Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
 *	linux/arch/alpha/kernel/core_t2.c
 *
 * Code common to all T2 core logic chips.
 *
 * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com).
 * December 1996.
 *
 * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com)
 *
 */
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/init.h>

#include <asm/ptrace.h>
#include <asm/system.h>

#define __EXTERN_INLINE
#include <asm/io.h>
#include <asm/core_t2.h>
#undef __EXTERN_INLINE

#include "proto.h"

/*
 * NOTE: Herein lie back-to-back mb instructions.  They are magic. 
 * One plausible explanation is that the i/o controller does not properly
 * handle the system transaction.  Another involves timing.  Ho hum.
 */

/*
 * Machine check reasons.  Defined according to PALcode sources
 * (osf.h and platform.h).
 */
#define MCHK_K_TPERR		0x0080
#define MCHK_K_TCPERR		0x0082
#define MCHK_K_HERR		0x0084
#define MCHK_K_ECC_C		0x0086
#define MCHK_K_ECC_NC		0x0088
#define MCHK_K_OS_BUGCHECK	0x008A
#define MCHK_K_PAL_BUGCHECK	0x0090

/*
 * BIOS32-style PCI interface:
 */

#ifdef DEBUG_CONF
# define DBG(args)	printk args
#else
# define DBG(args)
#endif

#ifdef DEBUG_MCHECK
# define DBGMC(args)	printk args
#else
# define DBGMC(args)
#endif

static volatile unsigned int T2_mcheck_expected[NR_CPUS];
static volatile unsigned int T2_mcheck_taken[NR_CPUS];


/*
 * Given a bus, device, and function number, compute resulting
 * configuration space address and setup the T2_HAXR2 register
 * accordingly.  It is therefore not safe to have concurrent
 * invocations to configuration space access routines, but there
 * really shouldn't be any need for this.
 *
 * Type 0:
 *
 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0|
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 *	31:11	Device select bit.
 * 	10:8	Function number
 * 	 7:2	Register number
 *
 * Type 1:
 *
 *  3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 
 *  3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1|
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 *
 *	31:24	reserved
 *	23:16	bus number (8 bits = 128 possible buses)
 *	15:11	Device number (5 bits)
 *	10:8	function number
 *	 7:2	register number
 *  
 * Notes:
 *	The function number selects which function of a multi-function device 
 *	(e.g., SCSI and Ethernet).
 * 
 *	The register selects a DWORD (32 bit) register offset.  Hence it
 *	doesn't get shifted by 2 bits as we want to "drop" the bottom two
 *	bits.
 */

static int
mk_conf_addr(u8 bus, u8 device_fn, u8 where, unsigned long *pci_addr,
	     unsigned char *type1)
{
	unsigned long addr;

	DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x,"
	     " addr=0x%lx, type1=0x%x)\n",
	     bus, device_fn, where, pci_addr, type1));

	if (bus == 0) {
		int device = device_fn >> 3;

		/* Type 0 configuration cycle.  */

		if (device > 8) {
			DBG(("mk_conf_addr: device (%d)>20, returning -1\n",
			     device));
			return -1;
		}

		*type1 = 0;
		addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where);
	} else {
		/* Type 1 configuration cycle.  */
		*type1 = 1;
		addr = (bus << 16) | (device_fn << 8) | (where);
	}
	*pci_addr = addr;
	DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr));
	return 0;
}

static unsigned int
conf_read(unsigned long addr, unsigned char type1)
{
	unsigned long flags;
	unsigned int value, cpu;
	unsigned long t2_cfg = 0;

	cpu = smp_processor_id();

	__save_and_cli(flags);	/* avoid getting hit by machine check */

	DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1));

#if 0
	{
	  unsigned long stat0;
	  /* Reset status register to avoid losing errors.  */
	  stat0 = *(vulp)T2_IOCSR;
	  *(vulp)T2_IOCSR = stat0;
	  mb();
	  DBG(("conf_read: T2 IOCSR was 0x%x\n", stat0));
	}
#endif

	/* If Type1 access, must set T2 CFG.  */
	if (type1) {
		t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
		*(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg;
		mb();
		DBG(("conf_read: TYPE1 access\n"));
	}
	mb();
	draina();

	T2_mcheck_expected[cpu] = 1;
	T2_mcheck_taken[cpu] = 0;
	mb();

	/* Access configuration space. */
	value = *(vuip)addr;
	mb();
	mb();  /* magic */

	if (T2_mcheck_taken[cpu]) {
		T2_mcheck_taken[cpu] = 0;
		value = 0xffffffffU;
		mb();
	}
	T2_mcheck_expected[cpu] = 0;
	mb();

	/* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
	if (type1) {
		*(vulp)T2_HAE_3 = t2_cfg;
		mb();
	}
	DBG(("conf_read(): finished\n"));

	__restore_flags(flags);
	return value;
}

static void
conf_write(unsigned long addr, unsigned int value, unsigned char type1)
{
	unsigned long flags;
	unsigned int cpu;
	unsigned long t2_cfg = 0;

	cpu = smp_processor_id();

	__save_and_cli(flags);	/* avoid getting hit by machine check */

#if 0
	{
	  unsigned long stat0;
	  /* Reset status register to avoid losing errors.  */
	  stat0 = *(vulp)T2_IOCSR;
	  *(vulp)T2_IOCSR = stat0;
	  mb();
	  DBG(("conf_write: T2 ERR was 0x%x\n", stat0));
	}
#endif

	/* If Type1 access, must set T2 CFG.  */
	if (type1) {
		t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL;
		*(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL;
		mb();
		DBG(("conf_write: TYPE1 access\n"));
	}
	mb();
	draina();

	T2_mcheck_expected[cpu] = 1;
	mb();

	/* Access configuration space.  */
	*(vuip)addr = value;
	mb();
	mb();  /* magic */

	T2_mcheck_expected[cpu] = 0;
	mb();

	/* If Type1 access, must reset T2 CFG so normal IO space ops work.  */
	if (type1) {
		*(vulp)T2_HAE_3 = t2_cfg;
		mb();
	}
	DBG(("conf_write(): finished\n"));
	__restore_flags(flags);
}

int
t2_hose_read_config_byte (u8 bus, u8 device_fn, u8 where, u8 *value,
			  struct linux_hose_info *hose)
{
	unsigned long addr = T2_CONF;
	unsigned long pci_addr;
	unsigned char type1;

	if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	addr |= (pci_addr << 5) + 0x00;
	*value = conf_read(addr, type1) >> ((where & 3) * 8);
	return PCIBIOS_SUCCESSFUL;
}

int 
t2_hose_read_config_word (u8 bus, u8 device_fn, u8 where, u16 *value,
			  struct linux_hose_info *hose)
{
	unsigned long addr = T2_CONF;
	unsigned long pci_addr;
	unsigned char type1;

	if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	addr |= (pci_addr << 5) + 0x08;
	*value = conf_read(addr, type1) >> ((where & 3) * 8);
	return PCIBIOS_SUCCESSFUL;
}

int 
t2_hose_read_config_dword (u8 bus, u8 device_fn, u8 where, u32 *value,
			   struct linux_hose_info *hose)
{
	unsigned long addr = T2_CONF;
	unsigned long pci_addr;
	unsigned char type1;

	if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	addr |= (pci_addr << 5) + 0x18;
	*value = conf_read(addr, type1);
	return PCIBIOS_SUCCESSFUL;
}

int 
t2_hose_write_config_byte (u8 bus, u8 device_fn, u8 where, u8 value,
			   struct linux_hose_info *hose)
{
	unsigned long addr = T2_CONF;
	unsigned long pci_addr;
	unsigned char type1;

	if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	addr |= (pci_addr << 5) + 0x00;
	conf_write(addr, value << ((where & 3) * 8), type1);
	return PCIBIOS_SUCCESSFUL;
}

int
t2_hose_write_config_word (u8 bus, u8 device_fn, u8 where, u16 value,
			   struct linux_hose_info *hose)
{
	unsigned long addr = T2_CONF;
	unsigned long pci_addr;
	unsigned char type1;

	if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	addr |= (pci_addr << 5) + 0x08;
	conf_write(addr, value << ((where & 3) * 8), type1);
	return PCIBIOS_SUCCESSFUL;
}

int 
t2_hose_write_config_dword (u8 bus, u8 device_fn, u8 where, u32 value,
			    struct linux_hose_info *hose)
{
	unsigned long addr = T2_CONF;
	unsigned long pci_addr;
	unsigned char type1;

	if (mk_conf_addr(bus, device_fn, where, &pci_addr, &type1))
		return PCIBIOS_DEVICE_NOT_FOUND;

	addr |= (pci_addr << 5) + 0x18;
	conf_write(addr, value << ((where & 3) * 8), type1);
	return PCIBIOS_SUCCESSFUL;
}

void __init
t2_init_arch(unsigned long *mem_start, unsigned long *mem_end)
{
	unsigned int i;

	for (i = 0; i < NR_CPUS; i++) {
		T2_mcheck_expected[i] = 0;
		T2_mcheck_taken[i] = 0;
	}

#if 0
	{
	  /* Set up error reporting.  */
	  unsigned long t2_err;

	  t2_err = *(vulp)T2_IOCSR;
	  t2_err |= (0x1 << 7);   /* master abort */
	  *(vulp)T2_IOCSR = t2_err;
	  mb();
	}
#endif

	printk("t2_init: HBASE was 0x%lx\n", *(vulp)T2_HBASE);
#if 0
	printk("t2_init: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n",
	       *(vulp)T2_WBASE1,
	       *(vulp)T2_WMASK1,
	       *(vulp)T2_TBASE1);
	printk("t2_init: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n",
	       *(vulp)T2_WBASE2,
	       *(vulp)T2_WMASK2,
	       *(vulp)T2_TBASE2);
#endif

	switch (alpha_use_srm_setup) 
	{
	default:
#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_SRM_SETUP)
		/* Check window 1 for enabled and mapped to 0.  */
		if (((*(vulp)T2_WBASE1 & (3UL<<18)) == (2UL<<18))
		    && (*(vulp)T2_TBASE1 == 0)) {
			T2_DMA_WIN_BASE = *(vulp)T2_WBASE1 & 0xfff00000UL;
			T2_DMA_WIN_SIZE = *(vulp)T2_WMASK1 & 0xfff00000UL;
			T2_DMA_WIN_SIZE += 0x00100000UL;
			/* DISABLE window 2!! ?? */
#if 1
			printk("t2_init: using Window 1 settings\n");
			printk("t2_init: BASE 0x%lx MASK 0x%lx TRANS 0x%lx\n",
			       *(vulp)T2_WBASE1,
			       *(vulp)T2_WMASK1,
			       *(vulp)T2_TBASE1);
#endif
			break;
		}

		/* Check window 2 for enabled and mapped to 0.  */
		if (((*(vulp)T2_WBASE2 & (3UL<<18)) == (2UL<<18))
		    && (*(vulp)T2_TBASE2 == 0)) {
			T2_DMA_WIN_BASE = *(vulp)T2_WBASE2 & 0xfff00000UL;
			T2_DMA_WIN_SIZE = *(vulp)T2_WMASK2 & 0xfff00000UL;
			T2_DMA_WIN_SIZE += 0x00100000UL;
			/* DISABLE window 1!! ?? */
#if 1
			printk("t2_init: using Window 2 settings\n");
			printk("t2_init: BASE 0x%lx MASK 0x%lx TRANS 0x%lx\n",
			       *(vulp)T2_WBASE2,
			       *(vulp)T2_WMASK2,
			       *(vulp)T2_TBASE2);
#endif
			break;
		}

		/* Otherwise, we must use our defaults.  */
		T2_DMA_WIN_BASE = T2_DMA_WIN_BASE_DEFAULT;
		T2_DMA_WIN_SIZE = T2_DMA_WIN_SIZE_DEFAULT;
#endif
	case 0:
		/*
		 * Set up the PCI->physical memory translation windows.
		 * For now, window 2 is  disabled.  In the future, we may
		 * want to use it to do scatter/gather DMA. 
		 *
		 * Window 1 goes at 1 GB and is 1 GB large.
		 */

		/* WARNING!! must correspond to the DMA_WIN params!!! */
		*(vulp)T2_WBASE1 = 0x400807ffU;
		*(vulp)T2_WMASK1 = 0x3ff00000U;
		*(vulp)T2_TBASE1 = 0;

		*(vulp)T2_WBASE2 = 0x0;
		*(vulp)T2_HBASE = 0x0;
		break;
	}

	/*
	 * Sigh... For the SRM setup, unless we know apriori what the HAE
	 * contents will be, we need to setup the arbitrary region bases
	 * so we can test against the range of addresses and tailor the
	 * region chosen for the SPARSE memory access.
	 *
	 * See include/asm-alpha/t2.h for the SPARSE mem read/write.
	 */
	if (alpha_use_srm_setup) {
		unsigned long t2_hae_1 = *(vulp)T2_HAE_1;

		alpha_mv.sm_base_r1 = (t2_hae_1 << 27) & 0xf8000000UL;

		/*
		 * Set the HAE cache, so that setup_arch() code
		 * will use the SRM setting always. Our readb/writeb
		 * code in .h expects never to have to change
		 * the contents of the HAE.
		 */
		alpha_mv.hae_cache = t2_hae_1;

		alpha_mv.mv_readb = t2_srm_readb;
		alpha_mv.mv_readw = t2_srm_readw;
		alpha_mv.mv_writeb = t2_srm_writeb;
		alpha_mv.mv_writew = t2_srm_writew;
	} else {
		*(vulp)T2_HAE_1 = 0; mb();
		*(vulp)T2_HAE_2 = 0; mb();
		*(vulp)T2_HAE_3 = 0; mb();
#if 0
		*(vulp)T2_HAE_4 = 0; mb(); /* do not touch this */
#endif
	}
}

#define SIC_SEIC (1UL << 33)    /* System Event Clear */

static int
t2_clear_errors(void)
{
	unsigned int cpu = smp_processor_id();
	static struct sable_cpu_csr *cpu_regs = NULL;

	switch (cpu)
	{
	case 0: cpu_regs = (struct sable_cpu_csr *)T2_CPU0_BASE; break;
	case 1: cpu_regs = (struct sable_cpu_csr *)T2_CPU1_BASE; break;
	case 2: cpu_regs = (struct sable_cpu_csr *)T2_CPU2_BASE; break;
	case 3: cpu_regs = (struct sable_cpu_csr *)T2_CPU3_BASE; break;
	}

	DBGMC(("???????? t2_clear_errors\n"));

	cpu_regs->sic &= ~SIC_SEIC;

	/* 
	 * clear CPU errors
	 */
	cpu_regs->bcce |= cpu_regs->bcce;
	cpu_regs->cbe  |= cpu_regs->cbe;
	cpu_regs->bcue |= cpu_regs->bcue;
	cpu_regs->dter |= cpu_regs->dter;

	*(vulp)T2_CERR1 |= *(vulp)T2_CERR1;
	*(vulp)T2_PERR1 |= *(vulp)T2_PERR1;

	mb();
	mb();  /* magic */
	return 0;
}

void
t2_machine_check(unsigned long vector, unsigned long la_ptr,
		 struct pt_regs * regs)
{
	struct el_t2_logout_header *mchk_header;
	struct el_t2_procdata_mcheck *mchk_procdata;
	struct el_t2_sysdata_mcheck *mchk_sysdata;
	unsigned long * ptr;
	const char * reason;
	char buf[128];
	long i;
	unsigned int cpu = smp_processor_id();

	DBGMC(("t2_machine_check: vector=0x%lx la_ptr=0x%lx\n",
	       vector, la_ptr));

	mchk_header = (struct el_t2_logout_header *)la_ptr;

	DBGMC(("t2_machine_check: susoffset=0x%lx procoffset=0x%lx\n",
	       mchk_header->elfl_sysoffset, mchk_header->elfl_procoffset));

	mchk_sysdata = (struct el_t2_sysdata_mcheck *)
		(la_ptr + mchk_header->elfl_sysoffset);
	mchk_procdata = (struct el_t2_procdata_mcheck *)
		(la_ptr + mchk_header->elfl_procoffset - sizeof(unsigned long)*32);

	DBGMC(("         pc=0x%lx size=0x%x procoffset=0x%x sysoffset 0x%x\n",
	       regs->pc, mchk_header->elfl_size, mchk_header->elfl_procoffset,
	       mchk_header->elfl_sysoffset));
	DBGMC(("t2_machine_check: expected %d\n", T2_mcheck_expected[cpu]));

#ifdef DEBUG_DUMP
	{
		unsigned long *ptr;
		int i;

		ptr = (unsigned long *)la_ptr;
		for (i = 0; i < mchk_header->elfl_size/sizeof(long); i += 2) {
			printk(" +%lx %lx %lx\n", i*sizeof(long),
			       ptr[i], ptr[i+1]);
		}
	}
#endif /* DEBUG_DUMP */

	/*
	 * Check if machine check is due to a badaddr() and if so,
	 * ignore the machine check.
	 */
	mb();
	mb();  /* magic */
	if (T2_mcheck_expected[cpu]) {
		DBGMC(("T2 machine check expected\n"));
		T2_mcheck_taken[cpu] = 1;
		t2_clear_errors();
		T2_mcheck_expected[cpu] = 0;
		mb();
		mb();  /* magic */
		wrmces(rdmces()|1);/* ??? */
		draina();
		return;
	}

	switch ((unsigned int) mchk_header->elfl_error_type) {
	case MCHK_K_TPERR:	reason = "tag parity error"; break;
	case MCHK_K_TCPERR:	reason = "tag control parity error"; break;
	case MCHK_K_HERR:	reason = "generic hard error"; break;
	case MCHK_K_ECC_C:	reason = "correctable ECC error"; break;
	case MCHK_K_ECC_NC:	reason = "uncorrectable ECC error"; break;
	case MCHK_K_OS_BUGCHECK: reason = "OS-specific PAL bugcheck"; break;
	case MCHK_K_PAL_BUGCHECK: reason = "callsys in kernel mode"; break;
	case 0x96: reason = "i-cache read retryable error"; break;
	case 0x98: reason = "processor detected hard error"; break;

		/* System specific (these are for Alcor, at least): */
	case 0x203: reason = "system detected uncorrectable ECC error"; break;
	case 0x205: reason = "parity error detected by T2"; break;
	case 0x207: reason = "non-existent memory error"; break;
	case 0x209: reason = "PCI SERR detected"; break;
	case 0x20b: reason = "PCI data parity error detected"; break;
	case 0x20d: reason = "PCI address parity error detected"; break;
	case 0x20f: reason = "PCI master abort error"; break;
	case 0x211: reason = "PCI target abort error"; break;
	case 0x213: reason = "scatter/gather PTE invalid error"; break;
	case 0x215: reason = "flash ROM write error"; break;
	case 0x217: reason = "IOA timeout detected"; break;
	case 0x219: reason = "IOCHK#, EISA add-in board parity or other catastrophic error"; break;
	case 0x21b: reason = "EISA fail-safe timer timeout"; break;
	case 0x21d: reason = "EISA bus time-out"; break;
	case 0x21f: reason = "EISA software generated NMI"; break;
	case 0x221: reason = "unexpected ev5 IRQ[3] interrupt"; break;
	default:
		sprintf(buf, "reason for machine-check unknown (0x%x)",
			(unsigned int) mchk_header->elfl_error_type);
		reason = buf;
		break;
	}
	wrmces(rdmces()|1);	/* reset machine check pending flag */
	mb();

	printk(KERN_CRIT "  T2 machine check: %s%s\n",
	       reason, mchk_header->elfl_retry ? " (retryable)" : "");

	/* Dump the logout area to give all info.  */

	ptr = (unsigned long *)la_ptr;
	for (i = 0; i < mchk_header->elfl_size / sizeof(long); i += 2) {
		printk(KERN_CRIT " +%8lx %016lx %016lx\n",
		       i*sizeof(long), ptr[i], ptr[i+1]);
	}
}