);
done += sizeof(struct ifreq);
}
return done;
}
u32 inet_select_addr(const struct net_device *dev, u32 dst, int scope)
{
u32 addr = 0;
const struct in_device *in_dev = dev->ip_ptr;
if (in_dev == NULL)
return 0;
for_primary_ifa(in_dev) {
if (ifa->ifa_scope > scope)
continue;
addr = ifa->ifa_local;
if (!dst || inet_ifa_match(dst, ifa))
return addr;
} endfor_ifa(in_dev);
if (addr || scope >= RT_SCOPE_LINK)
return addr;
/* Not loopback addresses on loopback should be preferred
in this case. It is importnat that lo is the first interface
in dev_base list.
*/
read_lock(&dev_base_lock);
for (dev=dev_base; dev; dev=dev->next) {
if ((in_dev=dev->ip_ptr) == NULL)
continue;
for_primary_ifa(in_dev) {
if (ifa->ifa_scope <= scope) {
read_unlock(&dev_base_lock);
return ifa->ifa_local;
}
} endfor_ifa(in_dev);
}
read_unlock(&dev_base_lock);
return 0;
}
/*
* Device notifier
*/
int register_inetaddr_notifier(struct notifier_block *nb)
{
return notifier_chain_register(&inetaddr_chain, nb);
}
int unregister_inetaddr_notifier(struct notifier_block *nb)
{
return notifier_chain_unregister(&inetaddr_chain,nb);
}
static int inetdev_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct net_device *dev = ptr;
struct in_device *in_dev = dev->ip_ptr;
if (in_dev == NULL)
return NOTIFY_DONE;
switch (event) {
case NETDEV_REGISTER:
if (in_dev)
printk(KERN_DEBUG "inetdev_event: bug\n");
dev->ip_ptr = NULL;
break;
case NETDEV_UP:
if (dev == &loopback_dev) {
struct in_ifaddr *ifa;
if ((ifa = inet_alloc_ifa()) != NULL) {
ifa->ifa_local =
ifa->ifa_address = htonl(INADDR_LOOPBACK);
ifa->ifa_prefixlen = 8;
ifa->ifa_mask = inet_make_mask(8);
ifa->ifa_dev = in_dev;
ifa->ifa_scope = RT_SCOPE_HOST;
memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
inet_insert_ifa(in_dev, ifa);
}
}
ip_mc_up(in_dev);
break;
case NETDEV_DOWN:
ip_mc_down(in_dev);
break;
case NETDEV_UNREGISTER:
inetdev_destroy(in_dev);
break;
case NETDEV_CHANGENAME:
if (in_dev->ifa_list) {
struct in_ifaddr *ifa;
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next)
memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
/* Do not notify about label change, this event is
not interesting to applications using netlink.
*/
}
break;
}
return NOTIFY_DONE;
}
struct notifier_block ip_netdev_notifier={
inetdev_event,
NULL,
0
};
#ifdef CONFIG_RTNETLINK
static int inet_fill_ifaddr(struct sk_buff *skb, struct in_ifaddr *ifa,
u32 pid, u32 seq, int event)
{
struct ifaddrmsg *ifm;
struct nlmsghdr *nlh;
unsigned char *b = skb->tail;
nlh = NLMSG_PUT(skb, pid, seq, event, sizeof(*ifm));
ifm = NLMSG_DATA(nlh);
ifm->ifa_family = AF_INET;
ifm->ifa_prefixlen = ifa->ifa_prefixlen;
ifm->ifa_flags = ifa->ifa_flags|IFA_F_PERMANENT;
ifm->ifa_scope = ifa->ifa_scope;
ifm->ifa_index = ifa->ifa_dev->dev->ifindex;
if (ifa->ifa_address)
RTA_PUT(skb, IFA_ADDRESS, 4, &ifa->ifa_address);
if (ifa->ifa_local)
RTA_PUT(skb, IFA_LOCAL, 4, &ifa->ifa_local);
if (ifa->ifa_broadcast)
RTA_PUT(skb, IFA_BROADCAST, 4, &ifa->ifa_broadcast);
if (ifa->ifa_anycast)
RTA_PUT(skb, IFA_ANYCAST, 4, &ifa->ifa_anycast);
if (ifa->ifa_label[0])
RTA_PUT(skb, IFA_LABEL, IFNAMSIZ, &ifa->ifa_label);
nlh->nlmsg_len = skb->tail - b;
return skb->len;
nlmsg_failure:
rtattr_failure:
skb_trim(skb, b - skb->data);
return -1;
}
static int inet_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
int idx, ip_idx;
int s_idx, s_ip_idx;
struct net_device *dev;
struct in_device *in_dev;
struct in_ifaddr *ifa;
s_idx = cb->args[0];
s_ip_idx = ip_idx = cb->args[1];
read_lock(&dev_base_lock);
for (dev=dev_base, idx=0; dev; dev = dev->next, idx++) {
if (idx < s_idx)
continue;
if (idx > s_idx)
s_ip_idx = 0;
if ((in_dev = dev->ip_ptr) == NULL)
continue;
for (ifa = in_dev->ifa_list, ip_idx = 0; ifa;
ifa = ifa->ifa_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
if (inet_fill_ifaddr(skb, ifa, NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, RTM_NEWADDR) <= 0)
goto done;
}
}
done:
read_unlock(&dev_base_lock);
cb->args[0] = idx;
cb->args[1] = ip_idx;
return skb->len;
}
static void rtmsg_ifa(int event, struct in_ifaddr * ifa)
{
struct sk_buff *skb;
int size = NLMSG_SPACE(sizeof(struct ifaddrmsg)+128);
skb = alloc_skb(size, GFP_KERNEL);
if (!skb) {
netlink_set_err(rtnl, 0, RTMGRP_IPV4_IFADDR, ENOBUFS);
return;
}
if (inet_fill_ifaddr(skb, ifa, 0, 0, event) < 0) {
kfree_skb(skb);
netlink_set_err(rtnl, 0, RTMGRP_IPV4_IFADDR, EINVAL);
return;
}
NETLINK_CB(skb).dst_groups = RTMGRP_IPV4_IFADDR;
netlink_broadcast(rtnl, skb, 0, RTMGRP_IPV4_IFADDR, GFP_KERNEL);
}
static struct rtnetlink_link inet_rtnetlink_table[RTM_MAX-RTM_BASE+1] =
{
{ NULL, NULL, },
{ NULL, NULL, },
{ NULL, NULL, },
{ NULL, NULL, },
{ inet_rtm_newaddr, NULL, },
{ inet_rtm_deladdr, NULL, },
{ NULL, inet_dump_ifaddr, },
{ NULL, NULL, },
{ inet_rtm_newroute, NULL, },
{ inet_rtm_delroute, NULL, },
{ inet_rtm_getroute, inet_dump_fib, },
{ NULL, NULL, },
{ NULL, NULL, },
{ NULL, NULL, },
{ NULL, NULL, },
{ NULL, NULL, },
#ifdef CONFIG_IP_MULTIPLE_TABLES
{ inet_rtm_newrule, NULL, },
{ inet_rtm_delrule, NULL, },
{ NULL, inet_dump_rules, },
{ NULL, NULL, },
#else
{ NULL, NULL, },
{ NULL, NULL, },
{ NULL, NULL, },
{ NULL, NULL, },
#endif
};
#endif /* CONFIG_RTNETLINK */
#ifdef CONFIG_SYSCTL
void inet_forward_change()
{
struct net_device *dev;
int on = ipv4_devconf.forwarding;
ipv4_devconf.accept_redirects = !on;
ipv4_devconf_dflt.forwarding = on;
read_lock(&dev_base_lock);
for (dev = dev_base; dev; dev = dev->next) {
struct in_device *in_dev = dev->ip_ptr;
if (in_dev)
in_dev->cnf.forwarding = on;
}
read_unlock(&dev_base_lock);
rt_cache_flush(0);
ip_statistics.IpForwarding = on ? 1 : 2;
}
static
int devinet_sysctl_forward(ctl_table *ctl, int write, struct file * filp,
void *buffer, size_t *lenp)
{
int *valp = ctl->data;
int val = *valp;
int ret;
ret = proc_dointvec(ctl, write, filp, buffer, lenp);
if (write && *valp != val) {
if (valp == &ipv4_devconf.forwarding)
inet_forward_change();
else if (valp != &ipv4_devconf_dflt.forwarding)
rt_cache_flush(0);
}
return ret;
}
static struct devinet_sysctl_table
{
struct ctl_table_header *sysctl_header;
ctl_table devinet_vars[12];
ctl_table devinet_dev[2];
ctl_table devinet_conf_dir[2];
ctl_table devinet_proto_dir[2];
ctl_table devinet_root_dir[2];
} devinet_sysctl = {
NULL,
{{NET_IPV4_CONF_FORWARDING, "forwarding",
&ipv4_devconf.forwarding, sizeof(int), 0644, NULL,
&devinet_sysctl_forward},
{NET_IPV4_CONF_MC_FORWARDING, "mc_forwarding",
&ipv4_devconf.mc_forwarding, sizeof(int), 0444, NULL,
&proc_dointvec},
{NET_IPV4_CONF_ACCEPT_REDIRECTS, "accept_redirects",
&ipv4_devconf.accept_redirects, sizeof(int), 0644, NULL,
&proc_dointvec},
{NET_IPV4_CONF_SECURE_REDIRECTS, "secure_redirects",
&ipv4_devconf.secure_redirects, sizeof(int), 0644, NULL,
&proc_dointvec},
{NET_IPV4_CONF_SHARED_MEDIA, "shared_media",
&ipv4_devconf.shared_media, sizeof(int), 0644, NULL,
&proc_dointvec},
{NET_IPV4_CONF_RP_FILTER, "rp_filter",
&ipv4_devconf.rp_filter, sizeof(int), 0644, NULL,
&proc_dointvec},
{NET_IPV4_CONF_SEND_REDIRECTS, "send_redirects",
&ipv4_devconf.send_redirects, sizeof(int), 0644, NULL,
&proc_dointvec},
{NET_IPV4_CONF_ACCEPT_SOURCE_ROUTE, "accept_source_route",
&ipv4_devconf.accept_source_route, sizeof(int), 0644, NULL,
&proc_dointvec},
{NET_IPV4_CONF_PROXY_ARP, "proxy_arp",
&ipv4_devconf.proxy_arp, sizeof(int), 0644, NULL,
&proc_dointvec},
{NET_IPV4_CONF_BOOTP_RELAY, "bootp_relay",
&ipv4_devconf.bootp_relay, sizeof(int), 0644, NULL,
&proc_dointvec},
{NET_IPV4_CONF_LOG_MARTIANS, "log_martians",
&ipv4_devconf.log_martians, sizeof(int), 0644, NULL,
&proc_dointvec},
{0}},
{{NET_PROTO_CONF_ALL, "all", NULL, 0, 0555, devinet_sysctl.devinet_vars},{0}},
{{NET_IPV4_CONF, "conf", NULL, 0, 0555, devinet_sysctl.devinet_dev},{0}},
{{NET_IPV4, "ipv4", NULL, 0, 0555, devinet_sysctl.devinet_conf_dir},{0}},
{{CTL_NET, "net", NULL, 0, 0555, devinet_sysctl.devinet_proto_dir},{0}}
};
static void devinet_sysctl_register(struct in_device *in_dev, struct ipv4_devconf *p)
{
int i;
struct net_device *dev = in_dev ? in_dev->dev : NULL;
struct devinet_sysctl_table *t;
t = kmalloc(sizeof(*t), GFP_KERNEL);
if (t == NULL)
return;
memcpy(t, &devinet_sysctl, sizeof(*t));
for (i=0; i<sizeof(t->devinet_vars)/sizeof(t->devinet_vars[0])-1; i++) {
t->devinet_vars[i].data += (char*)p - (char*)&ipv4_devconf;
t->devinet_vars[i].de = NULL;
}
if (dev) {
t->devinet_dev[0].procname = dev->name;
t->devinet_dev[0].ctl_name = dev->ifindex;
} else {
t->devinet_dev[0].procname = "default";
t->devinet_dev[0].ctl_name = NET_PROTO_CONF_DEFAULT;
}
t->devinet_dev[0].child = t->devinet_vars;
t->devinet_dev[0].de = NULL;
t->devinet_conf_dir[0].child = t->devinet_dev;
t->devinet_conf_dir[0].de = NULL;
t->devinet_proto_dir[0].child = t->devinet_conf_dir;
t->devinet_proto_dir[0].de = NULL;
t->devinet_root_dir[0].child = t->devinet_proto_dir;
t->devinet_root_dir[0].de = NULL;
t->sysctl_header = register_sysctl_table(t->devinet_root_dir, 0);
if (t->sysctl_header == NULL)
kfree(t);
else
p->sysctl = t;
}
static void devinet_sysctl_unregister(struct ipv4_devconf *p)
{
if (p->sysctl) {
struct devinet_sysctl_table *t = p->sysctl;
p->sysctl = NULL;
unregister_sysctl_table(t->sysctl_header);
kfree(t);
}
}
#endif
__initfunc(void devinet_init(void))
{
register_gifconf(PF_INET, inet_gifconf);
register_netdevice_notifier(&ip_netdev_notifier);
#ifdef CONFIG_RTNETLINK
rtnetlink_links[PF_INET] = inet_rtnetlink_table;
#endif
#ifdef CONFIG_SYSCTL
devinet_sysctl.sysctl_header =
register_sysctl_table(devinet_sysctl.devinet_root_dir, 0);
devinet_sysctl_register(NULL, &ipv4_devconf_dflt);
#endif
}