Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/*  $Id: process.c,v 1.126 1998/09/21 05:05:18 jj Exp $
 *  linux/arch/sparc/kernel/process.c
 *
 *  Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
 *  Copyright (C) 1996 Eddie C. Dost   (ecd@skynet.be)
 */

/*
 * This file handles the architecture-dependent parts of process handling..
 */

#define __KERNEL_SYSCALLS__
#include <stdarg.h>

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/malloc.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/config.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/reboot.h>
#include <linux/delay.h>

#include <asm/auxio.h>
#include <asm/oplib.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/delay.h>
#include <asm/processor.h>
#include <asm/psr.h>
#include <asm/system.h>
#include <asm/elf.h>

extern void fpsave(unsigned long *, unsigned long *, void *, unsigned long *);

struct task_struct *last_task_used_math = NULL;
struct task_struct *current_set[NR_CPUS] = {&init_task, };

#ifndef __SMP__

#define SUN4C_FAULT_HIGH 100

/*
 * the idle loop on a Sparc... ;)
 */
asmlinkage int sys_idle(void)
{
	int ret = -EPERM;

	lock_kernel();
	if (current->pid != 0)
		goto out;

	/* endless idle loop with no priority at all */
	current->priority = 0;
	current->counter = 0;
	for (;;) {
		if (ARCH_SUN4C_SUN4) {
			static int count = HZ;
			static unsigned long last_jiffies = 0;
			static unsigned long last_faults = 0;
			static unsigned long fps = 0;
			unsigned long now;
			unsigned long faults;
			unsigned long flags;

			extern unsigned long sun4c_kernel_faults;
			extern void sun4c_grow_kernel_ring(void);

			save_and_cli(flags);
			now = jiffies;
			count -= (now - last_jiffies);
			last_jiffies = now;
			if (count < 0) {
				count += HZ;
				faults = sun4c_kernel_faults;
				fps = (fps + (faults - last_faults)) >> 1;
				last_faults = faults;
#if 0
				printk("kernel faults / second = %d\n", fps);
#endif
				if (fps >= SUN4C_FAULT_HIGH) {
					sun4c_grow_kernel_ring();
				}
			}
			restore_flags(flags);
		}
		check_pgt_cache();
		schedule();
	}
	ret = 0;
out:
	unlock_kernel();
	return ret;
}

#else

/* This is being executed in task 0 'user space'. */
int cpu_idle(void *unused)
{
	current->priority = 0;
	while(1) {
		check_pgt_cache();
 		run_task_queue(&tq_scheduler);
 		/* endless idle loop with no priority at all */
		current->counter = 0;
		schedule();
	}
}

asmlinkage int sys_idle(void)
{
	if(current->pid != 0)
		return -EPERM;

	cpu_idle(NULL);
	return 0;
}

#endif

extern char reboot_command [];

#ifdef CONFIG_SUN_CONSOLE
extern void (*prom_palette)(int);
extern int serial_console;
#endif

void machine_halt(void)
{
	sti();
	mdelay(8);
	cli();
#ifdef CONFIG_SUN_CONSOLE
	if (!serial_console && prom_palette)
		prom_palette (1);
#endif
	prom_halt();
	panic("Halt failed!");
}

void machine_restart(char * cmd)
{
	char *p;
	
	sti();
	mdelay(8);
	cli();

	p = strchr (reboot_command, '\n');
	if (p) *p = 0;
#ifdef CONFIG_SUN_CONSOLE
	if (!serial_console && prom_palette)
		prom_palette (1);
#endif
	if (cmd)
		prom_reboot(cmd);
	if (*reboot_command)
		prom_reboot(reboot_command);
	prom_feval ("reset");
	panic("Reboot failed!");
}

void machine_power_off(void)
{
#ifdef CONFIG_SUN_AUXIO
	if (auxio_power_register)
		*auxio_power_register |= AUXIO_POWER_OFF;
#endif
	machine_halt();
}

void show_regwindow(struct reg_window *rw)
{
	printk("l0: %08lx l1: %08lx l2: %08lx l3: %08lx "
	       "l4: %08lx l5: %08lx l6: %08lx l7: %08lx\n",
	       rw->locals[0], rw->locals[1], rw->locals[2], rw->locals[3],
	       rw->locals[4], rw->locals[5], rw->locals[6], rw->locals[7]);
	printk("i0: %08lx i1: %08lx i2: %08lx i3: %08lx "
	       "i4: %08lx i5: %08lx fp: %08lx i7: %08lx\n",
	       rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3],
	       rw->ins[4], rw->ins[5], rw->ins[6], rw->ins[7]);
}

#ifdef __SMP__
static spinlock_t sparc_backtrace_lock = SPIN_LOCK_UNLOCKED;
#endif

void __show_backtrace(unsigned long fp)
{
	struct reg_window *rw;
	unsigned long flags;
	int cpu = smp_processor_id();

	spin_lock_irqsave(&sparc_backtrace_lock, flags);
	rw = (struct reg_window *) fp;
	while(rw) {
		printk("CPU[%d]: ARGS[%08lx,%08lx,%08lx,%08lx,%08lx,%08lx] "
		       "FP[%08lx] CALLER[%08lx]\n", cpu,
		       rw->ins[0], rw->ins[1], rw->ins[2], rw->ins[3],
		       rw->ins[4], rw->ins[5],
		       rw->ins[6],
		       rw->ins[7]);
		rw = (struct reg_window *) rw->ins[6];
	}
	spin_unlock_irqrestore(&sparc_backtrace_lock, flags);
}

void show_backtrace(void)
{
	unsigned long fp;

	__asm__ __volatile__(
		"save %%sp, -64, %%sp\n\t"
		"save %%sp, -64, %%sp\n\t"
		"save %%sp, -64, %%sp\n\t"
		"save %%sp, -64, %%sp\n\t"
		"save %%sp, -64, %%sp\n\t"
		"save %%sp, -64, %%sp\n\t"
		"save %%sp, -64, %%sp\n\t"
		"save %%sp, -64, %%sp\n\t"
		"restore\n\t"
		"restore\n\t"
		"restore\n\t"
		"restore\n\t"
		"restore\n\t"
		"restore\n\t"
		"restore\n\t"
		"restore\n\t"
		"mov %%i6, %0" : "=r" (fp));
	__show_backtrace(fp);
}

#ifdef __SMP__
void smp_show_backtrace_all_cpus(void)
{
	xc0((smpfunc_t) show_backtrace);
}
#endif

void show_stackframe(struct sparc_stackf *sf)
{
	unsigned long size;
	unsigned long *stk;
	int i;

	printk("l0: %08lx l1: %08lx l2: %08lx l3: %08lx "
	       "l4: %08lx l5: %08lx l6: %08lx l7: %08lx\n",
	       sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3],
	       sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
	printk("i0: %08lx i1: %08lx i2: %08lx i3: %08lx "
	       "i4: %08lx i5: %08lx fp: %08lx i7: %08lx\n",
	       sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3],
	       sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc);
	printk("sp: %08lx x0: %08lx x1: %08lx x2: %08lx "
	       "x3: %08lx x4: %08lx x5: %08lx xx: %08lx\n",
	       (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1],
	       sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
	       sf->xxargs[0]);
	size = ((unsigned long)sf->fp) - ((unsigned long)sf);
	size -= STACKFRAME_SZ;
	stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ);
	i = 0;
	do {
		printk("s%d: %08lx\n", i++, *stk++);
	} while ((size -= sizeof(unsigned long)));
}

void show_regs(struct pt_regs * regs)
{
#if __MPP__
	printk("CID: %d\n",mpp_cid());
#endif
        printk("PSR: %08lx PC: %08lx NPC: %08lx Y: %08lx\n", regs->psr,
	       regs->pc, regs->npc, regs->y);
	printk("g0: %08lx g1: %08lx g2: %08lx g3: %08lx ",
	       regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
	       regs->u_regs[3]);
	printk("g4: %08lx g5: %08lx g6: %08lx g7: %08lx\n",
	       regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
	       regs->u_regs[7]);
	printk("o0: %08lx o1: %08lx o2: %08lx o3: %08lx ",
	       regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
	       regs->u_regs[11]);
	printk("o4: %08lx o5: %08lx sp: %08lx o7: %08lx\n",
	       regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
	       regs->u_regs[15]);
	show_regwindow((struct reg_window *)regs->u_regs[14]);
}

#if NOTUSED
void show_thread(struct thread_struct *tss)
{
	int i;

	printk("uwinmask:          0x%08lx  kregs:             0x%08lx\n", tss->uwinmask, (unsigned long)tss->kregs);
	show_regs(tss->kregs);
	printk("sig_address:       0x%08lx  sig_desc:          0x%08lx\n", tss->sig_address, tss->sig_desc);
	printk("ksp:               0x%08lx  kpc:               0x%08lx\n", tss->ksp, tss->kpc);
	printk("kpsr:              0x%08lx  kwim:              0x%08lx\n", tss->kpsr, tss->kwim);
	printk("fork_kpsr:         0x%08lx  fork_kwim:         0x%08lx\n", tss->fork_kpsr, tss->fork_kwim);

	for (i = 0; i < NSWINS; i++) {
		if (!tss->rwbuf_stkptrs[i])
			continue;
		printk("reg_window[%d]:\n", i);
		printk("stack ptr:         0x%08lx\n", tss->rwbuf_stkptrs[i]);
		show_regwindow(&tss->reg_window[i]);
	}
	printk("w_saved:           0x%08lx\n", tss->w_saved);

	/* XXX missing: float_regs */
	printk("fsr:               0x%08lx  fpqdepth:          0x%08lx\n", tss->fsr, tss->fpqdepth);
	/* XXX missing: fpqueue */

	printk("flags:             0x%08lx  current_ds:        0x%08lx\n", tss->flags, tss->current_ds.seg);
	
	show_regwindow((struct reg_window *)tss->ksp);

	/* XXX missing: core_exec */
}
#endif

/*
 * Free current thread data structures etc..
 */
void exit_thread(void)
{
#ifndef __SMP__
	if(last_task_used_math == current) {
#else
	if(current->flags & PF_USEDFPU) {
#endif
		/* Keep process from leaving FPU in a bogon state. */
		put_psr(get_psr() | PSR_EF);
		fpsave(&current->tss.float_regs[0], &current->tss.fsr,
		       &current->tss.fpqueue[0], &current->tss.fpqdepth);
#ifndef __SMP__
		last_task_used_math = NULL;
#else
		current->flags &= ~PF_USEDFPU;
#endif
	}
}

void flush_thread(void)
{
	current->tss.w_saved = 0;

	/* No new signal delivery by default */
	current->tss.new_signal = 0;
#ifndef __SMP__
	if(last_task_used_math == current) {
#else
	if(current->flags & PF_USEDFPU) {
#endif
		/* Clean the fpu. */
		put_psr(get_psr() | PSR_EF);
		fpsave(&current->tss.float_regs[0], &current->tss.fsr,
		       &current->tss.fpqueue[0], &current->tss.fpqdepth);
#ifndef __SMP__
		last_task_used_math = NULL;
#else
		current->flags &= ~PF_USEDFPU;
#endif
	}

	/* Now, this task is no longer a kernel thread. */
	current->tss.current_ds = USER_DS;
	if (current->tss.flags & SPARC_FLAG_KTHREAD) {
		current->tss.flags &= ~SPARC_FLAG_KTHREAD;
		switch_to_context(current);
	}
}

static __inline__ void copy_regs(struct pt_regs *dst, struct pt_regs *src)
{
	__asm__ __volatile__("ldd\t[%1 + 0x00], %%g2\n\t"
			     "ldd\t[%1 + 0x08], %%g4\n\t"
			     "ldd\t[%1 + 0x10], %%o4\n\t"
			     "std\t%%g2, [%0 + 0x00]\n\t"
			     "std\t%%g4, [%0 + 0x08]\n\t"
			     "std\t%%o4, [%0 + 0x10]\n\t"
			     "ldd\t[%1 + 0x18], %%g2\n\t"
			     "ldd\t[%1 + 0x20], %%g4\n\t"
			     "ldd\t[%1 + 0x28], %%o4\n\t"
			     "std\t%%g2, [%0 + 0x18]\n\t"
			     "std\t%%g4, [%0 + 0x20]\n\t"
			     "std\t%%o4, [%0 + 0x28]\n\t"
			     "ldd\t[%1 + 0x30], %%g2\n\t"
			     "ldd\t[%1 + 0x38], %%g4\n\t"
			     "ldd\t[%1 + 0x40], %%o4\n\t"
			     "std\t%%g2, [%0 + 0x30]\n\t"
			     "std\t%%g4, [%0 + 0x38]\n\t"
			     "ldd\t[%1 + 0x48], %%g2\n\t"
			     "std\t%%o4, [%0 + 0x40]\n\t"
			     "std\t%%g2, [%0 + 0x48]\n\t" : :
			     "r" (dst), "r" (src) :
			     "g2", "g3", "g4", "g5", "o4", "o5");
}

static __inline__ void copy_regwin(struct reg_window *dst, struct reg_window *src)
{
	__asm__ __volatile__("ldd\t[%1 + 0x00], %%g2\n\t"
			     "ldd\t[%1 + 0x08], %%g4\n\t"
			     "ldd\t[%1 + 0x10], %%o4\n\t"
			     "std\t%%g2, [%0 + 0x00]\n\t"
			     "std\t%%g4, [%0 + 0x08]\n\t"
			     "std\t%%o4, [%0 + 0x10]\n\t"
			     "ldd\t[%1 + 0x18], %%g2\n\t"
			     "ldd\t[%1 + 0x20], %%g4\n\t"
			     "ldd\t[%1 + 0x28], %%o4\n\t"
			     "std\t%%g2, [%0 + 0x18]\n\t"
			     "std\t%%g4, [%0 + 0x20]\n\t"
			     "std\t%%o4, [%0 + 0x28]\n\t"
			     "ldd\t[%1 + 0x30], %%g2\n\t"
			     "ldd\t[%1 + 0x38], %%g4\n\t"
			     "std\t%%g2, [%0 + 0x30]\n\t"
			     "std\t%%g4, [%0 + 0x38]\n\t" : :
			     "r" (dst), "r" (src) :
			     "g2", "g3", "g4", "g5", "o4", "o5");
}

static __inline__ struct sparc_stackf *
clone_stackframe(struct sparc_stackf *dst, struct sparc_stackf *src)
{
	unsigned long size;
	struct sparc_stackf *sp;

	size = ((unsigned long)src->fp) - ((unsigned long)src);
	sp = (struct sparc_stackf *)(((unsigned long)dst) - size); 

	if (copy_to_user(sp, src, size))
		return 0;
	if (put_user(dst, &sp->fp))
		return 0;
	return sp;
}


/* Copy a Sparc thread.  The fork() return value conventions
 * under SunOS are nothing short of bletcherous:
 * Parent -->  %o0 == childs  pid, %o1 == 0
 * Child  -->  %o0 == parents pid, %o1 == 1
 *
 * NOTE: We have a separate fork kpsr/kwim because
 *       the parent could change these values between
 *       sys_fork invocation and when we reach here
 *       if the parent should sleep while trying to
 *       allocate the task_struct and kernel stack in
 *       do_fork().
 */
#ifdef __SMP__
extern void ret_from_smpfork(void);
#else
extern void ret_from_syscall(void);
#endif

int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
		struct task_struct *p, struct pt_regs *regs)
{
	struct pt_regs *childregs;
	struct reg_window *new_stack;
	unsigned long stack_offset;

#ifndef __SMP__
	if(last_task_used_math == current) {
#else
	if(current->flags & PF_USEDFPU) {
#endif
		put_psr(get_psr() | PSR_EF);
		fpsave(&p->tss.float_regs[0], &p->tss.fsr,
		       &p->tss.fpqueue[0], &p->tss.fpqdepth);
#ifdef __SMP__
		current->flags &= ~PF_USEDFPU;
#endif
	}

	/* Calculate offset to stack_frame & pt_regs */
	stack_offset = TASK_UNION_SIZE - TRACEREG_SZ;

	if(regs->psr & PSR_PS)
		stack_offset -= REGWIN_SZ;
	childregs = ((struct pt_regs *) (((unsigned long)p) + stack_offset));
	copy_regs(childregs, regs);
	new_stack = (((struct reg_window *) childregs) - 1);
	copy_regwin(new_stack, (((struct reg_window *) regs) - 1));

	p->tss.ksp = (unsigned long) new_stack;
#ifdef __SMP__
	p->tss.kpc = (((unsigned long) ret_from_smpfork) - 0x8);
	p->tss.kpsr = current->tss.fork_kpsr | PSR_PIL;
#else
	p->tss.kpc = (((unsigned long) ret_from_syscall) - 0x8);
	p->tss.kpsr = current->tss.fork_kpsr;
#endif
	p->tss.kwim = current->tss.fork_kwim;
	p->tss.kregs = childregs;

	if(regs->psr & PSR_PS) {
		childregs->u_regs[UREG_FP] = p->tss.ksp;
		p->tss.flags |= SPARC_FLAG_KTHREAD;
		p->tss.current_ds = KERNEL_DS;
		childregs->u_regs[UREG_G6] = (unsigned long) p;
	} else {
		childregs->u_regs[UREG_FP] = sp;
		p->tss.flags &= ~SPARC_FLAG_KTHREAD;
		p->tss.current_ds = USER_DS;

		if (sp != regs->u_regs[UREG_FP]) {
			struct sparc_stackf *childstack;
			struct sparc_stackf *parentstack;

			/*
			 * This is a clone() call with supplied user stack.
			 * Set some valid stack frames to give to the child.
			 */
			childstack = (struct sparc_stackf *) (sp & ~0x7UL);
			parentstack = (struct sparc_stackf *) regs->u_regs[UREG_FP];

#if 0
			printk("clone: parent stack:\n");
			show_stackframe(parentstack);
#endif

			childstack = clone_stackframe(childstack, parentstack);
			if (!childstack)
				return -EFAULT;

#if 0
			printk("clone: child stack:\n");
			show_stackframe(childstack);
#endif

			childregs->u_regs[UREG_FP] = (unsigned long)childstack;
		}
	}

	/* Set the return value for the child. */
	childregs->u_regs[UREG_I0] = current->pid;
	childregs->u_regs[UREG_I1] = 1;

	/* Set the return value for the parent. */
	regs->u_regs[UREG_I1] = 0;

	return 0;
}

/*
 * fill in the user structure for a core dump..
 */
void dump_thread(struct pt_regs * regs, struct user * dump)
{
	unsigned long first_stack_page;

	dump->magic = SUNOS_CORE_MAGIC;
	dump->len = sizeof(struct user);
	dump->regs.psr = regs->psr;
	dump->regs.pc = regs->pc;
	dump->regs.npc = regs->npc;
	dump->regs.y = regs->y;
	/* fuck me plenty */
	memcpy(&dump->regs.regs[0], &regs->u_regs[1], (sizeof(unsigned long) * 15));
	dump->uexec = current->tss.core_exec;
	dump->u_tsize = (((unsigned long) current->mm->end_code) -
		((unsigned long) current->mm->start_code)) & ~(PAGE_SIZE - 1);
	dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1)));
	dump->u_dsize -= dump->u_tsize;
	dump->u_dsize &= ~(PAGE_SIZE - 1);
	first_stack_page = (regs->u_regs[UREG_FP] & ~(PAGE_SIZE - 1));
	dump->u_ssize = (TASK_SIZE - first_stack_page) & ~(PAGE_SIZE - 1);
	memcpy(&dump->fpu.fpstatus.fregs.regs[0], &current->tss.float_regs[0], (sizeof(unsigned long) * 32));
	dump->fpu.fpstatus.fsr = current->tss.fsr;
	dump->fpu.fpstatus.flags = dump->fpu.fpstatus.extra = 0;
	dump->fpu.fpstatus.fpq_count = current->tss.fpqdepth;
	memcpy(&dump->fpu.fpstatus.fpq[0], &current->tss.fpqueue[0],
	       ((sizeof(unsigned long) * 2) * 16));
	dump->sigcode = current->tss.sig_desc;
}

/*
 * fill in the fpu structure for a core dump.
 */
int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
{
	if (current->used_math == 0) {
		memset(fpregs, 0, sizeof(*fpregs));
		fpregs->pr_q_entrysize = 8;
		return 1;
	}
#ifdef __SMP__
	if (current->flags & PF_USEDFPU) {
		put_psr(get_psr() | PSR_EF);
		fpsave(&current->tss.float_regs[0], &current->tss.fsr,
		       &current->tss.fpqueue[0], &current->tss.fpqdepth);
		regs->psr &= ~(PSR_EF);
		current->flags &= ~(PF_USEDFPU);
	}
#else
	if (current == last_task_used_math) {
		put_psr(get_psr() | PSR_EF);
		fpsave(&current->tss.float_regs[0], &current->tss.fsr,
		       &current->tss.fpqueue[0], &current->tss.fpqdepth);
		last_task_used_math = 0;
		regs->psr &= ~(PSR_EF);
	}
#endif
	memcpy(&fpregs->pr_fr.pr_regs[0],
	       &current->tss.float_regs[0],
	       (sizeof(unsigned long) * 32));
	fpregs->pr_fsr = current->tss.fsr;
	fpregs->pr_qcnt = current->tss.fpqdepth;
	fpregs->pr_q_entrysize = 8;
	fpregs->pr_en = 1;
	if(fpregs->pr_qcnt != 0) {
		memcpy(&fpregs->pr_q[0],
		       &current->tss.fpqueue[0],
		       sizeof(struct fpq) * fpregs->pr_qcnt);
	}
	/* Zero out the rest. */
	memset(&fpregs->pr_q[fpregs->pr_qcnt], 0,
	       sizeof(struct fpq) * (32 - fpregs->pr_qcnt));
	return 1;
}

/*
 * sparc_execve() executes a new program after the asm stub has set
 * things up for us.  This should basically do what I want it to.
 */
asmlinkage int sparc_execve(struct pt_regs *regs)
{
	int error, base = 0;
	char *filename;

	/* Check for indirect call. */
	if(regs->u_regs[UREG_G1] == 0)
		base = 1;

	lock_kernel();
	filename = getname((char *)regs->u_regs[base + UREG_I0]);
	error = PTR_ERR(filename);
	if(IS_ERR(filename))
		goto out;
	error = do_execve(filename, (char **) regs->u_regs[base + UREG_I1],
			  (char **) regs->u_regs[base + UREG_I2], regs);
	putname(filename);
out:
	unlock_kernel();
	return error;
}