Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
/*
 * linux/fs/hfs/bdelete.c
 *
 * Copyright (C) 1995-1997  Paul H. Hargrove
 * This file may be distributed under the terms of the GNU Public License.
 *
 * This file contains the code to delete records in a B-tree.
 *
 * "XXX" in a comment is a note to myself to consider changing something.
 *
 * In function preconditions the term "valid" applied to a pointer to
 * a structure means that the pointer is non-NULL and the structure it
 * points to has all fields initialized to consistent values.
 */

#include "hfs_btree.h"

/*================ Variable-like macros ================*/

#define FULL (HFS_SECTOR_SIZE - sizeof(struct NodeDescriptor))
#define NO_SPACE (HFS_SECTOR_SIZE+1)

/*================ File-local functions ================*/

/*
 * bdelete_nonempty()
 *
 * Description:
 *   Deletes a record from a given bnode without regard to it becoming empty.
 * Input Variable(s):
 *   struct hfs_brec* brec: pointer to the brec for the deletion
 *   struct hfs_belem* belem: which node in 'brec' to delete from
 * Output Variable(s):
 *   NONE
 * Returns:
 *   void
 * Preconditions:
 *   'brec' points to a valid (struct hfs_brec).
 *   'belem' points to a valid (struct hfs_belem) in 'brec'.
 * Postconditions:
 *   The record has been inserted in the position indicated by 'brec'.
 */
static void bdelete_nonempty(struct hfs_brec *brec, struct hfs_belem *belem)
{
	int i, rec, nrecs, tomove;
	hfs_u16 size;
	hfs_u8 *start;
	struct hfs_bnode *bnode = belem->bnr.bn;

	rec = belem->record;
	nrecs = bnode->ndNRecs;
	size = bnode_rsize(bnode, rec);
	tomove = bnode_offset(bnode, nrecs+1) - bnode_offset(bnode, rec+1);
	
	/* adjust the record table */
	for (i = rec+1; i <= nrecs; ++i) {
		hfs_put_hs(bnode_offset(bnode,i+1) - size, RECTBL(bnode,i));
	}

	/* move it down */
	start = bnode_key(bnode, rec);
	memmove(start, start + size, tomove);

	/* update record count */
	--bnode->ndNRecs;
}

/*
 * del_root()
 *
 * Description:
 *   Delete the current root bnode.
 * Input Variable(s):
 *   struct hfs_bnode_ref *root: reference to the root bnode
 * Output Variable(s):
 *   NONE
 * Returns:
 *   int: 0 on success, error code on failure
 * Preconditions:
 *   'root' refers to the root bnode with HFS_LOCK_WRITE access.
 *   None of 'root's children are held with HFS_LOCK_WRITE access.
 * Postconditions:
 *   The current 'root' node is removed from the tree and the depth
 *    of the tree is reduced by one.
 *   If 'root' is an index node with exactly one child, then that
 *    child becomes the new root of the tree.
 *   If 'root' is an empty leaf node the tree becomes empty.
 *   Upon return access to 'root' is relinquished.
 */
static int del_root(struct hfs_bnode_ref *root)
{
	struct hfs_btree *tree = root->bn->tree;
	struct hfs_bnode_ref child;
	hfs_u32 node;

	if (root->bn->ndNRecs > 1) {
		return 0;
	} else if (root->bn->ndNRecs == 0) {
		/* tree is empty */
		tree->bthRoot = 0;
		tree->root = NULL;
		tree->bthRoot = 0;
		tree->bthFNode = 0;
		tree->bthLNode = 0;
		--tree->bthDepth;
		tree->dirt = 1;
		if (tree->bthDepth) {
			hfs_warn("hfs_bdelete: empty tree with bthDepth=%d\n",
				 tree->bthDepth);
			goto bail;
		}
		return hfs_bnode_free(root);
	} else if (root->bn->ndType == ndIndxNode) {
		/* tree is non-empty */
		node = hfs_get_hl(bkey_record(bnode_datastart(root->bn)));

		child = hfs_bnode_find(tree, node, HFS_LOCK_READ);
		if (!child.bn) {
			hfs_warn("hfs_bdelete: can't read child node.\n");
			goto bail;
		}
			
		child.bn->sticky = HFS_STICKY;
        	if (child.bn->next) {
                	child.bn->next->prev = child.bn->prev;
        	}
        	if (child.bn->prev) {
                	child.bn->prev->next = child.bn->next;
        	}
        	if (bhash(tree, child.bn->node) == child.bn) {
                	bhash(tree, child.bn->node) = child.bn->next;
        	}
		child.bn->next = NULL;
		child.bn->prev = NULL;

		tree->bthRoot = child.bn->node;
		tree->root = child.bn;

		/* re-assign bthFNode and bthLNode if the new root is
                   a leaf node. */
		if (child.bn->ndType == ndLeafNode) {
			tree->bthFNode = node;
			tree->bthLNode = node;
		}
		hfs_bnode_relse(&child);

		tree->bthRoot = node;
		--tree->bthDepth;
		tree->dirt = 1;
		if (!tree->bthDepth) {
			hfs_warn("hfs_bdelete: non-empty tree with "
				 "bthDepth == 0\n");
			goto bail;
		}
		return hfs_bnode_free(root);	/* marks tree dirty */
	}
	hfs_bnode_relse(root);
	return 0;

bail:
	hfs_bnode_relse(root);
	return -EIO;
}


/*
 * delete_empty_bnode()
 *
 * Description:
 *   Removes an empty non-root bnode from between 'left' and 'right'
 * Input Variable(s):
 *   hfs_u32 left_node: node number of 'left' or zero if 'left' is invalid
 *   struct hfs_bnode_ref *left: reference to the left neighbor of the
 *    bnode to remove, or invalid if no such neighbor exists.
 *   struct hfs_bnode_ref *center: reference to the bnode to remove
 *   hfs_u32 right_node: node number of 'right' or zero if 'right' is invalid
 *   struct hfs_bnode_ref *right: reference to the right neighbor of the
 *    bnode to remove, or invalid if no such neighbor exists.
 * Output Variable(s):
 *   NONE
 * Returns:
 *   void
 * Preconditions:
 *   'left_node' is as described above.
 *   'left' points to a valid (struct hfs_bnode_ref) having HFS_LOCK_WRITE
 *    access and referring to the left neighbor of 'center' if such a
 *    neighbor exists, or invalid if no such neighbor exists.
 *   'center' points to a valid (struct hfs_bnode_ref) having HFS_LOCK_WRITE
 *    access and referring to the bnode to delete.
 *   'right_node' is as described above.
 *   'right' points to a valid (struct hfs_bnode_ref) having HFS_LOCK_WRITE
 *    access and referring to the right neighbor of 'center' if such a
 *    neighbor exists, or invalid if no such neighbor exists.
 * Postconditions:
 *   If 'left' is valid its 'ndFLink' field becomes 'right_node'.
 *   If 'right' is valid its 'ndBLink' field becomes 'left_node'.
 *   If 'center' was the first leaf node then the tree's 'bthFNode'
 *    field becomes 'right_node' 
 *   If 'center' was the last leaf node then the tree's 'bthLNode'
 *    field becomes 'left_node' 
 *   'center' is NOT freed and access to the nodes is NOT relinquished.
 */
static void delete_empty_bnode(hfs_u32 left_node, struct hfs_bnode_ref *left,
			       struct hfs_bnode_ref *center,
			       hfs_u32 right_node, struct hfs_bnode_ref *right)
{
	struct hfs_bnode *bnode = center->bn;

	if (left_node) {
		left->bn->ndFLink = right_node;
	} else if (bnode->ndType == ndLeafNode) {
		bnode->tree->bthFNode = right_node;
		bnode->tree->dirt = 1;
	}

	if (right_node) {
		right->bn->ndBLink = left_node;
	} else if (bnode->ndType == ndLeafNode) {
		bnode->tree->bthLNode = left_node;
		bnode->tree->dirt = 1;
	}
}

/*
 * balance()
 *
 * Description:
 *   Attempt to equalize space usage in neighboring bnodes.
 * Input Variable(s):
 *   struct hfs_bnode *left: the left bnode.
 *   struct hfs_bnode *right: the right bnode.
 * Output Variable(s):
 *   NONE
 * Returns:
 *   void
 * Preconditions:
 *   'left' and 'right' point to valid (struct hfs_bnode)s obtained
 *    with HFS_LOCK_WRITE access, and are neighbors.
 * Postconditions:
 *   Records are shifted either left or right to make the space usage
 *   nearly equal.  When exact equality is not possible the break
 *   point is chosen to reduce data movement.
 *   The key corresponding to 'right' in its parent is NOT updated.
 */
static void balance(struct hfs_bnode *left, struct hfs_bnode *right)
{
	int index, left_free, right_free, half;

	left_free = bnode_freespace(left);
	right_free = bnode_freespace(right);
	half = (left_free + right_free)/2;

	if (left_free < right_free) {
		/* shift right to balance */
		index = left->ndNRecs + 1;
		while (right_free >= half) {
			--index;
			right_free -= bnode_rsize(left,index)+sizeof(hfs_u16);
		}
		if (index < left->ndNRecs) {
#if defined(DEBUG_ALL) || defined(DEBUG_BALANCE)
			hfs_warn("shifting %d of %d recs right to balance: ",
			       left->ndNRecs - index, left->ndNRecs);
#endif
			hfs_bnode_shift_right(left, right, index+1);
#if defined(DEBUG_ALL) || defined(DEBUG_BALANCE)
			hfs_warn("%d,%d\n", left->ndNRecs, right->ndNRecs);
#endif
		}
	} else {
		/* shift left to balance */
		index = 0;
		while (left_free >= half) {
			++index;
			left_free -= bnode_rsize(right,index)+sizeof(hfs_u16);
		}
		if (index > 1) {
#if defined(DEBUG_ALL) || defined(DEBUG_BALANCE)
			hfs_warn("shifting %d of %d recs left to balance: ",
			       index-1, right->ndNRecs);
#endif
			hfs_bnode_shift_left(left, right, index-1);
#if defined(DEBUG_ALL) || defined(DEBUG_BALANCE)
			hfs_warn("%d,%d\n", left->ndNRecs, right->ndNRecs);
#endif
		}
	}
}

/*
 * bdelete()
 *
 * Delete the given record from a B-tree.
 */
static int bdelete(struct hfs_brec *brec)
{
	struct hfs_btree *tree = brec->tree;
	struct hfs_belem *belem = brec->bottom;
	struct hfs_belem *parent = (belem-1);
	struct hfs_bnode *bnode;
	hfs_u32 left_node, right_node;
	struct hfs_bnode_ref left, right;
	int left_space, right_space, min_space;
	int fix_right_key;
	int fix_key;
	
	while ((belem > brec->top) &&
	       (belem->flags & (HFS_BPATH_UNDERFLOW | HFS_BPATH_FIRST))) {
		bnode = belem->bnr.bn;
		fix_key = belem->flags & HFS_BPATH_FIRST;
		fix_right_key = 0;

		bdelete_nonempty(brec, belem);

		if (bnode->node == tree->root->node) {
			del_root(&belem->bnr);
			--brec->bottom;
			goto done;
		}

		/* check for btree corruption which could lead to deadlock */
		left_node = bnode->ndBLink;
		right_node = bnode->ndFLink;
		if ((left_node && hfs_bnode_in_brec(left_node, brec)) ||
		    (right_node && hfs_bnode_in_brec(right_node, brec)) ||
		    (left_node == right_node)) {
			hfs_warn("hfs_bdelete: corrupt btree\n");
			hfs_brec_relse(brec, NULL);
			return -EIO;
		}

		/* grab the left neighbor if it exists */
		if (left_node) {
			hfs_bnode_lock(&belem->bnr, HFS_LOCK_RESRV);
			left = hfs_bnode_find(tree,left_node,HFS_LOCK_WRITE);
			if (!left.bn) {
				hfs_warn("hfs_bdelete: unable to read left "
					 "neighbor.\n");
				hfs_brec_relse(brec, NULL);
				return -EIO;
			}
			hfs_bnode_lock(&belem->bnr, HFS_LOCK_WRITE);
			if (parent->record != 1) {
				left_space = bnode_freespace(left.bn);
			} else {
				left_space = NO_SPACE;
			}
		} else {
			left.bn = NULL;
			left_space = NO_SPACE;
		}

		/* grab the right neighbor if it exists */
		if (right_node) {
			right = hfs_bnode_find(tree,right_node,HFS_LOCK_WRITE);
			if (!right.bn) {
				hfs_warn("hfs_bdelete: unable to read right "
					 "neighbor.\n");
				hfs_bnode_relse(&left);
				hfs_brec_relse(brec, NULL);
				return -EIO;
			}
			if (parent->record < parent->bnr.bn->ndNRecs) {
				right_space = bnode_freespace(right.bn);
			} else {
				right_space = NO_SPACE;
			}
		} else {
			right.bn = NULL;
			right_space = NO_SPACE;
		}

		if (left_space < right_space) {
			min_space = left_space;
		} else {
			min_space = right_space;
		}

		if (min_space == NO_SPACE) {
			hfs_warn("hfs_bdelete: no siblings?\n");
			hfs_brec_relse(brec, NULL);
			return -EIO;
		}

		if (bnode->ndNRecs == 0) {
			delete_empty_bnode(left_node, &left, &belem->bnr,
					   right_node, &right);
		} else if (min_space + bnode_freespace(bnode) >= FULL) {
			if ((right_space == NO_SPACE) ||
			    ((right_space == min_space) &&
			     (left_space != NO_SPACE))) {
				hfs_bnode_shift_left(left.bn, bnode,
						     bnode->ndNRecs);
			} else {
				hfs_bnode_shift_right(bnode, right.bn, 1);
				fix_right_key = 1;
			}
			delete_empty_bnode(left_node, &left, &belem->bnr,
					   right_node, &right);
		} else if (min_space == right_space) {
			balance(bnode, right.bn);
			fix_right_key = 1;
		} else {
			balance(left.bn, bnode);
			fix_key = 1;
		}

		if (fix_right_key) {
			hfs_bnode_update_key(brec, belem, right.bn, 1);
		}

		hfs_bnode_relse(&left);
		hfs_bnode_relse(&right);

		if (bnode->ndNRecs) {
			if (fix_key) {
				hfs_bnode_update_key(brec, belem, bnode, 0);
			}
			goto done;
		}

		hfs_bnode_free(&belem->bnr);
		--brec->bottom;
		belem = parent;
		--parent;
	}

	if (belem < brec->top) {
		hfs_warn("hfs_bdelete: Missing parent.\n");
		hfs_brec_relse(brec, NULL);
		return -EIO;
	}

	bdelete_nonempty(brec, belem);

done:
	hfs_brec_relse(brec, NULL);
	return 0;
}

/*================ Global functions ================*/

/*
 * hfs_bdelete()
 *
 * Delete the requested record from a B-tree.
 */
int hfs_bdelete(struct hfs_btree *tree, const struct hfs_bkey *key)
{ 
	struct hfs_belem *belem;
	struct hfs_bnode *bnode;
	struct hfs_brec brec;
	int retval;

	if (!tree || (tree->magic != HFS_BTREE_MAGIC) || !key) {
		hfs_warn("hfs_bdelete: invalid arguments.\n");
		return -EINVAL;
	}

	retval = hfs_bfind(&brec, tree, key, HFS_BFIND_DELETE);
	if (!retval) {
		belem = brec.bottom;
		bnode = belem->bnr.bn;

		belem->flags = 0;
        	if ((bnode->ndNRecs * sizeof(hfs_u16) + bnode_end(bnode) -
		     bnode_rsize(bnode, belem->record)) < FULL/2) {
			belem->flags |= HFS_BPATH_UNDERFLOW;
		}
		if (belem->record == 1) {
			belem->flags |= HFS_BPATH_FIRST;
		}

		if (!belem->flags) {
			hfs_brec_lock(&brec, brec.bottom);
		} else {
			hfs_brec_lock(&brec, NULL);
		}

		retval = bdelete(&brec);
		if (!retval) {
			--brec.tree->bthNRecs;
			brec.tree->dirt = 1;
		}
		hfs_brec_relse(&brec, NULL);
	}
	return retval;
}