Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
/* $Id: softfp.S,v 1.1 1998/07/16 19:10:02 ralf Exp $
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1998 by Ralf Baechle
 *
 * For now it's just a crude hack good enough to run certain fp programs like
 * Mozilla.
 * XXX: Handle MIPS II/III/IV/V enhancements, exceptions, ...
 */
#include <asm/regdef.h>
#include <asm/asm.h>

#ifndef __KERNEL__
#define printk printf
#endif

#define LOCK_KERNEL
#define UNLOCK_KERNEL

/*
 * This duplicates definitions from <linux/kernel.h>.
 */
#define KERN_EMERG      "<0>"   /* system is unusable                   */
#define KERN_ALERT      "<1>"   /* action must be taken immediately     */
#define KERN_CRIT       "<2>"   /* critical conditions                  */
#define KERN_ERR        "<3>"   /* error conditions                     */
#define KERN_WARNING    "<4>"   /* warning conditions                   */
#define KERN_NOTICE     "<5>"   /* normal but significant condition     */
#define KERN_INFO       "<6>"   /* informational                        */
#define KERN_DEBUG      "<7>"   /* debug-level messages                 */

/*
 * This duplicates definitions from <asm/signal.h>
 */
#define SIGILL           4      /* Illegal instruction (ANSI).  */

/*
 * Definitions about the instruction format
 */
#define fd_shift	6
#define fr_shift	21
#define fs_shift	11
#define ft_shift	16

/*
 * NaNs as use by the MIPS architecture
 */
#define S_QNaN		0x7fbfffff
#define D_QNaN		0x7ff7ffffffffffff
#define W_QNaN		0x7fffffff
#define L_QNaN		0x7fffffffffffffff

/*
 * Checking for NaNs
 */
#define S_is_QNaN(reg,res)						\
	sll	res, reg, S_F_size - S_F_bits
#define D_is_QNaN(reg1,reg2,res)					\
	sll	res, reg1, (D_F_size - 32) - (D_F_bits - 32);		\
	or	res, reg2

/*
 * Checking for Denorms
 */
#define S_is_Denorm(reg,res)						\
	li	res, 1 << (S_F_bits - 1);				\
	and	reg, res

/*
 * Some constants that define the properties of single precission numbers.
 */
#define S_M_prec	24
#define S_E_max		127
#define S_E_min		-126
#define S_E_bias	127
#define S_E_bits	8
#define S_F_bits	23
#define S_F_size	32

/* Set temp0, if exponent of reg is S_E_max + 1.  */
#define S_is_E_max(reg,temp0,temp1)					\
	li	temp0, (S_E_max + 1 + S_E_bias) << S_F_bits;		\
	and	temp1, temp0, reg;					\
	seq	temp0, temp1			/* temp0 != 0 if NaN */

/* Clear temp0, if exponent of reg is S_E_min - 1.  */
#define S_is_E_min(reg,temp0)						\
	li	temp0, (S_E_min - 1 + S_E_bias) << S_F_bits;		\
	and	temp0, reg	/* temp0 == 0 if denorm or zero */

/* Set temp0 if reg is a NaN assuming S_is_E_max is true  */
#define S_get_F(reg,temp0)						\
	li	temp0, (1 << S_F_bits) - 1;				\
	and	temp0, reg			/* temp0 != 0 if NaN */

/* Set res if fraction of reg is != 0.  */
#define S_is_Inf(reg,res)						\
	li	res, (1 << S_F_bits) - 1;				\
	and	res, reg			/* temp0 == 0 if Inf */


/*
 * Some constants that define the properties of double precission numbers.
 */
#define D_M_prec	53
#define D_E_max		1023
#define D_E_min		-1022
#define D_E_bias	1023
#define D_E_bits	8
#define D_F_bits	52
#define D_F_size	64

/* Set temp0, if exponent of reg1/reg2 is D_E_max.  */
#define D_is_E_max(reg1,reg2,temp0,temp1)				\
	li	temp0, (D_E_max + 1 + D_E_bias) << (D_F_bits - 32);	\
	and	temp1, temp0, reg1;					\
	seq	temp0, temp1			/* temp0 != 0 if NaN */

/* Clear temp0, if exponent of reg is D_E_min.  */
#define D_is_E_min(reg1,reg2,res)					\
	li	res, (D_E_min + 1 + D_E_bias) << (D_F_bits - 32);	\
	and	res, reg1	/* temp0 == 0 if NaN or zero */

/* Set res if reg is a NaN assuming S_is_E_max is true  */
#define D_get_F(reg1,reg2,res)						\
	li	res, (1 << (D_F_bits - 32)) - 1;			\
	and	res, reg1			/* temp0 != 0 if NaN */

/* Set temp0 if reg1/reg2 is a NaN  */
#define D_is_NAN(reg1,reg2,temp0,temp1)					\
	li	temp0, (1 << (D_F_bits - 32) - 1;			\
	and	temp0, reg1;						\
	or	temp0, reg2;						\
	sne	temp0, zero, temp0		/* temp0 != 0 if NaN */

/* Set res if fraction of reg1/reg2 is != 0.  */
#define D_is_Inf(reg1,reg2,res)						\
	li	res, (1 << (D_F_bits - 32)) - 1;			\
	and	res, reg1;						\
	or	res, reg2			/* temp0 == 0 if Inf */

/* Complain about yet unhandled instruction.  */
#define BITCH(insn)							\
insn:	LOCK_KERNEL;							\
	la	a1, 8f;							\
	TEXT(#insn);							\
	la	a1, nosim;						\
	UNLOCK_KERNEL;							\
	j	done

	.data
nosim: .asciz	KERN_DEBUG "Don't know how to simulate %s instruction\n"
	.previous

/*
 * When we come here, we've saved some of the integer registers and
 * reenabled interrupts.
 */
LEAF(simfp)
	.set	noreorder
	.cpload	$25
	.set	reorder

	subu	sp, 16
	.cprestore 20
	sw	ra, 16(sp)

	/* For now we assume that we get the opcode to simulate passed in as
	   an argument.  */
	move	t0, a0

	/*
	 * First table lookup using insn[5:0]
	 */
	la	t1, lowtab
	andi	t2, t0, 0x3f
	sll	t2, t2, 2
	addu	t1, t2
	lw	t1, (t1)
	jr	t1
	END(simfp)

/*
 * We only decode the lower 3 of the 5 bit in the fmt field.  That way we
 * can keep the jump table significantly shorter.
 */
#define FMT_switch(insn,opc,temp0,temp1)				\
insn:	srl	temp0, opc, 19;						\
	andi	temp0, 0x1c;						\
	la	temp1, insn ## .tab;					\
	addu	temp0, temp1;						\
	lw	temp0, (temp0);						\
	jr	temp0;							\
									\
	.data;								\
insn ## .tab:								\
	.word	insn ## .s, insn ## .d, unimp, unimp;			\
	.word	insn ## .w, insn ## .l, unimp, unimp;			\
	.previous

	BITCH(add)
	BITCH(sub)
	BITCH(mul)
	BITCH(div)
	BITCH(sqrt)
	BITCH(abs)
	BITCH(mov)
	BITCH(neg)
	BITCH(round.l)
	BITCH(trunc.l)
	BITCH(ceil.l)
	BITCH(floor.l)
	BITCH(round.w)
	BITCH(trunc.w)
	BITCH(ceil.w)
	BITCH(floor.w)
	BITCH(cvt.s)
	BITCH(cvt.d)

/* ------------------------------------------------------------------------ */

FMT_switch(cvt.w,t0,t1,t2)

/* Convert a single fp to a fixed point integer.  */
cvt.w.s:
	srl	t1, t0, fs_shift	# Get source register
	andi	t1, 31
	jal	s_get_fpreg

	S_is_E_max(t1,t2,t3)
	beqz	t2, 3f
	/* Might be a NaN or Inf.  */
	S_get_F(t1,t2)
	beqz	t2, 2f

	/* It's a NaN.  IEEE says undefined.  */
	/* Is it a QNaN?  Then the result is a QNaN as well.  */
	S_is_QNaN(t1,t2)
	bltz	t2, 1f

	/* XXX Ok, it's a SNaN.  Signal invalid exception, if enabled.
	   For now we don't signal and supply a QNaN for result.  */

1:	li	t2, W_QNaN
	srl	t1, t0, fd_shift	# Put result register
	andi	t1, 31
	jal	s_put_fpreg
	j	done
2:

	S_is_Inf(t1,t2)
	bnez	t2, 2f

	/* It's +/- Inf.  Set register to +/- max. integer.  */
	/* XXX Send invalid operation exception instead, if enabled.  */
	srl	t1, t1, 31		# Extract sign bit
	li	t2, 0x7fffffff
	addu	t2, t1

	srl	t1, t0, fd_shift	# Put result register
	andi	t1, 31
	jal	s_put_fpreg
	j	done
2:
3:	

	/* But then it might be a denorm or zero?  */
	S_is_E_min(t1,t2)
	bnez	t2, 2f

	/* Ok, it's a denorm or zero.  */
	S_get_F(t1,t2)
	beqz	t2, 1f

	/* It's a denorm.  */
	/* XXX Should be signaling inexact exception, if enabled.  */
	/* Fall through.  */
1:
	/* Yes, it is a denorm or zero.  Supply a zero as result.  */
	move	t2, zero
	srl	t1, t0, fd_shift	# Put result register
	andi	t1, 31
	jal	s_put_fpreg
	j	done
2:

	/* XXX Ok, it's a normal number.  We don't handle that case yet.
	   If we have fp hardware this case is unreached.  Add this for
	   full fp simulation.  */

	/* Done, return.  */
	lw	ra, 16(sp)
	addu	sp, 16
	jr	ra

/* Convert a double fp to a fixed point integer.  */
cvt.w.d:
	srl	t1, t0, fs_shift	# Get source register
	andi	t1, 31
	jal	d_get_fpreg

	D_is_E_max(t1,t2,t3,t4)
	beqz	t3, 3f

	/* Might be a NaN or Inf.  */
	D_get_F(t1,t2,t3)
	or	t3, t2
	beqz	t3, 2f

	/* It's a NaN.  IEEE says undefined.  */
	/* Is it a QNaN?  Then the result is a QNaN as well.  */
	D_is_QNaN(t1,t2,t3)
	bltz	t3, 1f

	/* XXX Ok, it's a SNaN.  Signal invalid exception, if enabled.
	   For now we don't signal and supply a QNaN for result.  */

1:	li	t2, W_QNaN
	srl	t1, t0, fd_shift	# Put result register
	andi	t1, 31
	jal	s_put_fpreg
	j	done
2:

	D_is_Inf(t1,t2,t3)
	bnez	t3, 2f

	/* It's +/- Inf.  Set register to +/- max. integer.  */
	/* XXX Send invalid operation exception instead, if enabled.  */
	srl	t1, t1, 31		# Extract sign bit
	li	t2, 0x7fffffff
	addu	t2, t1

	srl	t1, t0, fd_shift	# Put result register
	andi	t1, 31
	jal	s_put_fpreg
	j	done
2:
3:	

	/* But then it might be a denorm or zero?  */
	D_is_E_min(t1,t2,t3)
	bnez	t3, 2f

	/* Ok, it's a denorm or zero.  */
	D_get_F(t1,t2,t3)
	or	t3, t2
	beqz	t3, 1f

	/* It's a denorm.  */
	/* XXX Should be signaling inexact exception, if enabled.  */
	/* Fall through.  */
1:
	/* Yes, it is a denorm or zero.  Supply a zero as result.  */
	move	t2, zero
	srl	t1, t0, fd_shift	# Put result register
	andi	t1, 31
	jal	s_put_fpreg
	j	done
2:

	/* XXX Ok, it's a normal number.  We don't handle that case yet.
	   If we have fp hardware this case is only reached if the value
	   of the source register exceeds the range which is representable
	   in a single precission register.  For now we kludge by returning
	   +/- maxint and don't signal overflow. */

	srl	t1, t1, 31		# Extract sign bit
	li	t2, 0x7fffffff
	addu	t2, t1

	srl	t1, t0, fd_shift	# Put result register
	andi	t1, 31
	jal	s_put_fpreg

	/* Done, return.  */
	lw	ra, 16(sp)
	addu	sp, 16
	jr	ra

cvt.w.w = unimp				# undefined result
cvt.w.l = unimp				# undefined result

/* MIPS III extension, no need to handle for 32bit OS.  */
cvt.l = unimp

/* ------------------------------------------------------------------------ */

	BITCH(c.f)
	BITCH(c.un)
	BITCH(c.eq)
	BITCH(c.ueq)
	BITCH(c.olt)
	BITCH(c.ult)
	BITCH(c.ole)
	BITCH(c.ule)
	BITCH(c.sf)
	BITCH(c.ngle)
	BITCH(c.seq)
	BITCH(c.ngl)
	BITCH(c.lt)
	BITCH(c.nge)
	BITCH(c.le)
	BITCH(c.ngt)

/* Get the single precission register which's number is in t1.  */
s_get_fpreg:
	.set	noat
	sll	AT, t1, 2
	sll	t1, 3
	addu	t1, AT
	la	AT, 1f
	addu	AT, t1
	jr	AT
	.set	at

1:	mfc1	t1, $0
	jr	ra
	mfc1	t1, $1
	jr	ra
	mfc1	t1, $2
	jr	ra
	mfc1	t1, $3
	jr	ra
	mfc1	t1, $4
	jr	ra
	mfc1	t1, $5
	jr	ra
	mfc1	t1, $6
	jr	ra
	mfc1	t1, $7
	jr	ra
	mfc1	t1, $8
	jr	ra
	mfc1	t1, $9
	jr	ra
	mfc1	t1, $10
	jr	ra
	mfc1	t1, $11
	jr	ra
	mfc1	t1, $12
	jr	ra
	mfc1	t1, $13
	jr	ra
	mfc1	t1, $14
	jr	ra
	mfc1	t1, $15
	jr	ra
	mfc1	t1, $16
	jr	ra
	mfc1	t1, $17
	jr	ra
	mfc1	t1, $18
	jr	ra
	mfc1	t1, $19
	jr	ra
	mfc1	t1, $20
	jr	ra
	mfc1	t1, $21
	jr	ra
	mfc1	t1, $22
	jr	ra
	mfc1	t1, $23
	jr	ra
	mfc1	t1, $24
	jr	ra
	mfc1	t1, $25
	jr	ra
	mfc1	t1, $26
	jr	ra
	mfc1	t1, $27
	jr	ra
	mfc1	t1, $28
	jr	ra
	mfc1	t1, $29
	jr	ra
	mfc1	t1, $30
	jr	ra
	mfc1	t1, $31
	jr	ra

/*
 * Put the value in t2 into the single precission register which's number
 * is in t1.
 */
s_put_fpreg:
	.set	noat
	sll	AT, t1, 2
	sll	t1, 3
	addu	t1, AT
	la	AT, 1f
	addu	AT, t1
	jr	AT
	.set	at
	
1:	mtc1	t2, $0
	jr	ra
	mtc1	t2, $1
	jr	ra
	mtc1	t2, $2
	jr	ra
	mtc1	t2, $3
	jr	ra
	mtc1	t2, $4
	jr	ra
	mtc1	t2, $5
	jr	ra
	mtc1	t2, $6
	jr	ra
	mtc1	t2, $7
	jr	ra
	mtc1	t2, $8
	jr	ra
	mtc1	t2, $9
	jr	ra
	mtc1	t2, $10
	jr	ra
	mtc1	t2, $11
	jr	ra
	mtc1	t2, $12
	jr	ra
	mtc1	t2, $13
	jr	ra
	mtc1	t2, $14
	jr	ra
	mtc1	t2, $15
	jr	ra
	mtc1	t2, $16
	jr	ra
	mtc1	t2, $17
	jr	ra
	mtc1	t2, $18
	jr	ra
	mtc1	t2, $19
	jr	ra
	mtc1	t2, $20
	jr	ra
	mtc1	t2, $21
	jr	ra
	mtc1	t2, $22
	jr	ra
	mtc1	t2, $23
	jr	ra
	mtc1	t2, $24
	jr	ra
	mtc1	t2, $25
	jr	ra
	mtc1	t2, $26
	jr	ra
	mtc1	t2, $27
	jr	ra
	mtc1	t2, $28
	jr	ra
	mtc1	t2, $29
	jr	ra
	mtc1	t2, $30
	jr	ra
	mtc1	t2, $31
	jr	ra

/* Get the double precission register which's number is in t1 into t1/t2.  */
d_get_fpreg:
	.set	noat
	sll	t1, 3
	la	AT, 1f
	addu	AT, t1
	jr	AT
	.set	at

1:	mfc1	t1, $0
	mfc1	t2, $1
	jr	ra
	mfc1	t1, $2
	mfc1	t2, $3
	jr	ra
	mfc1	t1, $4
	mfc1	t2, $5
	jr	ra
	mfc1	t1, $6
	mfc1	t2, $7
	jr	ra
	mfc1	t1, $8
	mfc1	t2, $9
	jr	ra
	mfc1	t1, $10
	mfc1	t2, $11
	jr	ra
	mfc1	t1, $12
	mfc1	t2, $13
	jr	ra
	mfc1	t1, $14
	mfc1	t2, $15
	jr	ra
	mfc1	t1, $16
	mfc1	t2, $17
	jr	ra
	mfc1	t1, $18
	mfc1	t2, $19
	jr	ra
	mfc1	t1, $20
	mfc1	t2, $21
	jr	ra
	mfc1	t1, $22
	mfc1	t2, $23
	jr	ra
	mfc1	t1, $24
	mfc1	t2, $25
	jr	ra
	mfc1	t1, $26
	mfc1	t2, $27
	jr	ra
	mfc1	t1, $28
	mfc1	t2, $29
	jr	ra
	mfc1	t1, $30
	mfc1	t2, $31
	jr	ra

/*
 * Send an invalid operation exception.
 */
invalid:
	lw	ra, 16(sp)
	addu	sp, 16
	jr	ra

/*
 * Done, just skip over the current instruction
 */
done:
	lw	ra, 16(sp)
	addu	sp, 16
	jr	ra

unimp:
	/* We've run into an yet unknown instruction.  This happens either
	   on new, yet unsupported CPU types or when the faulting instruction
	   is being executed for cache but has been overwritten in memory.  */
	LOCK_KERNEL
	move	a0, t0
	PRINT(KERN_DEBUG "FP support: unknown fp op %08lx, ")
	PRINT("please mail to ralf@gnu.org.\n")

	li	a0, SIGILL			# Die, sucker ...
	move	a1, $28
	jal	force_sig
	UNLOCK_KERNEL

	lw	ra, 16(sp)
	addu	sp, 16
	jr	ra

/*
 * Jump table for the lowest 6 bits of a cp1 instruction.
 */
	.data
lowtab:	.word	add,   sub,   mul,   div,   sqrt,  abs,   mov,   neg
	.word	round.l,trunc.l,ceil.l,floor.l,round.w,trunc.w,ceil.w,floor.w
	.word	unimp, unimp, unimp, unimp, unimp, unimp, unimp, unimp
	.word	unimp, unimp, unimp, unimp, unimp, unimp, unimp, unimp
	.word	cvt.s, cvt.d, unimp, unimp, cvt.w, cvt.l, unimp, unimp
	.word	unimp, unimp, unimp, unimp, unimp, unimp, unimp, unimp
	.word	c.f,   c.un,  c.eq,  c.ueq, c.olt, c.ult, c.ole, c.ule
	.word	c.sf,  c.ngle,c.seq, c.ngl, c.lt,  c.nge, c.le, c.ngt