Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
/*
 *	Driver for the Macintosh 68K onboard MACE controller with PSC
 *	driven DMA. The MACE driver code is derived from mace.c. The
 *	Mac68k theory of operation is courtesy of the MacBSD wizards.
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 *
 *	Copyright (C) 1996 Paul Mackerras.
 *	Copyright (C) 1998 Alan Cox <alan@redhat.com>
 */


#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/macintosh.h>
#include <asm/macints.h>
#include <asm/mac_psc.h>
#include "mace.h"

#define N_RX_RING	8
#define N_TX_RING	2
#define MAX_TX_ACTIVE	1
#define NCMDS_TX	1	/* dma commands per element in tx ring */
#define RX_BUFLEN	(ETH_FRAME_LEN + 8)
#define TX_TIMEOUT	HZ	/* 1 second */

/* Bits in transmit DMA status */
#define TX_DMA_ERR	0x80

/* The MACE is simply wired down on a Mac68K box */

#define MACE_BASE	(void *)(0x50F1C000)
#define MACE_PROM	(void *)(0x50F08001)

struct mace68k_data
{
	volatile struct mace *mace;
	volatile unsigned char *tx_ring;
	volatile unsigned char *rx_ring;
	int dma_intr;
	unsigned char maccc;
	struct net_device_stats stats;
	struct timer_list tx_timeout;
	int timeout_active;
	int rx_slot, rx_done;
	int tx_slot, tx_count;
};

struct mace_frame
{
	u16	len;
	u16	status;
	u16	rntpc;
	u16	rcvcc;
	u32	pad1;
	u32	pad2;
	u8	data[1];	
	/* And frame continues.. */
};

#define PRIV_BYTES	sizeof(struct mace68k_data)

static int mace68k_open(struct device *dev);
static int mace68k_close(struct device *dev);
static int mace68k_xmit_start(struct sk_buff *skb, struct device *dev);
static struct net_device_stats *mace68k_stats(struct device *dev);
static void mace68k_set_multicast(struct device *dev);
static void mace68k_reset(struct device *dev);
static int mace68k_set_address(struct device *dev, void *addr);
static void mace68k_interrupt(int irq, void *dev_id, struct pt_regs *regs);
static void mace68k_dma_intr(int irq, void *dev_id, struct pt_regs *regs);
static void mace68k_set_timeout(struct device *dev);
static void mace68k_tx_timeout(unsigned long data);

/*
 *	PSC DMA engine control. As you'd expect on a macintosh its
 *	more like a lawnmower engine supplied without instructions
 *
 *	The basic theory of operation appears to be as follows.
 *
 *	There are two sets of receive DMA registers and two sets
 *	of transmit DMA registers. Instead of the more traditional
 *	"ring buffer" approach the Mac68K DMA engine expects you
 *	to be loading one chain while the other runs, and then
 *	to flip register set. Each entry in the chain is a fixed 
 *	length.
 */

/*
 *	Load a receive DMA channel with a base address and ring length
 */
  
static void psc_load_rxdma_base(int set, void *base)
{
	psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
	psc_write_long(PSC_ENETRD_ADDR + set, (u32)base);
	psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
	psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
}

/*
 *	Reset the receive DMA subsystem
 */
  
static void mace68k_rxdma_reset(struct device *dev)
{
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	volatile struct mace *mace = mp->mace;
	u8 mcc = mace->maccc;
	
	/*
	 *	Turn off receive
	 */
	 
	mcc&=~ENRCV;
	mace->maccc=mcc;
	
	/*
	 *	Program the DMA
	 */
	
	psc_write_word(PSC_ENETRD_CTL, 0x8800);
	psc_load_rxdma_base(0x0, (void *)virt_to_bus(mp->rx_ring));
	psc_write_word(PSC_ENETRD_CTL, 0x0400);
	
	psc_write_word(PSC_ENETRD_CTL, 0x8800);
	psc_load_rxdma_base(0x10, (void *)virt_to_bus(mp->rx_ring));
	psc_write_word(PSC_ENETRD_CTL, 0x0400);
	
	mace->maccc=mcc|ENRCV;
	
	psc_write_word(PSC_ENETRD_CTL, 0x9800);
	psc_write_word(PSC_ENETRD_CTL+0x10, 0x9800);
}

/*
 *	Reset the transmit DMA subsystem
 */
 
static void mace68k_txdma_reset(struct device *dev)
{
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	volatile struct mace *mace = mp->mace;
	u8 mcc = mace->maccc;

	psc_write_word(PSC_ENETWR_CTL,0x8800);
	
	mace->maccc = mcc&~ENXMT;
	psc_write_word(PSC_ENETWR_CTL,0x400);
	mace->maccc = mcc;
}

/*
 *	Disable DMA
 */
 
static void mace68k_dma_off(struct device *dev)
{
	psc_write_word(PSC_ENETRD_CTL, 0x8800);
	psc_write_word(PSC_ENETRD_CTL, 0x1000);
	psc_write_word(PSC_ENETRD_CMD, 0x1100);
	psc_write_word(PSC_ENETRD_CMD+0x10, 0x1100);
                                        
	psc_write_word(PSC_ENETWR_CTL, 0x8800);
	psc_write_word(PSC_ENETWR_CTL, 0x1000);
	psc_write_word(PSC_ENETWR_CMD, 0x1100);
	psc_write_word(PSC_ENETWR_CMD+0x10, 0x1100);
}

/* Bit-reverse one byte of an ethernet hardware address. */

static int
bitrev(int b)
{
    int d = 0, i;

    for (i = 0; i < 8; ++i, b >>= 1)
	d = (d << 1) | (b & 1);
    return d;
}

/*
 * 	Not really much of a probe. The hardware table tells us if this
 *	model of Macintrash has a MACE (AV macintoshes)
 */
 
int mace68k_probe(struct device *unused)
{
	int j;
	static int once=0;
	struct mace68k_data *mp;
	unsigned char *addr;
	struct device *dev;
	unsigned char checksum = 0;
	
	/*
	 *	There can be only one...
	 */
	 
	if (once) return -ENODEV;
	
	once = 1;

	if (macintosh_config->ether_type != MAC_ETHER_MACE) return -ENODEV;

	printk("MACE ethernet should be present ");
	
	dev = init_etherdev(0, PRIV_BYTES);
	if(dev==NULL)
	{
		printk("no free memory.\n");
		return -ENOMEM;
	}		
	mp = (struct mace68k_data *) dev->priv;
	dev->base_addr = (u32)MACE_BASE;
	mp->mace = (volatile struct mace *) MACE_BASE;
	
	printk("at 0x%p", mp->mace);
	
	/*
	 *	16K RX ring and 4K TX ring should do nicely
	 */

	mp->rx_ring=(void *)__get_free_pages(GFP_KERNEL, 2);
	mp->tx_ring=(void *)__get_free_page(GFP_KERNEL);
	
	printk(".");
	
	if(mp->tx_ring==NULL || mp->rx_ring==NULL)
	{
		if(mp->tx_ring)
			free_page((u32)mp->tx_ring);
//		if(mp->rx_ring)
//			__free_pages(mp->rx_ring,2);
		printk("\nNo memory for ring buffers.\n");
		return -ENOMEM;
	}

	/* We want the receive data to be uncached. We dont care about the
	   byte reading order */

	printk(".");	
	kernel_set_cachemode((void *)mp->rx_ring, 16384, IOMAP_NOCACHE_NONSER);	
	
	printk(".");	
	/* The transmit buffer needs to be write through */
	kernel_set_cachemode((void *)mp->tx_ring, 4096, IOMAP_WRITETHROUGH);

	printk(" Ok\n");	
	dev->irq = IRQ_MAC_MACE;
	printk(KERN_INFO "%s: MACE at", dev->name);

	/*
	 *	The PROM contains 8 bytes which total 0xFF when XOR'd
	 *	together. Due to the usual peculiar apple brain damage
	 *	the bytes are spaced out in a strange boundary and the
	 * 	bits are reversed.
	 */

	addr = (void *)MACE_PROM;
		 
	for (j = 0; j < 6; ++j)
	{
		u8 v=bitrev(addr[j<<4]);
		checksum^=v;
		dev->dev_addr[j] = v;
		printk("%c%.2x", (j ? ':' : ' '), dev->dev_addr[j]);
	}
	for (; j < 8; ++j)
	{
		checksum^=bitrev(addr[j<<4]);
	}
	
	if(checksum!=0xFF)
	{
		printk(" (invalid checksum)\n");
		return -ENODEV;
	}		
	printk("\n");

	memset(&mp->stats, 0, sizeof(mp->stats));
	init_timer(&mp->tx_timeout);
	mp->timeout_active = 0;

	dev->open = mace68k_open;
	dev->stop = mace68k_close;
	dev->hard_start_xmit = mace68k_xmit_start;
	dev->get_stats = mace68k_stats;
	dev->set_multicast_list = mace68k_set_multicast;
	dev->set_mac_address = mace68k_set_address;

	ether_setup(dev);

	mp = (struct mace68k_data *) dev->priv;
	mp->maccc = ENXMT | ENRCV;
	mp->dma_intr = IRQ_MAC_MACE_DMA;

	psc_write_word(PSC_ENETWR_CTL, 0x9000);
	psc_write_word(PSC_ENETRD_CTL, 0x9000);
	psc_write_word(PSC_ENETWR_CTL, 0x0400);
	psc_write_word(PSC_ENETRD_CTL, 0x0400);
                                        	
	mace68k_dma_off(dev);

	return 0;
}

/*
 *	Reset a MACE controller
 */
 
static void mace68k_reset(struct device *dev)
{
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	volatile struct mace *mb = mp->mace;
	int i;

	/* soft-reset the chip */
	mb->biucc = SWRST;
	udelay(100);

	mb->biucc = XMTSP_64;
	mb->imr = 0xff;		/* disable all intrs for now */
	i = mb->ir;
	mb->maccc = 0;		/* turn off tx, rx */
	mb->utr = RTRD;
	mb->fifocc = RCVFW_64;
	mb->xmtfc = AUTO_PAD_XMIT;	/* auto-pad short frames */

	/* load up the hardware address */
	
	mb->iac = ADDRCHG | PHYADDR;
	
	while ((mb->iac & ADDRCHG) != 0);
	
	for (i = 0; i < 6; ++i)
		mb->padr = dev->dev_addr[i];

	/* clear the multicast filter */
	mb->iac = ADDRCHG | LOGADDR;

	while ((mb->iac & ADDRCHG) != 0);
	
	for (i = 0; i < 8; ++i)
		mb->ladrf = 0;

	mb->plscc = PORTSEL_GPSI + ENPLSIO;
}

/*
 *	Load the address on a mace controller.
 */
 
static int mace68k_set_address(struct device *dev, void *addr)
{
	unsigned char *p = addr;
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	volatile struct mace *mb = mp->mace;
	int i;
	unsigned long flags;

	save_flags(flags);
	cli();

	/* load up the hardware address */
	mb->iac = ADDRCHG | PHYADDR;
	while ((mb->iac & ADDRCHG) != 0);
	
	for (i = 0; i < 6; ++i)
		mb->padr = dev->dev_addr[i] = p[i];
	/* note: setting ADDRCHG clears ENRCV */
	mb->maccc = mp->maccc;
	restore_flags(flags);
	return 0;
}

/*
 *	Open the Macintosh MACE. Most of this is playing with the DMA
 *	engine. The ethernet chip is quite friendly.
 */
 
static int mace68k_open(struct device *dev)
{
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	volatile struct mace *mb = mp->mace;

	/* reset the chip */
	mace68k_reset(dev);

	mp->rx_done = 0;
	mace68k_rxdma_reset(dev);

	/*
	 *	The interrupt is fixed and comes off the PSC.
	 */
	 
	if (request_irq(dev->irq, mace68k_interrupt, 0, "68K MACE", dev))
	{
		printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
		return -EAGAIN;
	}

	/*
	 *	Ditto the DMA interrupt.
	 */
	 
	if (request_irq(IRQ_MAC_MACE_DMA, mace68k_dma_intr, 0, "68K MACE DMA",
			dev))
	{
		printk(KERN_ERR "MACE: can't get irq %d\n", IRQ_MAC_MACE_DMA);
		return -EAGAIN;
	}

	/* Activate the Mac DMA engine */

	mp->tx_slot = 0;		/* Using register set 0 */
	mp->tx_count = 1;		/* 1 Buffer ready for use */
	mace68k_txdma_reset(dev);
	
	/* turn it on! */
	mb->maccc = mp->maccc;
	/* enable all interrupts except receive interrupts */
	mb->imr = RCVINT;
	return 0;
}

/*
 *	Shut down the mace and its interrupt channel
 */
 
static int mace68k_close(struct device *dev)
{
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	volatile struct mace *mb = mp->mace;

	/* disable rx and tx */
	mb->maccc = 0;
	mb->imr = 0xff;		/* disable all intrs */

	/* disable rx and tx dma */

	mace68k_dma_off(dev);

	free_irq(dev->irq, dev);
	free_irq(IRQ_MAC_MACE_DMA, dev);
	return 0;
}

static inline void mace68k_set_timeout(struct device *dev)
{
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	unsigned long flags;

	save_flags(flags);
	cli();
	if (mp->timeout_active)
		del_timer(&mp->tx_timeout);
	mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
	mp->tx_timeout.function = mace68k_tx_timeout;
	mp->tx_timeout.data = (unsigned long) dev;
	add_timer(&mp->tx_timeout);
	mp->timeout_active = 1;
	restore_flags(flags);
}

/*
 *	Transmit a frame
 */
 
static int mace68k_xmit_start(struct sk_buff *skb, struct device *dev)
{
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	/*
	 *	This may need atomic types ???
	 */
	if(mp->tx_count == 0)
	{
		dev->tbusy=1;
		return 1;
	}
	mp->tx_count--;
	
	/*
	 *	FIXME:
	 *	This is hackish. The memcpy probably isnt needed but
	 *	the rules for alignment are not known. Ideally we'd like
	 *	to just blast the skb directly to ethernet. We also don't
	 *	use the ring properly - just a one frame buffer. That
	 *	also requires cache pushes ;).
	 */
	memcpy((void *)mp->tx_ring, skb, skb->len);
	psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, virt_to_bus(mp->tx_ring));
        psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
        psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);                       
	mp->stats.tx_packets++;
	mp->stats.tx_bytes+=skb->len;
        dev_kfree_skb(skb);
	return 0;
}

static struct net_device_stats *mace68k_stats(struct device *dev)
{
	struct mace68k_data *p = (struct mace68k_data *) dev->priv;
	return &p->stats;
}

/*
 * CRC polynomial - used in working out multicast filter bits.
 */
#define CRC_POLY	0xedb88320

static void mace68k_set_multicast(struct device *dev)
{
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	volatile struct mace *mb = mp->mace;
	int i, j, k, b;
	unsigned long crc;

	mp->maccc &= ~PROM;
	if (dev->flags & IFF_PROMISC)
	{
		mp->maccc |= PROM;
	} else
	{
		unsigned char multicast_filter[8];
		struct dev_mc_list *dmi = dev->mc_list;

		if (dev->flags & IFF_ALLMULTI)
		{
			for (i = 0; i < 8; i++)
				multicast_filter[i] = 0xff;
		} else
		{
			for (i = 0; i < 8; i++)
				multicast_filter[i] = 0;
			for (i = 0; i < dev->mc_count; i++)
			{
				crc = ~0;
				for (j = 0; j < 6; ++j)
				{
					b = dmi->dmi_addr[j];
					for (k = 0; k < 8; ++k)
					{
						if ((crc ^ b) & 1)
							crc = (crc >> 1) ^ CRC_POLY;
						else
							crc >>= 1;
						b >>= 1;
					}
				}
				j = crc >> 26;	/* bit number in multicast_filter */
				multicast_filter[j >> 3] |= 1 << (j & 7);
				dmi = dmi->next;
			}
		}
#if 0
		printk("Multicast filter :");
		for (i = 0; i < 8; i++)
			printk("%02x ", multicast_filter[i]);
		printk("\n");
#endif

		mb->iac = ADDRCHG | LOGADDR;
		while ((mb->iac & ADDRCHG) != 0);
		
		for (i = 0; i < 8; ++i)
			mb->ladrf = multicast_filter[i];
	}
	/* reset maccc */
	mb->maccc = mp->maccc;
}

/*
 *	Miscellaneous interrupts are handled here. We may end up 
 *	having to bash the chip on the head for bad errors
 */
 
static void mace68k_handle_misc_intrs(struct mace68k_data *mp, int intr)
{
	volatile struct mace *mb = mp->mace;
	static int mace68k_babbles, mace68k_jabbers;

	if (intr & MPCO)
		mp->stats.rx_missed_errors += 256;
	mp->stats.rx_missed_errors += mb->mpc;	/* reading clears it */
	if (intr & RNTPCO)
		mp->stats.rx_length_errors += 256;
	mp->stats.rx_length_errors += mb->rntpc;	/* reading clears it */
	if (intr & CERR)
		++mp->stats.tx_heartbeat_errors;
	if (intr & BABBLE)
		if (mace68k_babbles++ < 4)
			printk(KERN_DEBUG "mace: babbling transmitter\n");
	if (intr & JABBER)
		if (mace68k_jabbers++ < 4)
			printk(KERN_DEBUG "mace: jabbering transceiver\n");
}

/*
 *	A transmit error has occurred. (We kick the transmit side from
 *	the DMA completion)
 */
 
static void mace68k_xmit_error(struct device *dev)
{
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	volatile struct mace *mb = mp->mace;
	u8 xmtfs, xmtrc;
	
	xmtfs = mb->xmtfs;
	xmtrc = mb->xmtrc;
	
	if(xmtfs & XMTSV)
	{
		if(xmtfs & UFLO)
		{
			printk("%s: DMA underrun.\n", dev->name);
			mp->stats.tx_errors++;
			mp->stats.tx_fifo_errors++;
			mace68k_reset(dev);
		}
		if(xmtfs & RTRY)
			mp->stats.collisions++;
	}			
	mark_bh(NET_BH);
}

/*
 *	A receive interrupt occurred.
 */
 
static void mace68k_recv_interrupt(struct device *dev)
{
//	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
//	volatile struct mace *mb = mp->mace;
}

/*
 *	Process the chip interrupt
 */
 
static void mace68k_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	struct device *dev = (struct device *) dev_id;
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	volatile struct mace *mb = mp->mace;
	u8 ir;
	
	ir = mb->ir;
	mace68k_handle_misc_intrs(mp, ir);
	
	if(ir&XMTINT)
		mace68k_xmit_error(dev);
	if(ir&RCVINT)
		mace68k_recv_interrupt(dev);
}

static void mace68k_tx_timeout(unsigned long data)
{
//	struct device *dev = (struct device *) data;
//	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
//	volatile struct mace *mb = mp->mace;
}

/*
 *	Handle a newly arrived frame
 */
 
static void mace_dma_rx_frame(struct device *dev, struct mace_frame *mf)
{
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;
	struct sk_buff *skb;

	if(mf->status&RS_OFLO)
	{
		printk("%s: fifo overflow.\n", dev->name);
		mp->stats.rx_errors++;
		mp->stats.rx_fifo_errors++;
	}
	if(mf->status&(RS_CLSN|RS_FRAMERR|RS_FCSERR))
		mp->stats.rx_errors++;
		
	if(mf->status&RS_CLSN)
		mp->stats.collisions++;
	if(mf->status&RS_FRAMERR)
		mp->stats.rx_frame_errors++;
	if(mf->status&RS_FCSERR)
		mp->stats.rx_crc_errors++;
		
	skb = dev_alloc_skb(mf->len+2);
	if(skb==NULL)
	{
		mp->stats.rx_dropped++;
		return;
	}
	skb_reserve(skb,2);
	memcpy(skb_put(skb, mf->len), mf->data, mf->len);
	
	skb->protocol = eth_type_trans(skb, dev);
	netif_rx(skb);
	mp->stats.rx_packets++;
	mp->stats.rx_bytes+=mf->len;
}

/*
 *	The PSC has passed us a DMA interrupt event.
 */
 
static void mace68k_dma_intr(int irq, void *dev_id, struct pt_regs *regs)
{
	struct device *dev = (struct device *) dev_id;
	struct mace68k_data *mp = (struct mace68k_data *) dev->priv;

	u32 psc_status;
	
	/* It seems this must be allowed to stabilise ?? */
	
	while((psc_status=psc_read_long(0x0804))!=psc_read_long(0x0804));

	/*
	 *	Was this an ethernet event ?
	 */
	 	
	if(psc_status&0x60000000)
	{
		/*
		 *	Process the read queue
		 */
		 
		u16 psc_status = psc_read_word(PSC_ENETRD_CTL);
		
		if(psc_status&0x2000)
		{
			mace68k_rxdma_reset(dev);
			mp->rx_done = 0;
		}
		
		else if(psc_status&0x100)
		{
			int left;
			
			psc_write_word(PSC_ENETRD_CMD+mp->rx_slot, 0x1100);
			left=psc_read_long(PSC_ENETRD_LEN+mp->rx_slot);
			/* read packets */	
			
			while(mp->rx_done < left)
			{
				struct mace_frame *mf=((struct mace_frame *)
					mp->rx_ring)+mp->rx_done++;
				mace_dma_rx_frame(dev, mf);
			}
			
			if(left == 0)	/* Out of DMA room */
			{
				psc_load_rxdma_base(mp->rx_slot, 
					(void *)virt_to_phys(mp->rx_ring));
				mp->rx_slot^=16;
				mp->rx_done = 0;
			}
			else
			{
				psc_write_word(PSC_ENETRD_CMD+mp->rx_slot,
					0x9800);
			}
					
		}
		
		/*
		 *	Process the write queue
		 */
		 
		psc_status = psc_read_word(PSC_ENETWR_CTL);
		if(psc_status&0x2000) {
			mace68k_txdma_reset(dev);
		} else if(psc_status&0x0100) {
			psc_write_word(PSC_ENETWR_CMD+mp->tx_slot, 0x100);
			mp->tx_slot^=16;
			mp->tx_count++;
			dev->tbusy = 0;
			mark_bh(NET_BH);
		}
	}
}