/* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
* linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
*
* Copyright (C) 1999-2000, Brad Douglas <brad@neruo.com>
* Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
*
* Ani Joshi / Jeff Garzik
* - Code cleanup
*
* Based off of Geert's atyfb.c and vfb.c.
*
* TODO:
* - panning
* - monitor sensing (DDC)
* - virtual display
* - other platform support (only ppc/x86 supported)
* - PPLL_REF_DIV & XTALIN calculation -done for x86
* - determine MCLK from previous setting -done for x86
* - calculate XCLK, rather than probe BIOS
* - hardware cursor support
* - acceleration ( do not use with Rage128 Pro!)
* - ioctl()'s
*/
/*
* A special note of gratitude to ATI's devrel for providing documentation,
* example code and hardware. Thanks Nitya. -atong and brad
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/tty.h>
#include <linux/malloc.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <asm/uaccess.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/selection.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <asm/io.h>
#ifdef CONFIG_PPC
#include <asm/prom.h>
#include <asm/pci-bridge.h>
#include <linux/nvram.h>
#include <video/macmodes.h>
#include <asm/adb.h>
#include <asm/pmu.h>
#include <asm/backlight.h>
#endif
#ifdef CONFIG_FB_COMPAT_XPMAC
#include <asm/vc_ioctl.h>
#endif
#include <video/fbcon.h>
#include <video/fbcon-cfb8.h>
#include <video/fbcon-cfb16.h>
#include <video/fbcon-cfb24.h>
#include <video/fbcon-cfb32.h>
#ifdef CONFIG_MTRR
#include <asm/mtrr.h>
#endif /* CONFIG_MTRR */
#include "aty128.h"
/* Debug flag */
#undef DEBUG
#ifdef DEBUG
#define DBG(x) printk(KERN_DEBUG "aty128fb: %s\n",(x));
#else
#define DBG(x)
#endif
#ifndef CONFIG_PPC
/* default mode */
static struct fb_var_screeninfo default_var = {
/* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
640, 480, 640, 480, 0, 0, 8, 0,
{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
0, FB_VMODE_NONINTERLACED
};
#else /* CONFIG_PPC */
/* default to 1024x768 at 75Hz on PPC - this will work
* on the iMac, the usual 640x480 @ 60Hz doesn't. */
static struct fb_var_screeninfo default_var = {
/* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
1024, 768, 1024, 768, 0, 0, 8, 0,
{0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
FB_SYNC_HOR_HIGH_ACT|FB_SYNC_VERT_HIGH_ACT, FB_VMODE_NONINTERLACED
};
#endif /* CONFIG_PPC */
/* struct to hold chip description information */
struct aty128_chip_info {
const char *name;
unsigned short device;
int chip_gen;
};
/* Chip generations */
enum {
rage_128,
rage_128_pro,
rage_M3
};
/* supported Rage128 chipsets */
static const struct aty128_chip_info aty128_pci_probe_list[] __initdata =
{
{"Rage128 RE (PCI)", PCI_DEVICE_ID_ATI_RAGE128_RE, rage_128},
{"Rage128 RF (AGP)", PCI_DEVICE_ID_ATI_RAGE128_RF, rage_128},
{"Rage128 RK (PCI)", PCI_DEVICE_ID_ATI_RAGE128_RK, rage_128},
{"Rage128 RL (AGP)", PCI_DEVICE_ID_ATI_RAGE128_RL, rage_128},
{"Rage128 Pro PF (AGP)", PCI_DEVICE_ID_ATI_RAGE128_PF, rage_128_pro},
{"Rage128 Pro PR (PCI)", PCI_DEVICE_ID_ATI_RAGE128_PR, rage_128_pro},
{"Rage Mobility M3 (PCI)", PCI_DEVICE_ID_ATI_RAGE128_LE, rage_M3},
{"Rage Mobility M3 (AGP)", PCI_DEVICE_ID_ATI_RAGE128_LF, rage_M3},
{NULL, 0, rage_128}
};
/* packed BIOS settings */
#pragma pack(1)
typedef struct {
u8 clock_chip_type;
u8 struct_size;
u8 accelerator_entry;
u8 VGA_entry;
u16 VGA_table_offset;
u16 POST_table_offset;
u16 XCLK;
u16 MCLK;
u8 num_PLL_blocks;
u8 size_PLL_blocks;
u16 PCLK_ref_freq;
u16 PCLK_ref_divider;
u32 PCLK_min_freq;
u32 PCLK_max_freq;
u16 MCLK_ref_freq;
u16 MCLK_ref_divider;
u32 MCLK_min_freq;
u32 MCLK_max_freq;
u16 XCLK_ref_freq;
u16 XCLK_ref_divider;
u32 XCLK_min_freq;
u32 XCLK_max_freq;
} PLL_BLOCK;
#pragma pack()
/* onboard memory information */
struct aty128_meminfo {
u8 ML;
u8 MB;
u8 Trcd;
u8 Trp;
u8 Twr;
u8 CL;
u8 Tr2w;
u8 LoopLatency;
u8 DspOn;
u8 Rloop;
const char *name;
};
/* various memory configurations */
const struct aty128_meminfo sdr_128 =
{ 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
const struct aty128_meminfo sdr_64 =
{ 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
const struct aty128_meminfo sdr_sgram =
{ 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
const struct aty128_meminfo ddr_sgram =
{ 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };
static int currcon = 0;
static char *aty128fb_name = "ATY Rage128";
static char fontname[40] = { 0 };
static char noaccel = 1;
static unsigned int initdepth = 8;
#ifndef MODULE
static const char *mode_option = NULL;
#endif
#ifndef CONFIG_PPC
static void *bios_seg = NULL;
#endif
#if defined(CONFIG_PPC)
static int default_vmode = VMODE_CHOOSE;
static int default_cmode = CMODE_8;
#endif
#ifdef CONFIG_MTRR
static int mtrr = 1;
#endif /* CONFIG_MTRR */
/* PLL constants */
struct aty128_constants {
u32 dotclock;
u32 ppll_min;
u32 ppll_max;
u32 ref_divider;
u32 xclk;
u32 fifo_width;
u32 fifo_depth;
};
struct aty128_crtc {
u32 gen_cntl;
u32 ext_cntl;
u32 h_total, h_sync_strt_wid;
u32 v_total, v_sync_strt_wid;
u32 pitch;
u32 offset, offset_cntl;
u32 xoffset, yoffset;
u32 vxres, vyres;
u32 bpp;
};
struct aty128_pll {
u32 post_divider;
u32 feedback_divider;
u32 vclk;
};
struct aty128_ddafifo {
u32 dda_config;
u32 dda_on_off;
};
/* register values for a specific mode */
struct aty128fb_par {
struct aty128_crtc crtc;
struct aty128_pll pll;
struct aty128_ddafifo fifo_reg;
u32 accel_flags;
};
struct fb_info_aty128 {
struct fb_info fb_info;
struct fb_info_aty128 *next;
struct aty128_constants constants; /* PLL and others */
unsigned long regbase_phys; /* physical mmio */
void *regbase; /* remapped mmio */
unsigned long frame_buffer_phys; /* physical fb memory */
unsigned long frame_buffer; /* remaped framebuffer */
const struct aty128_meminfo *mem; /* onboard mem info */
u32 vram_size; /* onboard video ram */
int chip_gen;
struct aty128fb_par default_par, current_par;
struct display disp;
struct { u8 red, green, blue, pad; } palette[256];
#ifdef CONFIG_PMAC_PBOOK
unsigned char *save_framebuffer;
#endif
union {
#ifdef FBCON_HAS_CFB16
u16 cfb16[16];
#endif
#ifdef FBCON_HAS_CFB24
u32 cfb24[16];
#endif
#ifdef FBCON_HAS_CFB32
u32 cfb32[16];
#endif
} fbcon_cmap;
int blitter_may_be_busy;
#ifdef CONFIG_PCI
struct pci_dev *pdev;
#endif
#ifdef CONFIG_MTRR
struct { int vram; int vram_valid; } mtrr;
#endif
int fifo_slots;
};
static struct fb_info_aty128 *board_list = NULL;
#ifdef CONFIG_PMAC_PBOOK
int aty128_sleep_notify(struct pmu_sleep_notifier *self, int when);
static struct pmu_sleep_notifier aty128_sleep_notifier = {
aty128_sleep_notify, SLEEP_LEVEL_VIDEO,
};
#endif
#define round_div(n, d) ((n+(d/2))/d)
/*
* Interface used by the world
*/
int aty128fb_setup(char *options);
static int aty128fb_open(struct fb_info *info, int user);
static int aty128fb_release(struct fb_info *info, int user);
static int aty128fb_get_fix(struct fb_fix_screeninfo *fix, int con,
struct fb_info *info);
static int aty128fb_get_var(struct fb_var_screeninfo *var, int con,
struct fb_info *info);
static int aty128fb_set_var(struct fb_var_screeninfo *var, int con,
struct fb_info *info);
static int aty128fb_get_cmap(struct fb_cmap *cmap, int kspc, int con,
struct fb_info *info);
static int aty128fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
struct fb_info *info);
static int aty128fb_pan_display(struct fb_var_screeninfo *var, int con,
struct fb_info *fb);
static int aty128fb_ioctl(struct inode *inode, struct file *file, u_int cmd,
u_long arg, int con, struct fb_info *info);
/*
* Interface to the low level console driver
*/
#ifdef CONFIG_FB_OF
void aty128fb_of_init(struct device_node *dp);
#endif
int aty128fb_init(void);
static int aty128fbcon_switch(int con, struct fb_info *info);
static void aty128fbcon_blank(int blank, struct fb_info *info);
/*
* Internal routines
*/
static void aty128_encode_fix(struct fb_fix_screeninfo *fix,
struct aty128fb_par *par,
const struct fb_info_aty128 *info);
static void aty128_set_disp(struct display *disp,
struct fb_info_aty128 *info, int bpp, int accel);
static int aty128_getcolreg(u_int regno, u_int *red, u_int *green, u_int *blue,
u_int *transp, struct fb_info *info);
static int aty128_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *info);
static void do_install_cmap(int con, struct fb_info *info);
#ifndef CONFIG_FB_OF
static int aty128_pci_register(struct pci_dev *pdev,
const struct aty128_chip_info *aci);
#endif
static int aty128_encode_var(struct fb_var_screeninfo *var,
const struct aty128fb_par *par,
const struct fb_info_aty128 *info);
static int aty128_decode_var(struct fb_var_screeninfo *var,
struct aty128fb_par *par,
const struct fb_info_aty128 *info);
static struct fb_info_aty128 *aty128_board_list_add(struct fb_info_aty128
*board_list, struct fb_info_aty128 *new_node);
#ifndef CONFIG_FB_OF
static int aty128find_ROM(struct fb_info_aty128 *info);
#endif
#ifndef CONFIG_PPC
static void aty128_get_pllinfo(struct fb_info_aty128 *info);
#endif
static void aty128_timings(struct fb_info_aty128 *info);
static void aty128_init_engine(const struct aty128fb_par *par,
struct fb_info_aty128 *info);
static void aty128_reset_engine(const struct fb_info_aty128 *info);
static void aty128_flush_pixel_cache(const struct fb_info_aty128 *info);
static void do_wait_for_fifo(u16 entries, struct fb_info_aty128 *info);
static void wait_for_fifo(u16 entries, struct fb_info_aty128 *info);
static void wait_for_idle(struct fb_info_aty128 *info);
static u32 bpp_to_depth(u32 bpp);
#ifdef FBCON_HAS_CFB8
static struct display_switch fbcon_aty128_8;
static void fbcon_aty8_putc(struct vc_data *conp, struct display *p,
int c, int yy, int xx);
static void fbcon_aty8_putcs(struct vc_data *conp, struct display *p,
const unsigned short *s, int count,
int yy, int xx);
#endif
#ifdef FBCON_HAS_CFB16
static struct display_switch fbcon_aty128_16;
static void fbcon_aty16_putc(struct vc_data *conp, struct display *p,
int c, int yy, int xx);
static void fbcon_aty16_putcs(struct vc_data *conp, struct display *p,
const unsigned short *s, int count,
int yy, int xx);
#endif
#ifdef FBCON_HAS_CFB24
static struct display_switch fbcon_aty128_24;
static void fbcon_aty24_putc(struct vc_data *conp, struct display *p,
int c, int yy, int xx);
static void fbcon_aty24_putcs(struct vc_data *conp, struct display *p,
const unsigned short *s, int count,
int yy, int xx);
#endif
#ifdef FBCON_HAS_CFB32
static struct display_switch fbcon_aty128_32;
static void fbcon_aty32_putc(struct vc_data *conp, struct display *p,
int c, int yy, int xx);
static void fbcon_aty32_putcs(struct vc_data *conp, struct display *p,
const unsigned short *s, int count,
int yy, int xx);
#endif
static struct fb_ops aty128fb_ops = {
aty128fb_open, aty128fb_release, aty128fb_get_fix,
aty128fb_get_var, aty128fb_set_var, aty128fb_get_cmap,
aty128fb_set_cmap, aty128fb_pan_display, aty128fb_ioctl
};
#ifdef CONFIG_PPC
static int aty128_set_backlight_enable(int on, int level, void* data);
static int aty128_set_backlight_level(int level, void* data);
static struct backlight_controller aty128_backlight_controller = {
aty128_set_backlight_enable,
aty128_set_backlight_level
};
#endif
/*
* Functions to read from/write to the mmio registers
* - endian conversions may possibly be avoided by flipping CONFIG_CNTL
* or using the other register aperture? TODO.
*/
static inline u32
_aty_ld_le32(volatile unsigned int regindex,
const struct fb_info_aty128 *info)
{
unsigned long *temp;
u32 val;
#if defined(__powerpc__)
temp = info->regbase;
__asm__ __volatile__("eieio;lwbrx %0,%1,%2" : "=b"(val) : "b" (regindex), "b" (temp));
#else
temp = info->regbase+regindex;
val = readl (temp);
#endif
return val;
}
static inline void
_aty_st_le32(volatile unsigned int regindex, u32 val,
const struct fb_info_aty128 *info)
{
unsigned long *temp;
#if defined(__powerpc__)
temp = info->regbase;
__asm__ __volatile__("eieio; stwbrx %0,%1,%2" : : "r" (val), "b" (regindex), "r" (temp) :
"memory");
#elif defined(__mc68000__)
*((volatile u32 *)(info->regbase+regindex)) = cpu_to_le32(val);
#else
temp = info->regbase+regindex;
writel (val, temp);
#endif
}
static inline u8
_aty_ld_8(unsigned int regindex, const struct fb_info_aty128 *info)
{
#if defined(__powerpc__)
eieio();
#endif
return readb (info->regbase + regindex);
}
static inline void
_aty_st_8(unsigned int regindex, u8 val, const struct fb_info_aty128 *info)
{
#if defined(__powerpc__)
eieio();
#endif
writeb (val, info->regbase + regindex);
}
#define aty_ld_le32(regindex) _aty_ld_le32(regindex, info)
#define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, info)
#define aty_ld_8(regindex) _aty_ld_8(regindex, info)
#define aty_st_8(regindex, val) _aty_st_8(regindex, val, info)
/*
* Functions to read from/write to the pll registers
*/
#define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, info)
#define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, info)
static u32
_aty_ld_pll(unsigned int pll_index,
const struct fb_info_aty128 *info)
{
aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x1F);
return aty_ld_le32(CLOCK_CNTL_DATA);
}
static void
_aty_st_pll(unsigned int pll_index, u32 val,
const struct fb_info_aty128 *info)
{
aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x1F) | PLL_WR_EN);
aty_st_le32(CLOCK_CNTL_DATA, val);
}
/* return true when the PLL has completed an atomic update */
static int
aty_pll_readupdate(const struct fb_info_aty128 *info)
{
return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
}
static void
aty_pll_wait_readupdate(const struct fb_info_aty128 *info)
{
unsigned long timeout = jiffies + HZ/100; // should be more than enough
int reset = 1;
while (time_before(jiffies, timeout))
if (aty_pll_readupdate(info)) {
reset = 0;
break;
}
#ifdef DEBUG
if (reset) /* reset engine?? */
DBG("PLL write timeout!");
#endif
}
/* tell PLL to update */
static void
aty_pll_writeupdate(const struct fb_info_aty128 *info)
{
aty_pll_wait_readupdate(info);
aty_st_pll(PPLL_REF_DIV,
aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
}
/*
* Accelerator engine functions
*/
static void
do_wait_for_fifo(u16 entries, struct fb_info_aty128 *info)
{
int i;
for (;;) {
for (i = 0; i < 2000000; i++) {
info->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
if (info->fifo_slots >= entries)
return;
}
aty128_reset_engine(info);
}
}
static void
wait_for_idle(struct fb_info_aty128 *info)
{
int i;
do_wait_for_fifo(64, info);
for (;;) {
for (i = 0; i < 2000000; i++) {
if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
aty128_flush_pixel_cache(info);
info->blitter_may_be_busy = 0;
return;
}
}
aty128_reset_engine(info);
}
}
static void
aty128_flush_pixel_cache(const struct fb_info_aty128 *info)
{
int i;
u32 tmp;
tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
tmp &= ~(0x00ff);
tmp |= 0x00ff;
aty_st_le32(PC_NGUI_CTLSTAT, tmp);
for (i = 0; i < 2000000; i++)
if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
break;
}
static void
wait_for_fifo(u16 entries, struct fb_info_aty128 *info)
{
if (info->fifo_slots < entries)
do_wait_for_fifo(64, info);
info->fifo_slots -= entries;
}
static void
aty128_reset_engine(const struct fb_info_aty128 *info)
{
u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
aty128_flush_pixel_cache(info);
clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
mclk_cntl = aty_ld_pll(MCLK_CNTL);
aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
aty_ld_le32(GEN_RESET_CNTL);
aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
aty_ld_le32(GEN_RESET_CNTL);
aty_st_pll(MCLK_CNTL, mclk_cntl);
aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
/* use old pio mode */
aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
#ifdef DEBUG
DBG("engine reset");
#endif
}
static void
aty128_init_engine(const struct aty128fb_par *par,
struct fb_info_aty128 *info)
{
u32 pitch_value;
wait_for_idle(info);
/* 3D scaler not spoken here */
aty_st_le32(SCALE_3D_CNTL, 0x00000000);
aty128_reset_engine(info);
pitch_value = par->crtc.pitch; /* fix this up */
if (par->crtc.bpp == 24) {
pitch_value = pitch_value * 3;
}
/* setup engine offset registers */
wait_for_fifo(4, info);
aty_st_le32(DEFAULT_OFFSET, 0x00000000);
/* setup engine pitch registers */
aty_st_le32(DEFAULT_PITCH, pitch_value);
/* set the default scissor register to max dimensions */
wait_for_fifo(1, info);
aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
/* set the drawing controls registers */
wait_for_fifo(1, info);
aty_st_le32(DP_GUI_MASTER_CNTL,
GMC_SRC_PITCH_OFFSET_DEFAULT |
GMC_DST_PITCH_OFFSET_DEFAULT |
GMC_SRC_CLIP_DEFAULT |
GMC_DST_CLIP_DEFAULT |
GMC_BRUSH_SOLIDCOLOR |
(bpp_to_depth(par->crtc.bpp) << 8) |
GMC_SRC_DSTCOLOR |
GMC_BYTE_ORDER_MSB_TO_LSB |
GMC_DP_CONVERSION_TEMP_6500 |
ROP3_PATCOPY |
GMC_DP_SRC_RECT |
GMC_3D_FCN_EN_CLR |
GMC_DST_CLR_CMP_FCN_CLEAR |
GMC_AUX_CLIP_CLEAR |
GMC_WRITE_MASK_SET);
wait_for_fifo(8, info);
/* clear the line drawing registers */
aty_st_le32(DST_BRES_ERR, 0);
aty_st_le32(DST_BRES_INC, 0);
aty_st_le32(DST_BRES_DEC, 0);
/* set brush color registers */
aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
/* set source color registers */
aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
/* default write mask */
aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
/* Wait for all the writes to be completed before returning */
wait_for_idle(info);
}
/* convert bpp values to their register representation */
static u32
bpp_to_depth(u32 bpp)
{
if (bpp <= 8)
return DST_8BPP;
else if (bpp <= 16)
return DST_15BPP;
else if (bpp <= 24)
return DST_24BPP;
else if (bpp <= 32)
return DST_32BPP;
return -EINVAL;
}
/*
* CRTC programming
*/
/* Program the CRTC registers */
static void
aty128_set_crtc(const struct aty128_crtc *crtc,
const struct fb_info_aty128 *info)
{
aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
aty_st_le32(CRTC_PITCH, crtc->pitch);
aty_st_le32(CRTC_OFFSET, crtc->offset);
aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
/* Disable ATOMIC updating. Is this the right place?
* -- BenH: Breaks on my G4
*/
#if 0
aty_st_le32(PPLL_CNTL, aty_ld_le32(PPLL_CNTL) & ~(0x00030000));
#endif
}
static int
aty128_var_to_crtc(const struct fb_var_screeninfo *var,
struct aty128_crtc *crtc,
const struct fb_info_aty128 *info)
{
u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp;
u32 left, right, upper, lower, hslen, vslen, sync, vmode;
u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
u32 depth, bytpp;
u8 hsync_strt_pix[5] = { 0, 0x12, 9, 6, 5 };
u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
/* input */
xres = var->xres;
yres = var->yres;
vxres = var->xres_virtual;
vyres = var->yres_virtual;
xoffset = var->xoffset;
yoffset = var->yoffset;
bpp = var->bits_per_pixel;
left = var->left_margin;
right = var->right_margin;
upper = var->upper_margin;
lower = var->lower_margin;
hslen = var->hsync_len;
vslen = var->vsync_len;
sync = var->sync;
vmode = var->vmode;
/* check for mode eligibility */
/* accept only non interlaced modes */
if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
return -EINVAL;
/* convert (and round up) and validate */
xres = (xres + 7) & ~7;
xoffset = (xoffset + 7) & ~7;
if (vxres < xres + xoffset)
vxres = xres + xoffset;
if (vyres < yres + yoffset)
vyres = yres + yoffset;
depth = bpp_to_depth(bpp);
/* make sure we didn't get an invalid depth */
if (depth == -EINVAL) {
printk(KERN_ERR "aty128fb: Invalid depth\n");
return -EINVAL;
}
bytpp = mode_bytpp[depth];
/* make sure there is enough video ram for the mode */
if ((u32)(vxres * vyres * bytpp) > info->vram_size) {
printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
return -EINVAL;
}
h_disp = (xres >> 3) - 1;
h_total = (((xres + right + hslen + left) / 8) - 1) & 0xFFFFL;
v_disp = yres - 1;
v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
/* check to make sure h_total and v_total are in range */
if ((h_total/8 - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
printk(KERN_ERR "aty128fb: invalid width ranges\n");
return -EINVAL;
}
h_sync_wid = (hslen+7)/8;
if (h_sync_wid == 0)
h_sync_wid = 1;
else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
h_sync_wid = 0x3f;
h_sync_strt = h_disp + (right/8);
v_sync_wid = vslen;
if (v_sync_wid == 0)
v_sync_wid = 1;
else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
v_sync_wid = 0x1f;
v_sync_strt = v_disp + lower;
h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
crtc->gen_cntl = 0x03000000L | c_sync | (depth << 8);
crtc->h_total = h_total | (h_disp << 16);
crtc->v_total = v_total | (v_disp << 16);
crtc->h_sync_strt_wid = hsync_strt_pix[bytpp] | (h_sync_strt << 3) |
(h_sync_wid << 16) | (h_sync_pol << 23);
crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
(v_sync_pol << 23);
crtc->pitch = xres >> 3;
crtc->offset = 0;
crtc->offset_cntl = 0;
crtc->vxres = vxres;
crtc->vyres = vyres;
crtc->xoffset = xoffset;
crtc->yoffset = yoffset;
crtc->bpp = bpp;
return 0;
}
static int
aty128_bpp_to_var(int pix_width, struct fb_var_screeninfo *var)
{
/* fill in pixel info */
switch (pix_width) {
case CRTC_PIX_WIDTH_8BPP:
var->bits_per_pixel = 8;
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 0;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
break;
case CRTC_PIX_WIDTH_15BPP:
case CRTC_PIX_WIDTH_16BPP:
var->bits_per_pixel = 16;
var->red.offset = 10;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 5;
var->blue.offset = 0;
var->blue.length = 5;
var->transp.offset = 0;
var->transp.length = 0;
break;
case CRTC_PIX_WIDTH_24BPP:
var->bits_per_pixel = 24;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
break;
case CRTC_PIX_WIDTH_32BPP:
var->bits_per_pixel = 32;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 24;
var->transp.length = 8;
break;
default:
printk(KERN_ERR "Invalid pixel width\n");
return -EINVAL;
}
return 0;
}
static int
aty128_crtc_to_var(const struct aty128_crtc *crtc,
struct fb_var_screeninfo *var)
{
u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
u32 pix_width;
/* fun with masking */
h_total = crtc->h_total & 0x1ff;
h_disp = (crtc->h_total>>16) & 0xff;
h_sync_strt = (crtc->h_sync_strt_wid>>3) & 0x1ff;
h_sync_dly = crtc->h_sync_strt_wid & 0x7;
h_sync_wid = (crtc->h_sync_strt_wid>>16) & 0x3f;
h_sync_pol = (crtc->h_sync_strt_wid>>23) & 0x1;
v_total = crtc->v_total & 0x7ff;
v_disp = (crtc->v_total>>16) & 0x7ff;
v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
v_sync_wid = (crtc->v_sync_strt_wid>>16) & 0x1f;
v_sync_pol = (crtc->v_sync_strt_wid>>23) & 0x1;
c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
xres = (h_disp+1) << 3;
yres = v_disp+1;
left = (h_total-h_sync_strt-h_sync_wid)*8-h_sync_dly;
right = (h_sync_strt-h_disp)*8+h_sync_dly;
hslen = h_sync_wid*8;
upper = v_total-v_sync_strt-v_sync_wid;
lower = v_sync_strt-v_disp;
vslen = v_sync_wid;
sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
(v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
(c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
aty128_bpp_to_var(pix_width, var);
var->xres = xres;
var->yres = yres;
var->xres_virtual = crtc->vxres;
var->yres_virtual = crtc->vyres;
var->xoffset = crtc->xoffset;
var->yoffset = crtc->yoffset;
var->left_margin = left;
var->right_margin = right;
var->upper_margin = upper;
var->lower_margin = lower;
var->hsync_len = hslen;
var->vsync_len = vslen;
var->sync = sync;
var->vmode = FB_VMODE_NONINTERLACED;
return 0;
}
static void
aty128_set_pll(struct aty128_pll *pll, const struct fb_info_aty128 *info)
{
int div3;
unsigned char post_conv[] = /* register values for post dividers */
{ 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
/* select PPLL_DIV_3 */
aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
/* reset PLL */
aty_st_pll(PPLL_CNTL,
aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
/* write the reference divider */
aty_st_pll(PPLL_REF_DIV, info->constants.ref_divider & 0x3ff);
aty_pll_writeupdate(info);
aty_pll_wait_readupdate(info);
div3 = aty_ld_pll(PPLL_DIV_3);
div3 &= ~PPLL_FB3_DIV_MASK;
div3 |= pll->feedback_divider;
div3 &= ~PPLL_POST3_DIV_MASK;
div3 |= post_conv[pll->post_divider] << 16;
/* write feedback and post dividers */
aty_st_pll(PPLL_DIV_3, div3);
aty_pll_writeupdate(info);
aty_pll_wait_readupdate(info);
aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
aty_pll_writeupdate(info);
/* clear the reset, just in case */
aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
}
static int
aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
const struct fb_info_aty128 *info)
{
const struct aty128_constants c = info->constants;
unsigned char post_dividers[] = {1,2,4,8,3,6,12};
u32 output_freq;
u32 vclk; /* in .01 MHz */
int i;
u32 n, d;
vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
/* adjust pixel clock if necessary */
if (vclk > c.ppll_max)
vclk = c.ppll_max;
if (vclk * 12 < c.ppll_min)
vclk = c.ppll_min/12;
/* now, find an acceptable divider */
for (i = 0; i < sizeof(post_dividers); i++) {
output_freq = post_dividers[i] * vclk;
if (output_freq >= c.ppll_min && output_freq <= c.ppll_max)
break;
}
/* calculate feedback divider */
n = c.ref_divider * output_freq;
d = c.dotclock;
pll->post_divider = post_dividers[i];
pll->feedback_divider = round_div(n, d);
pll->vclk = vclk;
#ifdef DEBUG
printk(KERN_DEBUG "var_to_pll: post %d feedback %d vlck %d output %d ref_divider %d\n",
pll->post_divider, pll->feedback_divider, vclk, output_freq,
c.ref_divider);
printk(KERN_DEBUG "var_to_pll: vclk_per: %d\n", period_in_ps);
#endif
return 0;
}
static int
aty128_pll_to_var(const struct aty128_pll *pll, struct fb_var_screeninfo *var,
const struct fb_info_aty128 *info)
{
var->pixclock = 100000000 / pll->vclk;
return 0;
}
static void
aty128_set_fifo(const struct aty128_ddafifo *dsp,
const struct fb_info_aty128 *info)
{
aty_st_le32(DDA_CONFIG, dsp->dda_config);
aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
}
static int
aty128_ddafifo(struct aty128_ddafifo *dsp,
const struct aty128_pll *pll,
u32 bpp,
const struct fb_info_aty128 *info)
{
const struct aty128_meminfo *m = info->mem;
u32 xclk = info->constants.xclk;
u32 fifo_width = info->constants.fifo_width;
u32 fifo_depth = info->constants.fifo_depth;
s32 x, b, p, ron, roff;
u32 n, d;
/* 15bpp is really 16bpp */
if (bpp == 15)
bpp = 16;
n = xclk * fifo_width;
d = pll->vclk*bpp;
x = round_div(n, d);
ron = 4 * m->MB +
3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
2 * m->Trp +
m->Twr +
m->CL +
m->Tr2w +
x;
#ifdef DEBUG
printk(KERN_DEBUG "aty128fb: x %x\n", x);
#endif
b = 0;
while (x) {
x >>= 1;
b++;
}
p = b + 1;
ron <<= (11 - p);
n <<= (11 - p);
x = round_div(n, d);
roff = x * (fifo_depth - 4);
if ((ron + m->Rloop) >= roff) {
printk(KERN_ERR "aty128fb: Mode out of range!\n");
return -EINVAL;
}
#ifdef DEBUG
printk(KERN_DEBUG "aty128fb: p: %x rloop: %x x: %x ron: %x roff: %x\n",
p, m->Rloop, x, ron, roff);
#endif
dsp->dda_config = p << 16 | m->Rloop << 20 | x;
dsp->dda_on_off = ron << 16 | roff;
return 0;
}
/*
* This actually sets the video mode.
*/
static void
aty128_set_par(struct aty128fb_par *par,
struct fb_info_aty128 *info)
{
u32 config;
#ifdef CONFIG_FB_COMPAT_XPMAC
struct fb_var_screeninfo var;
int cmode, vmode;
#endif
info->current_par = *par;
if (info->blitter_may_be_busy)
wait_for_idle(info);
/* clear all registers that may interfere with mode setting */
aty_st_le32(OVR_CLR, 0);
aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
aty_st_le32(OV0_SCALE_CNTL, 0);
aty_st_le32(MPP_TB_CONFIG, 0);
aty_st_le32(MPP_GP_CONFIG, 0);
aty_st_le32(SUBPIC_CNTL, 0);
aty_st_le32(VIPH_CONTROL, 0);
aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
aty_st_le32(CAP0_TRIG_CNTL, 0);
aty_st_le32(CAP1_TRIG_CNTL, 0);
aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
aty128_set_crtc(&par->crtc, info);
aty128_set_pll(&par->pll, info);
aty128_set_fifo(&par->fifo_reg, info);
config = aty_ld_le32(CONFIG_CNTL) & ~3;
#if defined(__BIG_ENDIAN)
if (par->crtc.bpp >= 24)
config |= 2; /* make aperture do 32 byte swapping */
else if (par->crtc.bpp > 8)
config |= 1; /* make aperture do 16 byte swapping */
#endif
aty_st_le32(CONFIG_CNTL, config);
aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
if (par->accel_flags & FB_ACCELF_TEXT)
aty128_init_engine(par, info);
#ifdef CONFIG_FB_COMPAT_XPMAC
if (!console_fb_info || console_fb_info == &info->fb_info) {
display_info.height = ((par->crtc.v_total >> 16) & 0x7ff)+1;
display_info.width = (((par->crtc.h_total >> 16) & 0xff)+1) << 3;
display_info.depth = par->crtc.bpp;
display_info.pitch = par->crtc.vxres*par->crtc.bpp >> 3;
aty128_encode_var(&var, par, info);
if (mac_var_to_vmode(&var, &vmode, &cmode))
display_info.mode = 0;
else
display_info.mode = vmode;
strcpy(display_info.name, aty128fb_name);
display_info.fb_address = info->frame_buffer_phys;
display_info.cmap_adr_address = 0;
display_info.cmap_data_address = 0;
display_info.disp_reg_address = info->regbase_phys;
}
#endif /* CONFIG_FB_COMPAT_XPMAC */
}
/*
* Open/Release the frame buffer device
*/
static int aty128fb_open(struct fb_info *info, int user)
{
MOD_INC_USE_COUNT;
return(0);
}
static int aty128fb_release(struct fb_info *info, int user)
{
MOD_DEC_USE_COUNT;
return(0);
}
/*
* encode/decode the User Defined Part of the Display
*/
static int
aty128_decode_var(struct fb_var_screeninfo *var, struct aty128fb_par *par,
const struct fb_info_aty128 *info)
{
int err;
if ((err = aty128_var_to_crtc(var, &par->crtc, info)))
return err;
if ((err = aty128_var_to_pll(var->pixclock, &par->pll, info)))
return err;
if ((err = aty128_ddafifo(&par->fifo_reg, &par->pll, par->crtc.bpp, info)))
return err;
if (var->accel_flags & FB_ACCELF_TEXT)
par->accel_flags = FB_ACCELF_TEXT;
else
par->accel_flags = 0;
return 0;
}
static int
aty128_encode_var(struct fb_var_screeninfo *var,
const struct aty128fb_par *par,
const struct fb_info_aty128 *info)
{
int err;
if ((err = aty128_crtc_to_var(&par->crtc, var)))
return err;
if ((err = aty128_pll_to_var(&par->pll, var, info)))
return err;
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.msb_right = 0;
var->transp.msb_right = 0;
var->nonstd = 0;
var->activate = 0;
var->height = -1;
var->width = -1;
var->accel_flags = par->accel_flags;
return 0;
}
/*
* Get the User Defined Part of the Display
*/
static int
aty128fb_get_var(struct fb_var_screeninfo *var, int con, struct fb_info *fb)
{
const struct fb_info_aty128 *info = (struct fb_info_aty128 *)fb;
if (con == -1)
aty128_encode_var(var, &info->default_par, info);
else
*var = fb_display[con].var;
return 0;
}
/*
* Set the User Defined Part of the Display
*/
static int
aty128fb_set_var(struct fb_var_screeninfo *var, int con, struct fb_info *fb)
{
struct fb_info_aty128 *info = (struct fb_info_aty128 *)fb;
struct aty128fb_par par;
struct display *display;
int oldxres, oldyres, oldvxres, oldvyres, oldbpp, oldaccel;
int accel, err;
display = (con >= 0) ? &fb_display[con] : fb->disp;
/* basic (in)sanity checks */
if (!var->xres)
var->xres = 1;
if (!var->yres)
var->yres = 1;
if (var->xres > var->xres_virtual)
var->xres_virtual = var->xres;
if (var->yres > var->yres_virtual)
var->yres_virtual = var->yres;
switch (var->bits_per_pixel) {
case 0 ... 8:
var->bits_per_pixel = 8;
break;
case 9 ... 16:
var->bits_per_pixel = 16;
break;
case 17 ... 24:
var->bits_per_pixel = 24;
break;
case 25 ... 32:
var->bits_per_pixel = 32;
break;
default:
return -EINVAL;
}
if ((err = aty128_decode_var(var, &par, info)))
return err;
aty128_encode_var(var, &par, info);
if ((var->activate & FB_ACTIVATE_MASK) != FB_ACTIVATE_NOW)
return 0;
oldxres = display->var.xres;
oldyres = display->var.yres;
oldvxres = display->var.xres_virtual;
oldvyres = display->var.yres_virtual;
oldbpp = display->var.bits_per_pixel;
oldaccel = display->var.accel_flags;
display->var = *var;
if (oldxres != var->xres || oldyres != var->yres ||
oldvxres != var->xres_virtual || oldvyres != var->yres_virtual ||
oldbpp != var->bits_per_pixel || oldaccel != var->accel_flags) {
struct fb_fix_screeninfo fix;
aty128_encode_fix(&fix, &par, info);
display->screen_base = (char *)info->frame_buffer;
display->visual = fix.visual;
display->type = fix.type;
display->type_aux = fix.type_aux;
display->ypanstep = fix.ypanstep;
display->ywrapstep = fix.ywrapstep;
display->line_length = fix.line_length;
display->can_soft_blank = 1;
display->inverse = 0;
accel = var->accel_flags & FB_ACCELF_TEXT;
aty128_set_disp(display, info, par.crtc.bpp, accel);
if (accel)
display->scrollmode = SCROLL_YNOMOVE;
else
display->scrollmode = SCROLL_YREDRAW;
if (info->fb_info.changevar)
(*info->fb_info.changevar)(con);
}
if (!info->fb_info.display_fg || info->fb_info.display_fg->vc_num == con)
aty128_set_par(&par, info);
if (oldbpp != var->bits_per_pixel) {
if ((err = fb_alloc_cmap(&display->cmap, 0, 0)))
return err;
do_install_cmap(con, &info->fb_info);
}
return 0;
}
static void
aty128_set_disp(struct display *disp,
struct fb_info_aty128 *info, int bpp, int accel)
{
switch (bpp) {
#ifdef FBCON_HAS_CFB8
case 8:
disp->dispsw = accel ? &fbcon_aty128_8 : &fbcon_cfb8;
break;
#endif
#ifdef FBCON_HAS_CFB16
case 15:
case 16:
disp->dispsw = accel ? &fbcon_aty128_16 : &fbcon_cfb16;
disp->dispsw_data = info->fbcon_cmap.cfb16;
break;
#endif
#ifdef FBCON_HAS_CFB24
case 24:
disp->dispsw = accel ? &fbcon_aty128_24 : &fbcon_cfb24;
disp->dispsw_data = info->fbcon_cmap.cfb24;
break;
#endif
#ifdef FBCON_HAS_CFB32
case 32:
disp->dispsw = accel ? &fbcon_aty128_32 : &fbcon_cfb32;
disp->dispsw_data = info->fbcon_cmap.cfb32;
break;
#endif
default:
disp->dispsw = &fbcon_dummy;
}
}
static void
aty128_encode_fix(struct fb_fix_screeninfo *fix,
struct aty128fb_par *par,
const struct fb_info_aty128 *info)
{
memset(fix, 0, sizeof(struct fb_fix_screeninfo));
strcpy(fix->id, aty128fb_name);
fix->smem_start = (void *)info->frame_buffer_phys;
fix->mmio_start = (void *)info->regbase_phys;
fix->smem_len = (u32)info->vram_size;
fix->mmio_len = 0x1fff;
fix->type = FB_TYPE_PACKED_PIXELS;
fix->type_aux = 0;
fix->line_length = par->crtc.vxres*par->crtc.bpp/8;
fix->visual = par->crtc.bpp <= 8 ? FB_VISUAL_PSEUDOCOLOR
: FB_VISUAL_DIRECTCOLOR;
fix->ywrapstep = 0;
fix->xpanstep = 8;
fix->ypanstep = 1;
fix->accel = FB_ACCEL_ATI_RAGE128;
return;
}
/*
* Get the Fixed Part of the Display
*/
static int
aty128fb_get_fix(struct fb_fix_screeninfo *fix, int con, struct fb_info *fb)
{
const struct fb_info_aty128 *info = (struct fb_info_aty128 *)fb;
struct aty128fb_par par;
if (con == -1)
par = info->default_par;
else
aty128_decode_var(&fb_display[con].var, &par, info);
aty128_encode_fix(fix, &par, info);
return 0;
}
/*
* Pan or Wrap the Display
*
* Not supported (yet!)
*/
static int
aty128fb_pan_display(struct fb_var_screeninfo *var, int con,
struct fb_info *fb)
{
struct fb_info_aty128 *info = (struct fb_info_aty128 *)fb;
struct aty128fb_par *par = &info->current_par;
u32 xoffset, yoffset;
u32 offset;
u32 xres, yres;
xres = (((par->crtc.h_total >> 16) & 0xff) + 1) * 8;
yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
xoffset = (var->xoffset +7) & ~7;
yoffset = var->yoffset;
if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
return -EINVAL;
par->crtc.xoffset = xoffset;
par->crtc.yoffset = yoffset;
offset = ((yoffset * par->crtc.vxres + xoffset) * par->crtc.bpp) >> 6;
aty_st_le32(CRTC_OFFSET, offset);
return 0;
}
/*
* Get the Colormap
*/
static int
aty128fb_get_cmap(struct fb_cmap *cmap, int kspc, int con,
struct fb_info *info)
{
if (con == currcon) /* current console? */
return fb_get_cmap(cmap, kspc, aty128_getcolreg, info);
else if (fb_display[con].cmap.len) /* non default colormap? */
fb_copy_cmap(&fb_display[con].cmap, cmap, kspc ? 0 : 2);
else {
int size = (fb_display[con].var.bits_per_pixel <= 8) ? 256 : 32;
fb_copy_cmap(fb_default_cmap(size), cmap, kspc ? 0 : 2);
}
return 0;
}
/*
* Set the Colormap
*/
static int
aty128fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
struct fb_info *info)
{
int err;
struct display *disp;
if (con >= 0)
disp = &fb_display[con];
else
disp = info->disp;
if (!disp->cmap.len) { /* no colormap allocated? */
int size = (disp->var.bits_per_pixel <= 8) ? 256 : 32;
if ((err = fb_alloc_cmap(&disp->cmap, size, 0)))
return err;
}
if (con == currcon) /* current console? */
return fb_set_cmap(cmap, kspc, aty128_setcolreg, info);
else
fb_copy_cmap(cmap, &disp->cmap, kspc ? 0 : 1);
return 0;
}
/*
* Frame Buffer Specific ioctls
*/
static int
aty128fb_ioctl(struct inode *inode, struct file *file, u_int cmd,
u_long arg, int con, struct fb_info *info)
{
return -EINVAL;
}
#ifndef MODULE
int __init
aty128fb_setup(char *options)
{
char *this_opt;
if (!options || !*options)
return 0;
for (this_opt = strtok(options, ","); this_opt;
this_opt = strtok(NULL, ",")) {
if (!strncmp(this_opt, "font:", 5)) {
char *p;
int i;
p = this_opt +5;
for (i = 0; i < sizeof(fontname) - 1; i++)
if (!*p || *p == ' ' || *p == ',')
break;
memcpy(fontname, this_opt + 5, i);
fontname[i] = 0;
} else if (!strncmp(this_opt, "noaccel", 7)) {
noaccel = 1;
} else if (!strncmp(this_opt, "depth:", 6)) {
unsigned int depth = simple_strtoul(this_opt+6, NULL, 0);
switch (depth) {
case 0 ... 8:
initdepth = 8;
#ifdef CONFIG_PPC
default_cmode = CMODE_8;
#endif
break;
case 9 ... 16:
initdepth = 16;
#ifdef CONFIG_PPC
default_cmode = CMODE_16;
#endif
break;
case 17 ... 24:
initdepth = 24;
break;
case 25 ... 32:
initdepth = 32;
#ifdef CONFIG_PPC
default_cmode = CMODE_32;
#endif
break;
default:
initdepth = 8;
}
}
#ifdef CONFIG_MTRR
else if(!strncmp(this_opt, "nomtrr", 6)) {
mtrr = 0;
}
#endif /* CONFIG_MTRR */
#ifdef CONFIG_PPC
/* vmode and cmode depreciated */
else if (!strncmp(this_opt, "vmode:", 6)) {
unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
if (vmode > 0 && vmode <= VMODE_MAX)
default_vmode = vmode;
} else if (!strncmp(this_opt, "cmode:", 6)) {
unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
switch (cmode) {
case 0:
case 8:
default_cmode = CMODE_8;
break;
case 15:
case 16:
default_cmode = CMODE_16;
break;
case 24:
case 32:
default_cmode = CMODE_32;
break;
}
}
#endif /* CONFIG_PPC */
else
mode_option = this_opt;
}
return 0;
}
#endif /* !MODULE */
/*
* Initialisation
*/
static int __init
aty128_init(struct fb_info_aty128 *info, const char *name)
{
struct fb_var_screeninfo var;
u32 dac;
int j, k;
u8 chip_rev;
const struct aty128_chip_info *aci = &aty128_pci_probe_list[0];
char *video_card = "Rage128";
if (!info->vram_size) /* may have already been probed */
info->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
/* Get the chip revision */
chip_rev = (aty_ld_le32(CONFIG_CNTL) >> 16) & 0x1F;
/* put a name with the face */
while (aci->name && info->pdev->device != aci->device) { aci++; }
video_card = (char *)aci->name;
info->chip_gen = aci->chip_gen;
printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
if (info->vram_size % (1024 * 1024) == 0)
printk("%dM %s\n", info->vram_size / (1024*1024), info->mem->name);
else
printk("%dk %s\n", info->vram_size / 1024, info->mem->name);
/* fill in info */
strcpy(info->fb_info.modename, aty128fb_name);
info->fb_info.node = -1;
info->fb_info.fbops = &aty128fb_ops;
info->fb_info.disp = &info->disp;
strcpy(info->fb_info.fontname, fontname);
info->fb_info.changevar = NULL;
info->fb_info.switch_con = &aty128fbcon_switch;
info->fb_info.blank = &aty128fbcon_blank;
info->fb_info.flags = FBINFO_FLAG_DEFAULT;
#ifdef MODULE
var = default_var;
#else
memset(&var, 0, sizeof(var));
#ifdef CONFIG_FB_OF
if (_machine == _MACH_Pmac) {
if (mode_option) {
if (mac_vmode_to_var(default_vmode, default_cmode, &var))
var = default_var;
} else {
if (default_vmode <= 0 || default_vmode > VMODE_MAX)
default_vmode = VMODE_1024_768_60;
/* iBook SE */
if (machine_is_compatible("PowerBook2,2"))
default_vmode = VMODE_800_600_60;
/* iMacs and newer iBooks need to use 1024x768
* PowerMac2,1 first r128 iMacs
* PowerMac4,1 january 2001 iMacs "flower power"
*/
if (machine_is_compatible("PowerMac2,1") ||
machine_is_compatible("PowerMac2,2") ||
machine_is_compatible("PowerMac4,1"))
default_vmode = VMODE_1024_768_75;
/* PowerBook Firewire (Pismo) and iBook2 */
if (machine_is_compatible("PowerBook3,1") ||
machine_is_compatible("PowerBook4,1"))
default_vmode = VMODE_1024_768_60;
/* PowerBook Titanium */
if (machine_is_compatible("PowerBook3,2"))
default_vmode = VMODE_1152_768_60;
if (default_cmode < CMODE_8 || default_cmode > CMODE_32)
default_cmode = CMODE_8;
if (mac_vmode_to_var(default_vmode, default_cmode, &var))
var = default_var;
}
} else
#else /* CONFIG_FB_OF */
var = default_var;
#endif /* CONFIG_FB_OF */
#endif /* MODULE */
if (noaccel)
var.accel_flags &= ~FB_ACCELF_TEXT;
else
var.accel_flags |= FB_ACCELF_TEXT;
if (aty128_decode_var(&var, &info->default_par, info)) {
printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
return 0;
}
/* load up the palette with default colors */
for (j = 0; j < 16; j++) {
k = color_table[j];
info->palette[j].red = default_red[k];
info->palette[j].green = default_grn[k];
info->palette[j].blue = default_blu[k];
}
dac = aty_ld_le32(DAC_CNTL);
dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL | DAC_BLANKING);
dac |= DAC_8BIT_EN; /* set 8 bit dac */
dac |= DAC_MASK; /* set DAC mask */
aty_st_le32(DAC_CNTL, dac);
/* turn off bus mastering, just in case */
aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
aty128fb_set_var(&var, -1, &info->fb_info);
aty128_init_engine(&info->default_par, info);
board_list = aty128_board_list_add(board_list, info);
if (register_framebuffer(&info->fb_info) < 0)
return 0;
#ifdef CONFIG_PPC
if (info->chip_gen == rage_M3)
register_backlight_controller(&aty128_backlight_controller, info, "ati");
#endif
#ifdef CONFIG_PMAC_PBOOK
pmu_register_sleep_notifier(&aty128_sleep_notifier);
#endif
printk(KERN_INFO "fb%d: %s frame buffer device on %s\n",
GET_FB_IDX(info->fb_info.node), aty128fb_name, name);
return 1; /* success! */
}
/* add a new card to the list ++ajoshi */
static struct
fb_info_aty128 *aty128_board_list_add(struct fb_info_aty128 *board_list,
struct fb_info_aty128 *new_node)
{
struct fb_info_aty128 *i_p = board_list;
new_node->next = NULL;
if(board_list == NULL)
return new_node;
while(i_p->next != NULL)
i_p = i_p->next;
i_p->next = new_node;
return board_list;
}
int __init
aty128fb_init(void)
{
#if defined(CONFIG_FB_OF)
/* let offb handle init */
#elif defined (CONFIG_PCI)
struct pci_dev *pdev = NULL;
const struct aty128_chip_info *aci = &aty128_pci_probe_list[0];
while (aci->name != NULL) {
pdev = pci_find_device(PCI_VENDOR_ID_ATI, aci->device, pdev);
while (pdev != NULL) {
if (aty128_pci_register(pdev, aci) == 0)
return 0;
pdev = pci_find_device(PCI_VENDOR_ID_ATI, aci->device, pdev);
}
aci++;
}
#endif
return 0;
}
#if defined(CONFIG_PCI) && !defined(CONFIG_FB_OF)
/* register a card ++ajoshi */
static int __init
aty128_pci_register(struct pci_dev *pdev,
const struct aty128_chip_info *aci)
{
struct fb_info_aty128 *info = NULL;
unsigned long fb_addr, reg_addr;
u16 tmp;
fb_addr = pdev->base_address[0] & PCI_BASE_ADDRESS_MEM_MASK;
reg_addr = pdev->base_address[2] & PCI_BASE_ADDRESS_MEM_MASK;
if (!reg_addr)
return -1;
info = kmalloc(sizeof(struct fb_info_aty128), GFP_ATOMIC);
if(!info) {
printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
goto unmap_out;
}
memset(info, 0, sizeof(struct fb_info_aty128));
info->pdev = pdev;
info->regbase_phys = reg_addr;
info->regbase = ioremap(reg_addr, 0x1FFF);
if (!info->regbase)
goto err_out;
info->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
info->frame_buffer_phys = fb_addr;
info->frame_buffer = (unsigned long)ioremap(fb_addr, info->vram_size);
if (!info->frame_buffer)
goto err_out;
pci_read_config_word(pdev, PCI_COMMAND, &tmp);
if (!(tmp & PCI_COMMAND_MEMORY)) {
tmp |= PCI_COMMAND_MEMORY;
pci_write_config_word(pdev, PCI_COMMAND, tmp);
}
if (!aty128find_ROM(info)) {
printk(KERN_INFO "aty128fb: Rage128 BIOS not located. Guessing...\n");
aty128_timings(info);
}
#ifndef CONFIG_PPC
else
aty128_get_pllinfo(info);
/* free up to-be unused resources. bios_seg is mapped by
* aty128find_ROM() and used by aty128_get_pllinfo()
*
* TODO: make more elegant. doesn't need to be global
*/
if (bios_seg)
iounmap(bios_seg);
#endif
#ifdef CONFIG_MTRR
if (mtrr) {
info->mtrr.vram = mtrr_add(info->frame_buffer_phys, info->vram_size,
MTRR_TYPE_WRCOMB, 1);
info->mtrr.vram_valid = 1;
/* let there be speed */
printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
}
#endif /* CONFIG_MTRR */
if (!aty128_init(info, "PCI"))
goto err_out;
return 0;
err_out:
kfree (info);
unmap_out:
return -1;
}
#endif /* ! CONFIG_FB_OF */
#ifndef CONFIG_FB_OF
static int __init
aty128find_ROM(struct fb_info_aty128 *info)
{
int flag = 0;
#ifndef CONFIG_PPC
u32 segstart;
char *rom_base;
char *rom;
int stage;
int i;
char aty_rom_sig[] = "761295520"; /* ATI ROM Signature */
char R128_sig[] = "R128"; /* Rage128 ROM identifier */
for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
stage = 1;
rom_base = (char *) ioremap(segstart, 0x1000);
if ((*rom_base == 0x55) && (((*(rom_base + 1)) & 0xff) == 0xaa))
stage = 2;
if (stage != 2) {
iounmap(rom_base);
continue;
}
rom = rom_base;
for (i = 0; (i < 128 - strlen(aty_rom_sig)) && (stage != 3); i++) {
if (aty_rom_sig[0] == *rom) {
if (strncmp(aty_rom_sig, rom, strlen(aty_rom_sig)) == 0) {
stage = 3;
}
}
rom++;
}
if (stage != 3) {
iounmap(rom_base);
continue;
}
rom = rom_base;
/* ATI signature found. Let's see if it's a Rage128 */
for (i = 0; (i < 512) && (stage != 4); i++) {
if (R128_sig[0] == *rom) {
if (strncmp(R128_sig, rom, strlen(R128_sig)) == 0) {
stage = 4;
}
}
rom++;
}
if (stage != 4) {
iounmap(rom_base);
continue;
}
bios_seg = rom_base;
printk(KERN_INFO "aty128fb: Rage128 BIOS located at segment %4.4X\n",
(unsigned int)rom_base);
flag = 1;
break;
}
#endif /* !CONFIG_PPC */
return (flag);
}
#endif /* CONFIG_FB_OF */
#ifndef CONFIG_PPC
static void __init
aty128_get_pllinfo(struct fb_info_aty128 *info)
{
void *bios_header;
void *header_ptr;
u16 bios_header_offset, pll_info_offset;
PLL_BLOCK pll;
bios_header = bios_seg + 0x48L;
header_ptr = bios_header;
bios_header_offset = readw(header_ptr);
bios_header = bios_seg + bios_header_offset;
bios_header += 0x30;
header_ptr = bios_header;
pll_info_offset = readw(header_ptr);
header_ptr = bios_seg + pll_info_offset;
memcpy_fromio(&pll, header_ptr, 50);
info->constants.ppll_max = pll.PCLK_max_freq;
info->constants.ppll_min = pll.PCLK_min_freq;
info->constants.xclk = (u32)pll.XCLK;
info->constants.ref_divider = (u32)pll.PCLK_ref_divider;
info->constants.dotclock = (u32)pll.PCLK_ref_freq;
aty_st_pll(PPLL_REF_DIV, info->constants.ref_divider);
aty_pll_writeupdate(info);
info->constants.fifo_width = 128;
info->constants.fifo_depth = 32;
#ifdef DEBUG
printk(KERN_DEBUG "get_pllinfo: ppll_max %d ppll_min %d xclk %d "
"ref_divider %d dotclock %d\n",
info->constants.ppll_max, info->constants.ppll_min,
info->constants.xclk, info->constants.ref_divider,
info->constants.dotclock);
#endif
switch(aty_ld_le32(MEM_CNTL) & 0x03) {
case 0:
info->mem = &sdr_128;
break;
case 1:
info->mem = &sdr_sgram;
break;
case 2:
info->mem = &ddr_sgram;
break;
default:
info->mem = &sdr_sgram;
}
return;
}
#endif /* ! CONFIG_PPC */
#ifdef CONFIG_FB_OF
void __init
aty128fb_get_of_val(struct device_node *dp, char *property, int *value)
{
int *result, size = 0;
result = (int *) get_property(dp, property, &size);
if (size)
*value = *result;
}
void __init
aty128fb_of_init(struct device_node *dp)
{
unsigned long addr, reg_addr, fb_addr;
struct fb_info_aty128 *info;
u8 bus, devfn;
u16 cmd;
if (dp->name && !strcmp(dp->name, "ATY,RageM3pA") && dp->parent)
dp = dp->parent;
if (dp->name && !strcmp(dp->name, "ATY,RageM3pB"))
return;
if (dp->name && !strcmp(dp->name, "ATY,RageM3p12A") && dp->parent)
dp = dp->parent;
if (dp->name && !strcmp(dp->name, "ATY,RageM3p12B"))
return;
switch (dp->n_addrs) {
case 3:
fb_addr = dp->addrs[0].address;
reg_addr = dp->addrs[2].address;
break;
default:
printk(KERN_ERR "aty128fb: TODO unexpected addresses\n");
return;
}
addr = (unsigned long) ioremap(reg_addr, 0x1FFF);
if (!addr) {
printk(KERN_ERR "aty128fb: can't map memory registers\n");
return;
}
info = kmalloc(sizeof(struct fb_info_aty128), GFP_ATOMIC);
if (!info) {
printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
return;
}
memset((void *) info, 0, sizeof(struct fb_info_aty128));
info->regbase_phys = reg_addr;
info->regbase = (void *) addr;
/* enabled memory-space accesses using config-space command register */
if (pci_device_loc(dp, &bus, &devfn) == 0) {
pcibios_read_config_word(bus, devfn, PCI_COMMAND, &cmd);
if (!(cmd & PCI_COMMAND_MEMORY)) {
cmd |= PCI_COMMAND_MEMORY;
pcibios_write_config_word(bus, devfn, PCI_COMMAND, cmd);
}
info->pdev = pci_find_slot(bus, devfn);
}
info->vram_size = aty_ld_le32(CONFIG_MEMSIZE) & 0x03FFFFFF;
info->frame_buffer_phys = fb_addr;
info->frame_buffer = (unsigned long)ioremap(fb_addr, info->vram_size);
if (!info->frame_buffer) {
printk(KERN_ERR "aty128fb: can't map frame buffer\n");
kfree(info);
return;
}
/* fall back to defaults */
aty128_timings(info);
if (!aty128_init(info, dp->full_name)) {
kfree(info);
return;
}
#ifdef CONFIG_FB_COMPAT_XPMAC
if (!console_fb_info)
console_fb_info = &info->fb_info;
#endif
}
#endif /* CONFIG_FB_OF */
/* fill in known card constants if pll_block is not available */
static void __init
aty128_timings(struct fb_info_aty128 *info)
{
#if defined(__powerpc__)
/* instead of a table lookup assume OF has properly set up
the PLL registers and use their values to set the XCLK
values and reference divider values */
u32 x_mpll_ref_fb_div;
u32 xclk_cntl;
u32 Nx, M;
unsigned PostDivSet[] = {0, 1, 2, 4, 8, 3, 6, 12};
/* Assume REF clock is 2950 (in units of 10khz) */
/* and that all pllclk must be between 125 Mhz and 250Mhz */
info->constants.dotclock = 2950;
info->constants.ppll_min = 12500;
info->constants.ppll_max = 25000;
x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
Nx = (x_mpll_ref_fb_div & 0x00FF00) >> 8;
M = (x_mpll_ref_fb_div & 0x0000FF);
info->constants.xclk = round_div((2 * Nx * info->constants.dotclock),
(M * PostDivSet[xclk_cntl]));
info->constants.ref_divider = aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
printk("aty128fb: detected XCLK=0x%x, ref_div=0x%x\n",
info->constants.xclk, info->constants.ref_divider);
#else
/* TODO make an attempt at probing */
if (!info->constants.dotclock)
info->constants.dotclock = 2950;
/* from documentation */
if (!info->constants.ppll_min)
info->constants.ppll_min = 12500;
if (!info->constants.ppll_max)
info->constants.ppll_max = 25000; /* 23000 on some cards? */
/* XXX TODO. Calculuate properly. */
if (!info->constants.ref_divider)
info->constants.ref_divider = 0x3b;
aty_st_pll(PPLL_REF_DIV, info->constants.ref_divider);
aty_pll_writeupdate(info);
info->constants.xclk = 0x1d4d;
aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
aty_pll_writeupdate(info);
#endif
info->constants.fifo_width = 128;
info->constants.fifo_depth = 32;
switch (aty_ld_le32(MEM_CNTL) & 0x3) {
case 0:
info->mem = &sdr_128;
break;
case 1:
info->mem = &sdr_sgram;
break;
case 2:
info->mem = &ddr_sgram;
break;
default:
info->mem = &sdr_sgram;
}
}
static int
aty128fbcon_switch(int con, struct fb_info *fb)
{
struct fb_info_aty128 *info = (struct fb_info_aty128 *)fb;
struct aty128fb_par par;
/* Do we have to save the colormap? */
if (fb_display[currcon].cmap.len)
fb_get_cmap(&fb_display[currcon].cmap, 1, aty128_getcolreg, fb);
/* set the current console */
currcon = con;
aty128_decode_var(&fb_display[con].var, &par, info);
aty128_set_par(&par, info);
aty128_set_disp(&fb_display[con], info, par.crtc.bpp,
par.accel_flags & FB_ACCELF_TEXT);
do_install_cmap(con, fb);
return 1;
}
/*
* Blank the display.
*/
static void
aty128fbcon_blank(int blank, struct fb_info *fb)
{
struct fb_info_aty128 *info = (struct fb_info_aty128 *)fb;
u8 state = 0;
#if defined(CONFIG_PPC)
if ((_machine == _MACH_Pmac) && blank)
set_backlight_enable(0);
#endif
if (blank & VESA_VSYNC_SUSPEND)
state |= 2;
if (blank & VESA_HSYNC_SUSPEND)
state |= 1;
if (blank & VESA_POWERDOWN)
state |= 4;
aty_st_8(CRTC_EXT_CNTL+1, state);
#if defined(CONFIG_PPC)
if ((_machine == _MACH_Pmac) && !blank)
set_backlight_enable(1);
#endif
}
/*
* Read a single color register and split it into
* colors/transparent. Return != 0 for invalid regno.
*/
static int
aty128_getcolreg(u_int regno, u_int *red, u_int *green, u_int *blue,
u_int *transp, struct fb_info *fb)
{
struct fb_info_aty128 *info = (struct fb_info_aty128 *) fb;
if (regno > 255)
return 1;
*red = (info->palette[regno].red<<8) | info->palette[regno].red;
*green = (info->palette[regno].green<<8) | info->palette[regno].green;
*blue = (info->palette[regno].blue<<8) | info->palette[regno].blue;
*transp = 0;
return 0;
}
/*
* Set a single color register. The values supplied are already
* rounded down to the hardware's capabilities (according to the
* entries in the var structure). Return != 0 for invalid regno.
*/
static int
aty128_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int transp, struct fb_info *fb)
{
struct fb_info_aty128 *info = (struct fb_info_aty128 *)fb;
u32 col;
if (regno > 255)
return 1;
red >>= 8;
green >>= 8;
blue >>= 8;
info->palette[regno].red = red;
info->palette[regno].green = green;
info->palette[regno].blue = blue;
/* Note: For now, on M3, we set palette on both heads, which may
* be useless. Can someone with a M3 check this ? */
/* initialize gamma ramp for hi-color+ */
if ((info->current_par.crtc.bpp > 8) && (regno == 0)) {
int i;
if (info->chip_gen == rage_M3)
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & ~DAC_PALETTE_ACCESS_CNTL);
for (i=16; i<256; i++) {
aty_st_8(PALETTE_INDEX, i);
col = (i << 16) | (i << 8) | i;
aty_st_le32(PALETTE_DATA, col);
}
if (info->chip_gen == rage_M3) {
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PALETTE_ACCESS_CNTL);
for (i=16; i<256; i++) {
aty_st_8(PALETTE_INDEX, i);
col = (i << 16) | (i << 8) | i;
aty_st_le32(PALETTE_DATA, col);
}
}
}
/* initialize palette */
if (info->chip_gen == rage_M3)
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & ~DAC_PALETTE_ACCESS_CNTL);
if (info->current_par.crtc.bpp == 16)
aty_st_8(PALETTE_INDEX, (regno << 3));
else
aty_st_8(PALETTE_INDEX, regno);
col = (red << 16) | (green << 8) | blue;
aty_st_le32(PALETTE_DATA, col);
if (info->chip_gen == rage_M3) {
aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PALETTE_ACCESS_CNTL);
if (info->current_par.crtc.bpp == 16)
aty_st_8(PALETTE_INDEX, (regno << 3));
else
aty_st_8(PALETTE_INDEX, regno);
aty_st_le32(PALETTE_DATA, col);
}
if (regno < 16)
switch (info->current_par.crtc.bpp) {
#ifdef FBCON_HAS_CFB16
case 9 ... 16:
info->fbcon_cmap.cfb16[regno] = (regno << 10) | (regno << 5) |
regno;
break;
#endif
#ifdef FBCON_HAS_CFB24
case 17 ... 24:
info->fbcon_cmap.cfb24[regno] = (regno << 16) | (regno << 8) |
regno;
break;
#endif
#ifdef FBCON_HAS_CFB32
case 25 ... 32: {
u32 i;
i = (regno << 8) | regno;
info->fbcon_cmap.cfb32[regno] = (i << 16) | i;
break;
}
#endif
}
return 0;
}
static void
do_install_cmap(int con, struct fb_info *info)
{
if (con != currcon)
return;
if (fb_display[con].cmap.len)
fb_set_cmap(&fb_display[con].cmap, 1, aty128_setcolreg, info);
else {
int size = (fb_display[con].var.bits_per_pixel <= 8) ? 256 : 16;
fb_set_cmap(fb_default_cmap(size), 1, aty128_setcolreg, info);
}
}
#ifdef CONFIG_PPC
static int backlight_conv[] = {
0xff, 0xc0, 0xb5, 0xaa, 0x9f, 0x94, 0x89, 0x7e,
0x73, 0x68, 0x5d, 0x52, 0x47, 0x3c, 0x31, 0x24
};
static int
aty128_set_backlight_enable(int on, int level, void* data)
{
struct fb_info_aty128 *info = (struct fb_info_aty128 *)data;
unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
reg |= LVDS_BL_MOD_EN | LVDS_BLON;
if (on && level > BACKLIGHT_OFF) {
reg |= LVDS_ON | LVDS_EN;
reg |= LVDS_BL_MOD_EN | LVDS_BLON;
reg &= ~LVDS_BL_MOD_LEVEL_MASK;
reg |= (backlight_conv[level] << LVDS_BL_MOD_LEVEL_SHIFT);
} else {
reg &= ~LVDS_BL_MOD_LEVEL_MASK;
reg |= (backlight_conv[0] << LVDS_BL_MOD_LEVEL_SHIFT);
reg &= ~(LVDS_ON | LVDS_EN);
}
aty_st_le32(LVDS_GEN_CNTL, reg);
return 0;
}
static int
aty128_set_backlight_level(int level, void* data)
{
return aty128_set_backlight_enable(1, level, data);
}
#endif
/*
* Accelerated functions
*/
static void
aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
u_int width, u_int height,
struct fb_info_aty128 *info)
{
u32 save_dp_datatype, save_dp_cntl;
wait_for_fifo(1, info);
aty_st_le32(CLR_CMP_CNTL, 0);
wait_for_fifo(2, info);
save_dp_datatype = aty_ld_le32(DP_DATATYPE);
save_dp_cntl = aty_ld_le32(DP_CNTL);
wait_for_fifo(6, info);
aty_st_le32(DP_DATATYPE, (BRUSH_SOLIDCOLOR << 16) | SRC_DSTCOLOR);
aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
info->blitter_may_be_busy = 1;
wait_for_fifo(2, info);
aty_st_le32(DP_DATATYPE, save_dp_datatype);
aty_st_le32(DP_CNTL, save_dp_cntl);
}
#ifdef CONFIG_PMAC_PBOOK
static void
aty128_set_suspend(struct fb_info_aty128 *info, int suspend)
{
u32 pmgt;
/* Set the chip into the appropriate suspend mode (we use D2,
* D3 would require a complete re-initialisation of the chip,
* including PCI config registers, clocks, AGP configuration, ...)
*/
if (suspend) {
/* Set the power management mode to be PCI based */
pmgt = aty_ld_pll(POWER_MANAGEMENT);
pmgt &= ~PWR_MGT_MODE_MASK;
pmgt |= PWR_MGT_MODE_PCI | PWR_MGT_ON | PWR_MGT_AUTO_PWR_UP_EN;
aty_st_pll(POWER_MANAGEMENT, pmgt);
/* Switch PCI power management to D2 */
pci_write_config_word(info->pdev, 0x60, 2);
//mdelay(10);
} else {
/* Switch back PCI power management to D0 */
mdelay(100);
pci_write_config_word(info->pdev, 0x60, 0);
mdelay(100);
//aty128_set_backlight_enable(1,10,info);
}
}
/*
* Save the contents of the frame buffer when we go to sleep,
* and restore it when we wake up again.
*/
int
aty128_sleep_notify(struct pmu_sleep_notifier *self, int when)
{
struct fb_info_aty128 *info;
int result;
result = PBOOK_SLEEP_OK;
for (info = board_list; info != NULL; info = info->next) {
struct fb_fix_screeninfo fix;
int nb;
aty128fb_get_fix(&fix, fg_console, (struct fb_info *)info);
nb = fb_display[fg_console].var.yres * fix.line_length;
switch (when) {
case PBOOK_SLEEP_REQUEST:
if (!info->pdev)
return PBOOK_SLEEP_REFUSE;
if (info->chip_gen != rage_M3)
return PBOOK_SLEEP_REFUSE;
info->save_framebuffer = vmalloc(nb);
if (info->save_framebuffer == NULL)
return PBOOK_SLEEP_REFUSE;
break;
case PBOOK_SLEEP_REJECT:
if (info->save_framebuffer) {
vfree(info->save_framebuffer);
info->save_framebuffer = 0;
}
break;
case PBOOK_SLEEP_NOW:
wait_for_idle(info);
aty128_reset_engine(info);
wait_for_idle(info);
/* Backup fb content */
if (info->save_framebuffer)
memcpy_fromio(info->save_framebuffer,
(void *)info->frame_buffer, nb);
/* Blank display and LCD */
aty128fbcon_blank(VESA_POWERDOWN+1, (struct fb_info *)info);
/* Sleep the chip */
aty128_set_suspend(info, 1);
break;
case PBOOK_WAKE:
/* Wake the chip */
aty128_set_suspend(info, 0);
/* Test */
aty128fbcon_blank(0, (struct fb_info *)info);
aty128_reset_engine(info);
wait_for_idle(info);
/* Restore fb content */
if (info->save_framebuffer) {
memcpy_toio((void *)info->frame_buffer,
info->save_framebuffer, nb);
vfree(info->save_framebuffer);
info->save_framebuffer = 0;
}
/* Restore display */
aty128_set_par(&info->current_par, info);
aty128fbcon_blank(0, (struct fb_info *)info);
break;
}
}
return result;
}
#endif /* CONFIG_PMAC_PBOOK */
/*
* Text mode accelerated functions
*/
static void
fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy, int dx,
int height, int width)
{
sx *= fontwidth(p);
sy *= fontheight(p);
dx *= fontwidth(p);
dy *= fontheight(p);
width *= fontwidth(p);
height *= fontheight(p);
aty128_rectcopy(sx, sy, dx, dy, width, height,
(struct fb_info_aty128 *)p->fb_info);
}
#ifdef FBCON_HAS_CFB8
static void fbcon_aty8_putc(struct vc_data *conp, struct display *p,
int c, int yy, int xx)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb8_putc(conp, p, c, yy, xx);
}
static void fbcon_aty8_putcs(struct vc_data *conp, struct display *p,
const unsigned short *s, int count,
int yy, int xx)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb8_putcs(conp, p, s, count, yy, xx);
}
static void fbcon_aty8_clear_margins(struct vc_data *conp,
struct display *p, int bottom_only)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb8_clear_margins(conp, p, bottom_only);
}
static struct display_switch fbcon_aty128_8 = {
fbcon_cfb8_setup, fbcon_aty128_bmove, fbcon_cfb8_clear,
fbcon_aty8_putc, fbcon_aty8_putcs, fbcon_cfb8_revc, NULL, NULL,
fbcon_aty8_clear_margins,
FONTWIDTH(4)|FONTWIDTH(8)|FONTWIDTH(12)|FONTWIDTH(16)
};
#endif
#ifdef FBCON_HAS_CFB16
static void fbcon_aty16_putc(struct vc_data *conp, struct display *p,
int c, int yy, int xx)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb16_putc(conp, p, c, yy, xx);
}
static void fbcon_aty16_putcs(struct vc_data *conp, struct display *p,
const unsigned short *s, int count,
int yy, int xx)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb16_putcs(conp, p, s, count, yy, xx);
}
static void fbcon_aty16_clear_margins(struct vc_data *conp,
struct display *p, int bottom_only)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb16_clear_margins(conp, p, bottom_only);
}
static struct display_switch fbcon_aty128_16 = {
fbcon_cfb16_setup, fbcon_aty128_bmove, fbcon_cfb16_clear,
fbcon_aty16_putc, fbcon_aty16_putcs, fbcon_cfb16_revc, NULL, NULL,
fbcon_aty16_clear_margins,
FONTWIDTH(4)|FONTWIDTH(8)|FONTWIDTH(12)|FONTWIDTH(16)
};
#endif
#ifdef FBCON_HAS_CFB24
static void fbcon_aty24_putc(struct vc_data *conp, struct display *p,
int c, int yy, int xx)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb24_putc(conp, p, c, yy, xx);
}
static void fbcon_aty24_putcs(struct vc_data *conp, struct display *p,
const unsigned short *s, int count,
int yy, int xx)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb24_putcs(conp, p, s, count, yy, xx);
}
static void fbcon_aty24_clear_margins(struct vc_data *conp,
struct display *p, int bottom_only)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb24_clear_margins(conp, p, bottom_only);
}
static struct display_switch fbcon_aty128_24 = {
fbcon_cfb24_setup, fbcon_aty128_bmove, fbcon_cfb24_clear,
fbcon_aty24_putc, fbcon_aty24_putcs, fbcon_cfb24_revc, NULL, NULL,
fbcon_aty24_clear_margins,
FONTWIDTH(4)|FONTWIDTH(8)|FONTWIDTH(12)|FONTWIDTH(16)
};
#endif
#ifdef FBCON_HAS_CFB32
static void fbcon_aty32_putc(struct vc_data *conp, struct display *p,
int c, int yy, int xx)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb32_putc(conp, p, c, yy, xx);
}
static void fbcon_aty32_putcs(struct vc_data *conp, struct display *p,
const unsigned short *s, int count,
int yy, int xx)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb32_putcs(conp, p, s, count, yy, xx);
}
static void fbcon_aty32_clear_margins(struct vc_data *conp,
struct display *p, int bottom_only)
{
struct fb_info_aty128 *fb = (struct fb_info_aty128 *)(p->fb_info);
if (fb->blitter_may_be_busy)
wait_for_idle(fb);
fbcon_cfb32_clear_margins(conp, p, bottom_only);
}
static struct display_switch fbcon_aty128_32 = {
fbcon_cfb32_setup, fbcon_aty128_bmove, fbcon_cfb32_clear,
fbcon_aty32_putc, fbcon_aty32_putcs, fbcon_cfb32_revc, NULL, NULL,
fbcon_aty32_clear_margins,
FONTWIDTH(4)|FONTWIDTH(8)|FONTWIDTH(12)|FONTWIDTH(16)
};
#endif
#ifdef MODULE
MODULE_AUTHOR("(c)1999-2000 Brad Douglas <brad@neruo.com>");
MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
int
init_module(void)
{
aty128fb_init();
return 0;
}
void
cleanup_module(void)
{
struct fb_info_aty128 *info = board_list;
while (board_list) {
info = board_list;
board_list = board_list->next;
unregister_framebuffer(&info->fb_info);
#ifdef CONFIG_MTRR
if (info->mtrr.vram_valid)
mtrr_del(info->mtrr.vram, info->frame_buffer_phys,
info->vram_size);
#endif /* CONFIG_MTRR */
iounmap (info->regbase);
iounmap (&info->frame_buffer);
kfree (info);
}
}
#endif /* MODULE */