Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 | /* smp.c: Sparc SMP support. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #include <asm/head.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/tasks.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/init.h> #include <linux/delay.h> #include <asm/ptrace.h> #include <asm/atomic.h> #include <asm/delay.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/oplib.h> #include <asm/atops.h> #include <asm/spinlock.h> #include <asm/hardirq.h> #include <asm/softirq.h> #define __KERNEL_SYSCALLS__ #include <linux/unistd.h> #define IRQ_RESCHEDULE 13 #define IRQ_STOP_CPU 14 #define IRQ_CROSS_CALL 15 volatile int smp_processors_ready = 0; unsigned long cpu_present_map = 0; int smp_num_cpus = 1; int smp_threads_ready=0; unsigned char mid_xlate[NR_CPUS] = { 0, 0, 0, 0, }; volatile unsigned long cpu_callin_map[NR_CPUS] __initdata = {0,}; #ifdef NOTUSED volatile unsigned long smp_spinning[NR_CPUS] = { 0, }; #endif unsigned long smp_proc_in_lock[NR_CPUS] = { 0, }; struct cpuinfo_sparc cpu_data[NR_CPUS]; unsigned long cpu_offset[NR_CPUS]; unsigned char boot_cpu_id = 0; unsigned char boot_cpu_id4 = 0; /* boot_cpu_id << 2 */ int smp_activated = 0; volatile int cpu_number_map[NR_CPUS]; volatile int __cpu_logical_map[NR_CPUS]; cycles_t cacheflush_time = 0; /* XXX */ /* The only guaranteed locking primitive available on all Sparc * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically * places the current byte at the effective address into dest_reg and * places 0xff there afterwards. Pretty lame locking primitive * compared to the Alpha and the Intel no? Most Sparcs have 'swap' * instruction which is much better... */ /* Kernel spinlock */ spinlock_t kernel_flag = SPIN_LOCK_UNLOCKED; /* Used to make bitops atomic */ unsigned char bitops_spinlock = 0; volatile unsigned long ipi_count; volatile int smp_process_available=0; volatile int smp_commenced = 0; /* Not supported on Sparc yet. */ __initfunc(void smp_setup(char *str, int *ints)) { } /* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */ __initfunc(void smp_store_cpu_info(int id)) { cpu_data[id].udelay_val = loops_per_jiffy; /* this is it on sparc. */ } __initfunc(void smp_commence(void)) { /* * Lets the callin's below out of their loop. */ local_flush_cache_all(); local_flush_tlb_all(); smp_commenced = 1; local_flush_cache_all(); local_flush_tlb_all(); } /* Only broken Intel needs this, thus it should not even be referenced * globally... */ __initfunc(void initialize_secondary(void)) { } extern int cpu_idle(void *unused); /* Activate a secondary processor. */ int start_secondary(void *unused) { prom_printf("Start secondary called. Should not happen\n"); return cpu_idle(NULL); } void cpu_panic(void) { printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); panic("SMP bolixed\n"); } /* * Cycle through the processors asking the PROM to start each one. */ extern struct prom_cpuinfo linux_cpus[NR_CPUS]; struct linux_prom_registers smp_penguin_ctable __initdata = { 0 }; __initfunc(void smp_boot_cpus(void)) { extern void smp4m_boot_cpus(void); extern void smp4d_boot_cpus(void); if (sparc_cpu_model == sun4m) smp4m_boot_cpus(); else smp4d_boot_cpus(); } void smp_flush_cache_all(void) { xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all)); } void smp_flush_tlb_all(void) { xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all)); } void smp_flush_cache_mm(struct mm_struct *mm) { if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_cache_mm(mm); else xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm); } } void smp_flush_tlb_mm(struct mm_struct *mm) { if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) { local_flush_tlb_mm(mm); } else { xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm); if(atomic_read(&mm->count) == 1 && current->mm == mm) mm->cpu_vm_mask = (1 << smp_processor_id()); } } } void smp_flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_cache_range(mm, start, end); else xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) mm, start, end); } } void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_tlb_range(mm, start, end); else xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) mm, start, end); } } void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_cache_page(vma, page); else xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page); } } void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_tlb_page(vma, page); else xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page); } } void smp_flush_page_to_ram(unsigned long page) { /* Current theory is that those who call this are the one's * who have just dirtied their cache with the pages contents * in kernel space, therefore we only run this on local cpu. * * XXX This experiment failed, research further... -DaveM */ #if 1 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page); #else local_flush_page_to_ram(page); #endif } void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_sig_insns(mm, insn_addr); else xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr); } /* Reschedule call back. */ void smp_reschedule_irq(void) { current->need_resched = 1; } /* Stopping processors. */ void smp_stop_cpu_irq(void) { __sti(); while(1) barrier(); } unsigned int prof_multiplier[NR_CPUS]; unsigned int prof_counter[NR_CPUS]; extern unsigned int lvl14_resolution; int setup_profiling_timer(unsigned int multiplier) { int i; unsigned long flags; /* Prevent level14 ticker IRQ flooding. */ if((!multiplier) || (lvl14_resolution / multiplier) < 500) return -EINVAL; save_and_cli(flags); for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1 << i)) { load_profile_irq(mid_xlate[i], lvl14_resolution / multiplier); prof_multiplier[i] = multiplier; } } restore_flags(flags); return 0; } int smp_bogo_info(char *buf) { int len = 0, i; for (i = 0; i < NR_CPUS; i++) if (cpu_present_map & (1 << i)) len += sprintf(buf + len, "Cpu%dBogo\t: %lu.%02lu\n", i, cpu_data[i].udelay_val/(500000/HZ), (cpu_data[i].udelay_val/(5000/HZ))%100); return len; } int smp_info(char *buf) { int len = 0, i; for (i = 0; i < NR_CPUS; i++) if (cpu_present_map & (1 << i)) len += sprintf(buf + len, "CPU%d\t\t: online\n", i); return len; } |