Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | /* NetWinder Floating Point Emulator (c) Corel Computer Corporation, 1998 Direct questions, comments to Scott Bambrough <scottb@corelcomputer.com> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "config.h" #include "fpa11.h" #include "fpopcode.h" unsigned int SingleCPDO(const unsigned int opcode); unsigned int DoubleCPDO(const unsigned int opcode); unsigned int ExtendedCPDO(const unsigned int opcode); unsigned int EmulateCPDO(const unsigned int opcode) { unsigned int Fd, nType, nDest, nRc = 1; //fp_printk("EmulateCPDO(0x%08x)\n",opcode); /* Get the destination size. If not valid let Linux perform an invalid instruction trap. */ nDest = getDestinationSize(opcode); if (typeNone == nDest) return 0; SetRoundingMode(opcode); /* Compare the size of the operands in Fn and Fm. Choose the largest size and perform operations in that size, in order to make use of all the precision of the operands. If Fm is a constant, we just grab a constant of a size matching the size of the operand in Fn. */ if (MONADIC_INSTRUCTION(opcode)) nType = nDest; else nType = fpa11->fpreg[getFn(opcode)].fType; if (!CONSTANT_FM(opcode)) { register unsigned int Fm = getFm(opcode); if (nType < fpa11->fpreg[Fm].fType) { nType = fpa11->fpreg[Fm].fType; } } switch (nType) { case typeSingle : nRc = SingleCPDO(opcode); break; case typeDouble : nRc = DoubleCPDO(opcode); break; case typeExtended : nRc = ExtendedCPDO(opcode); break; default : nRc = 0; } /* If the operation succeeded, check to see if the result in the destination register is the correct size. If not force it to be. */ Fd = getFd(opcode); nType = fpa11->fpreg[Fd].fType; if ((0 != nRc) && (nDest != nType)) { switch (nDest) { case typeSingle: { if (typeDouble == nType) fpa11->fpreg[Fd].fValue.fSingle = float64_to_float32(fpa11->fpreg[Fd].fValue.fDouble); else fpa11->fpreg[Fd].fValue.fSingle = floatx80_to_float32(fpa11->fpreg[Fd].fValue.fExtended); } break; case typeDouble: { if (typeSingle == nType) fpa11->fpreg[Fd].fValue.fDouble = float32_to_float64(fpa11->fpreg[Fd].fValue.fSingle); else fpa11->fpreg[Fd].fValue.fDouble = floatx80_to_float64(fpa11->fpreg[Fd].fValue.fExtended); } break; case typeExtended: { if (typeSingle == nType) fpa11->fpreg[Fd].fValue.fExtended = float32_to_floatx80(fpa11->fpreg[Fd].fValue.fSingle); else fpa11->fpreg[Fd].fValue.fExtended = float64_to_floatx80(fpa11->fpreg[Fd].fValue.fDouble); } break; } fpa11->fpreg[Fd].fType = nDest; } return nRc; } |