Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 | /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */ /* Written 1998-2000 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Drivers based on or derived from this code fall under the GPL and must retain the authorship, copyright and license notice. This file is not a complete program and may only be used when the entire operating system is licensed under the GPL. This driver is designed for the VIA VT86c100A Rhine-II PCI Fast Ethernet controller. It also works with the older 3043 Rhine-I chip. The author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 410 Severn Ave., Suite 210 Annapolis MD 21403 Support and updates available at http://www.scyld.com/network/via-rhine.html Linux kernel version history: LK1.0.0: - Urban Widmark: merges from Beckers 1.08b version and 2.4.0 (VT6102) */ /* These identify the driver base version and may not be removed. */ static const char version1[] = "via-rhine.c:v1.08b-LK1.0.0 12/14/2000 Written by Donald Becker\n"; static const char version2[] = " http://www.scyld.com/network/via-rhine.html\n"; /* The user-configurable values. These may be modified when a driver module is loaded.*/ static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ static int max_interrupt_work = 20; static int min_pci_latency = 32; /* Set the copy breakpoint for the copy-only-tiny-frames scheme. Setting to > 1518 effectively disables this feature. */ static int rx_copybreak = 0; /* Used to pass the media type, etc. Both 'options[]' and 'full_duplex[]' should exist for driver interoperability. The media type is usually passed in 'options[]'. */ #define MAX_UNITS 8 /* More are supported, limit only on options */ static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). The Rhine has a 64 element 8390-like hash table. */ static const int multicast_filter_limit = 32; /* Operational parameters that are set at compile time. */ /* Keep the ring sizes a power of two for compile efficiency. The compiler will convert <unsigned>'%'<2^N> into a bit mask. Making the Tx ring too large decreases the effectiveness of channel bonding and packet priority. There are no ill effects from too-large receive rings. */ #define TX_RING_SIZE 16 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */ #define RX_RING_SIZE 16 /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (2*HZ) #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ #if !defined(__OPTIMIZE__) #warning You must compile this file with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif #include <linux/version.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/malloc.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/init.h> #include <asm/processor.h> /* Processor type for cache alignment. */ #include <asm/bitops.h> #include <asm/io.h> /* Condensed bus+endian portability operations. */ #define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr)) #define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr)) /* This driver was written to use PCI memory space, however most versions of the Rhine only work correctly with I/O space accesses. */ #if defined(VIA_USE_MEMORY) #warning Many adapters using the VIA Rhine chip are not configured to work #warning with PCI memory space accesses. #else #define USE_IO_OPS #undef readb #undef readw #undef readl #undef writeb #undef writew #undef writel #define readb inb #define readw inw #define readl inl #define writeb outb #define writew outw #define writel outl #endif MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM(min_pci_latency, "i"); MODULE_PARM(debug, "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); #define NETSTATS_VER2 /* Theory of Operation I. Board Compatibility This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet controller. II. Board-specific settings Boards with this chip are functional only in a bus-master PCI slot. Many operational settings are loaded from the EEPROM to the Config word at offset 0x78. This driver assumes that they are correct. If this driver is compiled to use PCI memory space operations the EEPROM must be configured to enable memory ops. III. Driver operation IIIa. Ring buffers This driver uses two statically allocated fixed-size descriptor lists formed into rings by a branch from the final descriptor to the beginning of the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. IIIb/c. Transmit/Receive Structure This driver attempts to use a zero-copy receive and transmit scheme. Alas, all data buffers are required to start on a 32 bit boundary, so the driver must often copy transmit packets into bounce buffers. The driver allocates full frame size skbuffs for the Rx ring buffers at open() time and passes the skb->data field to the chip as receive data buffers. When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is copied to the new skbuff. When the incoming frame is larger, the skbuff is passed directly up the protocol stack. Buffers consumed this way are replaced by newly allocated skbuffs in the last phase of netdev_rx(). The RX_COPYBREAK value is chosen to trade-off the memory wasted by using a full-sized skbuff for small frames vs. the copying costs of larger frames. New boards are typically used in generously configured machines and the underfilled buffers have negligible impact compared to the benefit of a single allocation size, so the default value of zero results in never copying packets. When copying is done, the cost is usually mitigated by using a combined copy/checksum routine. Copying also preloads the cache, which is most useful with small frames. Since the VIA chips are only able to transfer data to buffers on 32 bit boundaries, the the IP header at offset 14 in an ethernet frame isn't longword aligned for further processing. Copying these unaligned buffers has the beneficial effect of 16-byte aligning the IP header. IIId. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and interrupt handling software. The send packet thread has partial control over the Tx ring and 'dev->tbusy' flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next queue slot is empty, it clears the tbusy flag when finished otherwise it sets the 'lp->tx_full' flag. The interrupt handler has exclusive control over the Rx ring and records stats from the Tx ring. After reaping the stats, it marks the Tx queue entry as empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it clears both the tx_full and tbusy flags. IV. Notes IVb. References Preliminary VT86C100A manual from http://www.via.com.tw/ http://www.scyld.com/expert/100mbps.html http://www.scyld.com/expert/NWay.html IVc. Errata The VT86C100A manual is not reliable information. The 3043 chip does not handle unaligned transmit or receive buffers, resulting in significant performance degradation for bounce buffer copies on transmit and unaligned IP headers on receive. The chip does not pad to minimum transmit length. */ /* This table drives the PCI probe routines. It's mostly boilerplate in all of the drivers, and will likely be provided by some future kernel. Note the matching code -- the first table entry matchs all 56** cards but second only the 1234 card. */ enum pci_flags_bit { PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4, PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3, }; #if defined(VIA_USE_MEMORY) #define RHINE_IOTYPE (PCI_USES_MEM | PCI_USES_MASTER | PCI_ADDR0) #define RHINEII_IOSIZE 4096 #else #define RHINE_IOTYPE (PCI_USES_IO | PCI_USES_MASTER | PCI_ADDR1) #define RHINEII_IOSIZE 256 #endif struct pci_id_info { const char *name; u16 vendor_id, device_id, device_id_mask, flags; int io_size; struct device *(*probe1)(int pci_bus, int pci_devfn, struct device *dev, long ioaddr, int irq, int chip_idx, int fnd_cnt); }; static struct device *via_probe1(int pci_bus, int pci_devfn, struct device *dev, long ioaddr, int irq, int chp_idx, int fnd_cnt); static struct pci_id_info pci_tbl[] __initdata = { { "VIA VT86C100A Rhine-II", 0x1106, 0x6100, 0xffff, RHINE_IOTYPE, 128, via_probe1}, { "VIA VT6102 Rhine-II", 0x1106, 0x3065, 0xffff, RHINE_IOTYPE, RHINEII_IOSIZE, via_probe1}, { "VIA VT3043 Rhine", 0x1106, 0x3043, 0xffff, RHINE_IOTYPE, 128, via_probe1}, {0,}, /* 0 terminated list. */ }; /* A chip capabilities table, matching the entries in pci_tbl[] above. */ enum chip_capability_flags { CanHaveMII=1, HasESIPhy=2, HasDavicomPhy=4, ReqTxAlign=0x10, HasWOL=0x20, }; struct chip_info { int io_size; int flags; } static cap_tbl[] __initdata = { {128, CanHaveMII | ReqTxAlign, }, {128, CanHaveMII | HasWOL, }, {128, CanHaveMII | ReqTxAlign, }, }; /* Offsets to the device registers. */ enum register_offsets { StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, IntrStatus=0x0C, IntrEnable=0x0E, MulticastFilter0=0x10, MulticastFilter1=0x14, RxRingPtr=0x18, TxRingPtr=0x1C, MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, Config=0x78, ConfigA=0x7A, RxMissed=0x7C, RxCRCErrs=0x7E, StickyHW=0x83, WOLcrClr=0xA4, WOLcgClr=0xA7, PwrcsrClr=0xAC, }; /* Bits in the interrupt status/mask registers. */ enum intr_status_bits { IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020, IntrTxDone=0x0002, IntrTxAbort=0x0008, IntrTxUnderrun=0x0010, IntrPCIErr=0x0040, IntrStatsMax=0x0080, IntrRxEarly=0x0100, IntrMIIChange=0x0200, IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000, IntrTxAborted=0x2000, IntrLinkChange=0x4000, IntrRxWakeUp=0x8000, IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260, }; /* The Rx and Tx buffer descriptors. */ struct rx_desc { s32 rx_status; u32 desc_length; u32 addr; u32 next_desc; }; struct tx_desc { s32 tx_status; u32 desc_length; u32 addr; u32 next_desc; }; /* Bits in *_desc.status */ enum rx_status_bits { RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F }; enum desc_status_bits { DescOwn=0x80000000, DescEndPacket=0x4000, DescIntr=0x1000, }; /* Bits in ChipCmd. */ enum chip_cmd_bits { CmdInit=0x0001, CmdStart=0x0002, CmdStop=0x0004, CmdRxOn=0x0008, CmdTxOn=0x0010, CmdTxDemand=0x0020, CmdRxDemand=0x0040, CmdEarlyRx=0x0100, CmdEarlyTx=0x0200, CmdFDuplex=0x0400, CmdNoTxPoll=0x0800, CmdReset=0x8000, }; #define PRIV_ALIGN 15 /* Required alignment mask */ struct netdev_private { /* Descriptor rings first for alignment. */ struct rx_desc rx_ring[RX_RING_SIZE]; struct tx_desc tx_ring[TX_RING_SIZE]; /* The addresses of receive-in-place skbuffs. */ struct sk_buff* rx_skbuff[RX_RING_SIZE]; /* The saved address of a sent-in-place packet/buffer, for later free(). */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; unsigned char *tx_buf[TX_RING_SIZE]; /* Tx bounce buffers */ unsigned char *tx_bufs; /* Tx bounce buffer region. */ struct device *next_module; /* Link for devices of this type. */ void *priv_addr; /* Unaligned address for kfree */ struct net_device_stats stats; struct timer_list timer; /* Media monitoring timer. */ unsigned char pci_bus, pci_devfn; /* Frequently used values: keep some adjacent for cache effect. */ int chip_id, drv_flags; struct rx_desc *rx_head_desc; unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ unsigned int cur_tx, dirty_tx; unsigned int rx_buf_sz; /* Based on MTU+slack. */ u16 chip_cmd; /* Current setting for ChipCmd */ unsigned int tx_full:1; /* The Tx queue is full. */ /* These values are keep track of the transceiver/media in use. */ unsigned int full_duplex:1; /* Full-duplex operation requested. */ unsigned int duplex_lock:1; unsigned int medialock:1; /* Do not sense media. */ unsigned int default_port:4; /* Last dev->if_port value. */ u8 tx_thresh, rx_thresh; /* MII transceiver section. */ int mii_cnt; /* MII device addresses. */ u16 advertising; /* NWay media advertisement */ unsigned char phys[2]; /* MII device addresses. */ }; static int mdio_read(struct device *dev, int phy_id, int location); static void mdio_write(struct device *dev, int phy_id, int location, int value); static int netdev_open(struct device *dev); static void check_duplex(struct device *dev); static void netdev_timer(unsigned long data); static void tx_timeout(struct device *dev); static void init_ring(struct device *dev); static int start_tx(struct sk_buff *skb, struct device *dev); static void intr_handler(int irq, void *dev_instance, struct pt_regs *regs); static int netdev_rx(struct device *dev); static void netdev_error(struct device *dev, int intr_status); static void set_rx_mode(struct device *dev); static struct net_device_stats *get_stats(struct device *dev); static int mii_ioctl(struct device *dev, struct ifreq *rq, int cmd); static int netdev_close(struct device *dev); static inline void clear_tally_counters(long ioaddr); /* A list of our installed devices, for removing the driver module. */ static struct device *root_net_dev = NULL; /* Ideally we would detect all network cards in slot order. That would be best done a central PCI probe dispatch, which wouldn't work well when dynamically adding drivers. So instead we detect just the cards we know about in slot order. */ static int __init pci_etherdev_probe(struct device *dev, struct pci_id_info pci_tbl[]) { int cards_found = 0; int pci_index = 0; unsigned char pci_bus, pci_device_fn; if ( ! pcibios_present()) return -ENODEV; for (;pci_index < 0xff; pci_index++) { u16 vendor, device, pci_command, new_command; int chip_idx, irq; long pciaddr; long ioaddr; if (pcibios_find_class (PCI_CLASS_NETWORK_ETHERNET << 8, pci_index, &pci_bus, &pci_device_fn) != PCIBIOS_SUCCESSFUL) break; pcibios_read_config_word(pci_bus, pci_device_fn, PCI_VENDOR_ID, &vendor); pcibios_read_config_word(pci_bus, pci_device_fn, PCI_DEVICE_ID, &device); for (chip_idx = 0; pci_tbl[chip_idx].vendor_id; chip_idx++) if (vendor == pci_tbl[chip_idx].vendor_id && (device & pci_tbl[chip_idx].device_id_mask) == pci_tbl[chip_idx].device_id) break; if (pci_tbl[chip_idx].vendor_id == 0) /* Compiled out! */ continue; { struct pci_dev *pdev = pci_find_slot(pci_bus, pci_device_fn); #ifdef USE_IO_OPS pciaddr = pdev->base_address[0]; #else pciaddr = pdev->base_address[1]; #endif irq = pdev->irq; } if (debug > 2) printk(KERN_INFO "Found %s at PCI address %#lx, IRQ %d.\n", pci_tbl[chip_idx].name, pciaddr, irq); if (pci_tbl[chip_idx].flags & PCI_USES_IO) { ioaddr = pciaddr & ~3; if (check_region(ioaddr, pci_tbl[chip_idx].io_size)) continue; } else if ((ioaddr = (long)ioremap(pciaddr & ~0xf, pci_tbl[chip_idx].io_size)) == 0) { printk(KERN_INFO "Failed to map PCI address %#lx.\n", pciaddr); continue; } pcibios_read_config_word(pci_bus, pci_device_fn, PCI_COMMAND, &pci_command); new_command = pci_command | (pci_tbl[chip_idx].flags & 7); if (pci_command != new_command) { printk(KERN_INFO " The PCI BIOS has not enabled the" " device at %d/%d! Updating PCI command %4.4x->%4.4x.\n", pci_bus, pci_device_fn, pci_command, new_command); pcibios_write_config_word(pci_bus, pci_device_fn, PCI_COMMAND, new_command); } dev = pci_tbl[chip_idx].probe1(pci_bus, pci_device_fn, dev, ioaddr, irq, chip_idx, cards_found); if (dev && (pci_tbl[chip_idx].flags & PCI_COMMAND_MASTER)) { u8 pci_latency; pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency < min_pci_latency) { printk(KERN_INFO " PCI latency timer (CFLT) is " "unreasonably low at %d. Setting to %d clocks.\n", pci_latency, min_pci_latency); pcibios_write_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, min_pci_latency); } } dev = 0; cards_found++; } return cards_found ? 0 : -ENODEV; } #ifndef MODULE int __init via_rhine_probe(struct device *dev) { static int did_version = 0; if (!did_version++) printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2); return pci_etherdev_probe(dev, pci_tbl); } #endif static struct device * __init via_probe1(int pci_bus, int pci_devfn, struct device *dev, long ioaddr, int irq, int chip_id, int card_idx) { struct netdev_private *np; void *priv_mem; int i, option = card_idx < MAX_UNITS ? options[card_idx] : 0; dev = init_etherdev(dev, 0); printk(KERN_INFO "%s: %s at 0x%lx, ", dev->name, pci_tbl[chip_id].name, ioaddr); /* We would prefer to read the EEPROM but access may be locked. */ for (i = 0; i < 6; i++) dev->dev_addr[i] = readb(ioaddr + StationAddr + i); for (i = 0; i < 5; i++) printk("%2.2x:", dev->dev_addr[i]); printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq); /* Allocate driver private memory for descriptor lists. Check for the very unlikely case of no memory. */ priv_mem = kmalloc(sizeof(*np) + PRIV_ALIGN, GFP_KERNEL); if (priv_mem == NULL) return NULL; #ifdef USE_IO_OPS request_region(ioaddr, pci_tbl[chip_id].io_size, dev->name); #endif /* Reset the chip to erase previous misconfiguration. */ writew(CmdReset, ioaddr + ChipCmd); dev->base_addr = ioaddr; dev->irq = irq; /* Make certain the descriptor lists are cache-aligned. */ dev->priv = np = (void *)(((long)priv_mem + PRIV_ALIGN) & ~PRIV_ALIGN); memset(np, 0, sizeof(*np)); np->priv_addr = priv_mem; np->next_module = root_net_dev; root_net_dev = dev; np->pci_bus = pci_bus; np->pci_devfn = pci_devfn; np->chip_id = chip_id; np->drv_flags = cap_tbl[chip_id].flags; if (dev->mem_start) option = dev->mem_start; /* The lower four bits are the media type. */ if (option > 0) { if (option & 0x200) np->full_duplex = 1; np->default_port = option & 15; if (np->default_port) np->medialock = 1; } if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) np->full_duplex = 1; if (np->full_duplex) np->duplex_lock = 1; /* The chip-specific entries in the device structure. */ dev->open = &netdev_open; dev->hard_start_xmit = &start_tx; dev->stop = &netdev_close; dev->get_stats = &get_stats; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &mii_ioctl; if (np->drv_flags & CanHaveMII) { int phy, phy_idx = 0; np->phys[0] = 1; /* Standard for this chip. */ for (phy = 1; phy < 32 && phy_idx < 4; phy++) { int mii_status = mdio_read(dev, phy, 1); if (mii_status != 0xffff && mii_status != 0x0000) { np->phys[phy_idx++] = phy; np->advertising = mdio_read(dev, phy, 4); printk(KERN_INFO "%s: MII PHY found at address %d, status " "0x%4.4x advertising %4.4x Link %4.4x.\n", dev->name, phy, mii_status, np->advertising, mdio_read(dev, phy, 5)); } } np->mii_cnt = phy_idx; } return dev; } /* Read and write over the MII Management Data I/O (MDIO) interface. */ static int mdio_read(struct device *dev, int phy_id, int regnum) { long ioaddr = dev->base_addr; int boguscnt = 1024; /* Wait for a previous command to complete. */ while ((readb(ioaddr + MIICmd) & 0x60) && --boguscnt > 0) ; writeb(0x00, ioaddr + MIICmd); writeb(phy_id, ioaddr + MIIPhyAddr); writeb(regnum, ioaddr + MIIRegAddr); writeb(0x40, ioaddr + MIICmd); /* Trigger read */ boguscnt = 1024; while ((readb(ioaddr + MIICmd) & 0x40) && --boguscnt > 0) ; return readw(ioaddr + MIIData); } static void mdio_write(struct device *dev, int phy_id, int regnum, int value) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int boguscnt = 1024; if (phy_id == np->phys[0]) { switch (regnum) { case 0: /* Is user forcing speed/duplex? */ if (value & 0x9000) /* Autonegotiation. */ np->duplex_lock = 0; else np->full_duplex = (value & 0x0100) ? 1 : 0; break; case 4: np->advertising = value; break; } } /* Wait for a previous command to complete. */ while ((readb(ioaddr + MIICmd) & 0x60) && --boguscnt > 0) ; writeb(0x00, ioaddr + MIICmd); writeb(phy_id, ioaddr + MIIPhyAddr); writeb(regnum, ioaddr + MIIRegAddr); writew(value, ioaddr + MIIData); writeb(0x20, ioaddr + MIICmd); /* Trigger write. */ return; } static int netdev_open(struct device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int i; /* Reset the chip. */ writew(CmdReset, ioaddr + ChipCmd); MOD_INC_USE_COUNT; if (request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev)) { MOD_DEC_USE_COUNT; return -EAGAIN; } if (debug > 1) printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", dev->name, dev->irq); init_ring(dev); writel(virt_to_bus(np->rx_ring), ioaddr + RxRingPtr); writel(virt_to_bus(np->tx_ring), ioaddr + TxRingPtr); for (i = 0; i < 6; i++) writeb(dev->dev_addr[i], ioaddr + StationAddr + i); /* Initialize other registers. */ writew(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */ /* Configure the FIFO thresholds. */ writeb(0x20, ioaddr + TxConfig); /* Initial threshold 32 bytes */ np->tx_thresh = 0x20; np->rx_thresh = 0x60; /* Written in set_rx_mode(). */ if (dev->if_port == 0) dev->if_port = np->default_port; dev->tbusy = 0; dev->interrupt = 0; set_rx_mode(dev); dev->start = 1; /* Enable interrupts by setting the interrupt mask. */ writew(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow| IntrRxDropped| IntrTxDone | IntrTxAbort | IntrTxUnderrun | IntrPCIErr | IntrStatsMax | IntrLinkChange | IntrMIIChange, ioaddr + IntrEnable); np->chip_cmd = CmdStart|CmdTxOn|CmdRxOn|CmdNoTxPoll; if (np->duplex_lock) np->chip_cmd |= CmdFDuplex; writew(np->chip_cmd, ioaddr + ChipCmd); check_duplex(dev); /* The LED outputs of various MII xcvrs should be configured. */ /* For NS or Mison phys, turn on bit 1 in register 0x17 */ /* For ESI phys, turn on bit 7 in register 0x17. */ mdio_write(dev, np->phys[0], 0x17, mdio_read(dev, np->phys[0], 0x17) | (np->drv_flags & HasESIPhy) ? 0x0080 : 0x0001); if (debug > 2) printk(KERN_DEBUG "%s: Done netdev_open(), status %4.4x " "MII status: %4.4x.\n", dev->name, readw(ioaddr + ChipCmd), mdio_read(dev, np->phys[0], 1)); /* Set the timer to check for link beat. */ init_timer(&np->timer); np->timer.expires = jiffies + 2; np->timer.data = (unsigned long)dev; np->timer.function = &netdev_timer; /* timer handler */ add_timer(&np->timer); return 0; } static void check_duplex(struct device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int mii_reg5 = mdio_read(dev, np->phys[0], 5); int negotiated = mii_reg5 & np->advertising; int duplex; if (np->duplex_lock || mii_reg5 == 0xffff) return; duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; if (np->full_duplex != duplex) { np->full_duplex = duplex; if (debug) printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link" " partner capability of %4.4x.\n", dev->name, duplex ? "full" : "half", np->phys[0], mii_reg5); if (duplex) np->chip_cmd |= CmdFDuplex; else np->chip_cmd &= ~CmdFDuplex; writew(np->chip_cmd, ioaddr + ChipCmd); } } static void netdev_timer(unsigned long data) { struct device *dev = (struct device *)data; struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int next_tick = 10*HZ; if (debug > 3) { printk(KERN_DEBUG "%s: VIA Rhine monitor tick, status %4.4x.\n", dev->name, readw(ioaddr + IntrStatus)); } if (test_bit(0, (void*)&dev->tbusy) != 0 && np->cur_tx - np->dirty_tx > 1 && jiffies - dev->trans_start > TX_TIMEOUT) tx_timeout(dev); check_duplex(dev); np->timer.expires = jiffies + next_tick; add_timer(&np->timer); } static void tx_timeout(struct device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status " "%4.4x, resetting...\n", dev->name, readw(ioaddr + IntrStatus), mdio_read(dev, np->phys[0], 1)); /* Perhaps we should reinitialize the hardware here. */ dev->if_port = 0; /* Stop and restart the chip's Tx processes . */ /* Trigger an immediate transmit demand. */ dev->trans_start = jiffies; np->stats.tx_errors++; return; } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void init_ring(struct device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; int i; np->tx_full = 0; np->cur_rx = np->cur_tx = 0; np->dirty_rx = np->dirty_tx = 0; np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); np->rx_head_desc = &np->rx_ring[0]; for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].rx_status = 0; np->rx_ring[i].desc_length = cpu_to_le32(np->rx_buf_sz); np->rx_ring[i].next_desc = virt_to_le32desc(&np->rx_ring[i+1]); np->rx_skbuff[i] = 0; } /* Mark the last entry as wrapping the ring. */ np->rx_ring[i-1].next_desc = virt_to_le32desc(&np->rx_ring[0]); /* Fill in the Rx buffers. Handle allocation failure gracefully. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz); np->rx_skbuff[i] = skb; if (skb == NULL) break; skb->dev = dev; /* Mark as being used by this device. */ np->rx_ring[i].addr = virt_to_le32desc(skb->tail); np->rx_ring[i].rx_status = cpu_to_le32(DescOwn); } np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); for (i = 0; i < TX_RING_SIZE; i++) { np->tx_skbuff[i] = 0; np->tx_ring[i].tx_status = 0; np->tx_ring[i].desc_length = cpu_to_le32(0x00e08000); np->tx_ring[i].next_desc = virt_to_le32desc(&np->tx_ring[i+1]); np->tx_buf[i] = kmalloc(PKT_BUF_SZ, GFP_KERNEL); } np->tx_ring[i-1].next_desc = virt_to_le32desc(&np->tx_ring[0]); return; } static int start_tx(struct sk_buff *skb, struct device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; unsigned entry; /* Block a timer-based transmit from overlapping. This could better be done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */ if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) { /* This watchdog code is redundant with the media monitor timer. */ if (jiffies - dev->trans_start > TX_TIMEOUT) tx_timeout(dev); return 1; } /* Explicitly flush packet data cache lines here. */ /* Caution: the write order is important here, set the descriptor word with the "ownership" bit last. No SMP locking is needed if the cur_tx is incremented after the descriptor is consistent. */ /* Calculate the next Tx descriptor entry. */ entry = np->cur_tx % TX_RING_SIZE; np->tx_skbuff[entry] = skb; if ((np->drv_flags & ReqTxAlign) && ((long)skb->data & 3)) { /* Must use alignment buffer. */ if (np->tx_buf[entry] == NULL && (np->tx_buf[entry] = kmalloc(PKT_BUF_SZ, GFP_KERNEL)) == NULL) return 1; memcpy(np->tx_buf[entry], skb->data, skb->len); np->tx_ring[entry].addr = virt_to_le32desc(np->tx_buf[entry]); } else np->tx_ring[entry].addr = virt_to_le32desc(skb->data); np->tx_ring[entry].desc_length = cpu_to_le32(0x00E08000 | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN)); np->tx_ring[entry].tx_status = cpu_to_le32(DescOwn); np->cur_tx++; /* Explicitly flush descriptor cache lines here. */ /* Wake the potentially-idle transmit channel. */ writew(CmdTxDemand | np->chip_cmd, dev->base_addr + ChipCmd); if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1) clear_bit(0, (void*)&dev->tbusy); /* Typical path */ else np->tx_full = 1; dev->trans_start = jiffies; if (debug > 4) { printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n", dev->name, np->cur_tx, entry); } return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void intr_handler(int irq, void *dev_instance, struct pt_regs *rgs) { struct device *dev = (struct device *)dev_instance; struct netdev_private *np = (void *)dev->priv; long ioaddr = dev->base_addr; int boguscnt = max_interrupt_work; do { u32 intr_status = readw(ioaddr + IntrStatus); /* Acknowledge all of the current interrupt sources ASAP. */ writew(intr_status & 0xffff, ioaddr + IntrStatus); if (debug > 4) printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name, intr_status); if (intr_status == 0) break; if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped | IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) netdev_rx(dev); for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { int entry = np->dirty_tx % TX_RING_SIZE; int txstatus = le32_to_cpu(np->tx_ring[entry].tx_status); if (txstatus & DescOwn) break; if (debug > 6) printk(KERN_DEBUG " Tx scavenge %d status %4.4x.\n", entry, txstatus); if (txstatus & 0x8000) { if (debug > 1) printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n", dev->name, txstatus); np->stats.tx_errors++; if (txstatus & 0x0400) np->stats.tx_carrier_errors++; if (txstatus & 0x0200) np->stats.tx_window_errors++; if (txstatus & 0x0100) np->stats.tx_aborted_errors++; if (txstatus & 0x0080) np->stats.tx_heartbeat_errors++; if (txstatus & 0x0002) np->stats.tx_fifo_errors++; #ifdef ETHER_STATS if (txstatus & 0x0100) np->stats.collisions16++; #endif /* Transmitter restarted in 'abnormal' handler. */ } else { #ifdef ETHER_STATS if (txstatus & 0x0001) np->stats.tx_deferred++; #endif np->stats.collisions += (txstatus >> 3) & 15; #if defined(NETSTATS_VER2) np->stats.tx_bytes += np->tx_skbuff[entry]->len; #endif np->stats.tx_packets++; } /* Free the original skb. */ dev_kfree_skb(np->tx_skbuff[entry]); np->tx_skbuff[entry] = 0; } if (np->tx_full && dev->tbusy && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { /* The ring is no longer full, clear tbusy. */ np->tx_full = 0; clear_bit(0, (void*)&dev->tbusy); mark_bh(NET_BH); } /* Abnormal error summary/uncommon events handlers. */ if (intr_status & (IntrPCIErr | IntrLinkChange | IntrMIIChange | IntrStatsMax | IntrTxAbort | IntrTxUnderrun)) netdev_error(dev, intr_status); if (--boguscnt < 0) { printk(KERN_WARNING "%s: Too much work at interrupt, " "status=0x%4.4x.\n", dev->name, intr_status); break; } } while (1); if (debug > 3) printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", dev->name, readw(ioaddr + IntrStatus)); return; } /* This routine is logically part of the interrupt handler, but isolated for clarity and better register allocation. */ static int netdev_rx(struct device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; int entry = np->cur_rx % RX_RING_SIZE; int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx; if (debug > 4) { printk(KERN_DEBUG " In netdev_rx(), entry %d status %8.8x.\n", entry, np->rx_head_desc->rx_status); } /* If EOP is set on the next entry, it's a new packet. Send it up. */ while ( ! (np->rx_head_desc->rx_status & cpu_to_le32(DescOwn))) { struct rx_desc *desc = np->rx_head_desc; u32 desc_status = le32_to_cpu(desc->rx_status); int data_size = desc_status >> 16; if (debug > 4) printk(KERN_DEBUG " netdev_rx() status is %4.4x.\n", desc_status); if (--boguscnt < 0) break; if ( (desc_status & (RxWholePkt | RxErr)) != RxWholePkt) { if ((desc_status & RxWholePkt) != RxWholePkt) { printk(KERN_WARNING "%s: Oversized Ethernet frame spanned " "multiple buffers, entry %#x length %d status %4.4x!\n", dev->name, np->cur_rx, data_size, desc_status); printk(KERN_WARNING "%s: Oversized Ethernet frame %p vs %p.\n", dev->name, np->rx_head_desc, &np->rx_ring[np->cur_rx % RX_RING_SIZE]); np->stats.rx_length_errors++; } else if (desc_status & RxErr) { /* There was a error. */ if (debug > 2) printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n", desc_status); np->stats.rx_errors++; if (desc_status & 0x0030) np->stats.rx_length_errors++; if (desc_status & 0x0048) np->stats.rx_fifo_errors++; if (desc_status & 0x0004) np->stats.rx_frame_errors++; if (desc_status & 0x0002) np->stats.rx_crc_errors++; } } else { struct sk_buff *skb; /* Length should omit the CRC */ int pkt_len = data_size - 4; /* Check if the packet is long enough to accept without copying to a minimally-sized skbuff. */ if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align the IP header */ #if HAS_IP_COPYSUM /* Call copy + cksum if available. */ eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0); skb_put(skb, pkt_len); #else memcpy(skb_put(skb, pkt_len), np->rx_skbuff[entry]->tail, pkt_len); #endif } else { skb_put(skb = np->rx_skbuff[entry], pkt_len); np->rx_skbuff[entry] = NULL; } skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; #if defined(NETSTATS_VER2) np->stats.rx_bytes += skb->len; #endif np->stats.rx_packets++; } entry = (++np->cur_rx) % RX_RING_SIZE; np->rx_head_desc = &np->rx_ring[entry]; } /* Refill the Rx ring buffers. */ for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { struct sk_buff *skb; entry = np->dirty_rx % RX_RING_SIZE; if (np->rx_skbuff[entry] == NULL) { skb = dev_alloc_skb(np->rx_buf_sz); np->rx_skbuff[entry] = skb; if (skb == NULL) break; /* Better luck next round. */ skb->dev = dev; /* Mark as being used by this device. */ np->rx_ring[entry].addr = virt_to_le32desc(skb->tail); } np->rx_ring[entry].rx_status = cpu_to_le32(DescOwn); } /* Pre-emptively restart Rx engine. */ writew(CmdRxDemand | np->chip_cmd, dev->base_addr + ChipCmd); return 0; } static void netdev_error(struct device *dev, int intr_status) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; if (intr_status & (IntrMIIChange | IntrLinkChange)) { if (readb(ioaddr + MIIStatus) & 0x02) { /* Link failed, restart autonegotiation. */ if (np->drv_flags & HasDavicomPhy) mdio_write(dev, np->phys[0], 0, 0x3300); } else check_duplex(dev); if (debug) printk(KERN_ERR "%s: MII status changed: Autonegotiation " "advertising %4.4x partner %4.4x.\n", dev->name, mdio_read(dev, np->phys[0], 4), mdio_read(dev, np->phys[0], 5)); } if (intr_status & IntrStatsMax) { np->stats.rx_crc_errors += readw(ioaddr + RxCRCErrs); np->stats.rx_missed_errors += readw(ioaddr + RxMissed); clear_tally_counters(ioaddr); } if (intr_status & IntrTxAbort) { /* Stats counted in Tx-done handler, just restart Tx. */ writew(CmdTxDemand | np->chip_cmd, dev->base_addr + ChipCmd); } if (intr_status & IntrTxUnderrun) { if (np->tx_thresh < 0xE0) writeb(np->tx_thresh += 0x20, ioaddr + TxConfig); if (debug > 1) printk(KERN_INFO "%s: Transmitter underrun, increasing Tx " "threshold setting to %2.2x.\n", dev->name, np->tx_thresh); } if ((intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxAbort|IntrTxAborted)) && debug) { printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", dev->name, intr_status); /* Recovery for other fault sources not known. */ writew(CmdTxDemand | np->chip_cmd, dev->base_addr + ChipCmd); } } static struct enet_statistics *get_stats(struct device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; /* Nominally we should lock this segment of code for SMP, although the vulnerability window is very small and statistics are non-critical. */ np->stats.rx_crc_errors += readw(ioaddr + RxCRCErrs); np->stats.rx_missed_errors += readw(ioaddr + RxMissed); clear_tally_counters(ioaddr); return &np->stats; } /* Clears the "tally counters" for CRC errors and missed frames(?). It has been reported that some chips need a write of 0 to clear these, for others the counters are set to 1 when written to and instead cleared when read. So we clear them both ways ... */ static inline void clear_tally_counters(const long ioaddr) { writel(0, ioaddr + RxMissed); readw(ioaddr + RxCRCErrs); readw(ioaddr + RxMissed); } /* The big-endian AUTODIN II ethernet CRC calculation. N.B. Do not use for bulk data, use a table-based routine instead. This is common code and should be moved to net/core/crc.c */ static unsigned const ethernet_polynomial = 0x04c11db7U; static inline u32 ether_crc(int length, unsigned char *data) { int crc = -1; while(--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 0; bit < 8; bit++, current_octet >>= 1) { crc = (crc << 1) ^ ((crc < 0) ^ (current_octet & 1) ? ethernet_polynomial : 0); } } return crc; } static void set_rx_mode(struct device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; u32 mc_filter[2]; /* Multicast hash filter */ u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */ if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ /* Unconditionally log net taps. */ printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); rx_mode = 0x1C; } else if ((dev->mc_count > multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to match, or accept all multicasts. */ writel(0xffffffff, ioaddr + MulticastFilter0); writel(0xffffffff, ioaddr + MulticastFilter1); rx_mode = 0x0C; } else { struct dev_mc_list *mclist; int i; memset(mc_filter, 0, sizeof(mc_filter)); for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26, mc_filter); } writel(mc_filter[0], ioaddr + MulticastFilter0); writel(mc_filter[1], ioaddr + MulticastFilter1); rx_mode = 0x0C; } writeb(np->rx_thresh | rx_mode, ioaddr + RxConfig); } static int mii_ioctl(struct device *dev, struct ifreq *rq, int cmd) { u16 *data = (u16 *)&rq->ifr_data; switch(cmd) { case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */ data[0] = ((struct netdev_private *)dev->priv)->phys[0] & 0x1f; /* Fall Through */ case SIOCDEVPRIVATE+1: /* Read the specified MII register. */ data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f); return 0; case SIOCDEVPRIVATE+2: /* Write the specified MII register */ if (!capable(CAP_NET_ADMIN)) return -EPERM; mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]); return 0; default: return -EOPNOTSUPP; } } static int netdev_close(struct device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = (struct netdev_private *)dev->priv; int i; dev->start = 0; dev->tbusy = 1; if (debug > 1) printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x.\n", dev->name, readw(ioaddr + ChipCmd)); del_timer(&np->timer); /* Switch to loopback mode to avoid hardware races. */ writeb(np->tx_thresh | 0x01, ioaddr + TxConfig); /* Disable interrupts by clearing the interrupt mask. */ writew(0x0000, ioaddr + IntrEnable); /* Stop the chip's Tx and Rx processes. */ writew(CmdStop, ioaddr + ChipCmd); free_irq(dev->irq, dev); /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].rx_status = 0; np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */ if (np->rx_skbuff[i]) { #if LINUX_VERSION_CODE < 0x20100 np->rx_skbuff[i]->free = 1; #endif dev_kfree_skb(np->rx_skbuff[i]); } np->rx_skbuff[i] = 0; } for (i = 0; i < TX_RING_SIZE; i++) { if (np->tx_skbuff[i]) dev_kfree_skb(np->tx_skbuff[i]); np->tx_skbuff[i] = 0; if (np->tx_buf[i]) { kfree(np->tx_buf[i]); np->tx_buf[i] = 0; } } MOD_DEC_USE_COUNT; return 0; } #ifdef MODULE int init_module(void) { if (debug) /* Emit version even if no cards detected. */ printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2); return pci_etherdev_probe(NULL, pci_tbl); } void cleanup_module(void) { struct device *next_dev; /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_net_dev) { struct netdev_private *np = (void *)(root_net_dev->priv); unregister_netdev(root_net_dev); #ifdef USE_IO_OPS release_region(root_net_dev->base_addr, pci_tbl[np->chip_id].io_size); #else iounmap((char *)(root_net_dev->base_addr)); #endif next_dev = np->next_module; if (np->priv_addr) kfree(np->priv_addr); kfree(root_net_dev); root_net_dev = next_dev; } } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c via-rhine.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`" * SMP-compile-command: "gcc -D__SMP__ -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c via-rhine.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */ |