Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
#ifndef __ALPHA_T2__H__
#define __ALPHA_T2__H__

#include <linux/config.h>
#include <linux/types.h>
#include <asm/compiler.h>


/*
 * T2 is the internal name for the core logic chipset which provides
 * memory controller and PCI access for the SABLE-based systems.
 *
 * This file is based on:
 *
 * SABLE I/O Specification
 * Revision/Update Information: 1.3
 *
 * jestabro@amt.tay1.dec.com Initial Version.
 *
 */

#define T2_MEM_R1_MASK 0x03ffffff  /* Mem sparse region 1 mask is 26 bits */

#define T2_DMA_WIN_BASE_DEFAULT	(1024*1024*1024)
#define T2_DMA_WIN_SIZE_DEFAULT	(1024*1024*1024)

#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_SRM_SETUP)
#define T2_DMA_WIN_BASE		alpha_mv.dma_win_base
#define T2_DMA_WIN_SIZE		alpha_mv.dma_win_size
#else
#define T2_DMA_WIN_BASE		T2_DMA_WIN_BASE_DEFAULT
#define T2_DMA_WIN_SIZE		T2_DMA_WIN_SIZE_DEFAULT
#endif

/* GAMMA-SABLE is a SABLE with EV5-based CPUs */
#define _GAMMA_BIAS		0x8000000000UL

#if defined(CONFIG_ALPHA_GENERIC)
#define GAMMA_BIAS		alpha_mv.sys.t2.gamma_bias
#elif defined(CONFIG_ALPHA_GAMMA)
#define GAMMA_BIAS		_GAMMA_BIAS
#else
#define GAMMA_BIAS		0
#endif

/*
 * Memory spaces:
 */
#define T2_CONF		        (IDENT_ADDR + GAMMA_BIAS + 0x390000000UL)
#define T2_IO			(IDENT_ADDR + GAMMA_BIAS + 0x3a0000000UL)
#define T2_SPARSE_MEM		(IDENT_ADDR + GAMMA_BIAS + 0x200000000UL)
#define T2_DENSE_MEM	        (IDENT_ADDR + GAMMA_BIAS + 0x3c0000000UL)

#define T2_IOCSR		(IDENT_ADDR + GAMMA_BIAS + 0x38e000000UL)
#define T2_CERR1		(IDENT_ADDR + GAMMA_BIAS + 0x38e000020UL)
#define T2_CERR2		(IDENT_ADDR + GAMMA_BIAS + 0x38e000040UL)
#define T2_CERR3		(IDENT_ADDR + GAMMA_BIAS + 0x38e000060UL)
#define T2_PERR1		(IDENT_ADDR + GAMMA_BIAS + 0x38e000080UL)
#define T2_PERR2		(IDENT_ADDR + GAMMA_BIAS + 0x38e0000a0UL)
#define T2_PSCR			(IDENT_ADDR + GAMMA_BIAS + 0x38e0000c0UL)
#define T2_HAE_1		(IDENT_ADDR + GAMMA_BIAS + 0x38e0000e0UL)
#define T2_HAE_2		(IDENT_ADDR + GAMMA_BIAS + 0x38e000100UL)
#define T2_HBASE		(IDENT_ADDR + GAMMA_BIAS + 0x38e000120UL)
#define T2_WBASE1		(IDENT_ADDR + GAMMA_BIAS + 0x38e000140UL)
#define T2_WMASK1		(IDENT_ADDR + GAMMA_BIAS + 0x38e000160UL)
#define T2_TBASE1		(IDENT_ADDR + GAMMA_BIAS + 0x38e000180UL)
#define T2_WBASE2		(IDENT_ADDR + GAMMA_BIAS + 0x38e0001a0UL)
#define T2_WMASK2		(IDENT_ADDR + GAMMA_BIAS + 0x38e0001c0UL)
#define T2_TBASE2		(IDENT_ADDR + GAMMA_BIAS + 0x38e0001e0UL)
#define T2_TLBBR		(IDENT_ADDR + GAMMA_BIAS + 0x38e000200UL)

#define T2_HAE_3		(IDENT_ADDR + GAMMA_BIAS + 0x38e000240UL)
#define T2_HAE_4		(IDENT_ADDR + GAMMA_BIAS + 0x38e000260UL)

#define T2_HAE_ADDRESS		T2_HAE_1

/*  T2 CSRs are in the non-cachable primary IO space from 3.8000.0000 to
 3.8fff.ffff
 *
 *  +--------------+ 3 8000 0000
 *  | CPU 0 CSRs   |            
 *  +--------------+ 3 8100 0000
 *  | CPU 1 CSRs   |            
 *  +--------------+ 3 8200 0000
 *  | CPU 2 CSRs   |            
 *  +--------------+ 3 8300 0000
 *  | CPU 3 CSRs   |            
 *  +--------------+ 3 8400 0000
 *  | CPU Reserved |            
 *  +--------------+ 3 8700 0000
 *  | Mem Reserved |            
 *  +--------------+ 3 8800 0000
 *  | Mem 0 CSRs   |            
 *  +--------------+ 3 8900 0000
 *  | Mem 1 CSRs   |            
 *  +--------------+ 3 8a00 0000
 *  | Mem 2 CSRs   |            
 *  +--------------+ 3 8b00 0000
 *  | Mem 3 CSRs   |            
 *  +--------------+ 3 8c00 0000           
 *  | Mem Reserved |            
 *  +--------------+ 3 8e00 0000           
 *  | PCI Bridge   |            
 *  +--------------+ 3 8f00 0000           
 *  | Expansion IO |            
 *  +--------------+ 3 9000 0000           
 *                                              
 *
 */
#define T2_CPU0_BASE            (IDENT_ADDR + GAMMA_BIAS + 0x380000000L)
#define T2_CPU1_BASE            (IDENT_ADDR + GAMMA_BIAS + 0x381000000L)
#define T2_CPU2_BASE            (IDENT_ADDR + GAMMA_BIAS + 0x382000000L)
#define T2_CPU3_BASE            (IDENT_ADDR + GAMMA_BIAS + 0x383000000L)
#define T2_MEM0_BASE            (IDENT_ADDR + GAMMA_BIAS + 0x388000000L)
#define T2_MEM1_BASE            (IDENT_ADDR + GAMMA_BIAS + 0x389000000L)
#define T2_MEM2_BASE            (IDENT_ADDR + GAMMA_BIAS + 0x38a000000L)
#define T2_MEM3_BASE            (IDENT_ADDR + GAMMA_BIAS + 0x38b000000L)


/*
 * Sable CPU Module CSRS
 *
 * These are CSRs for hardware other than the CPU chip on the CPU module.
 * The CPU module has Backup Cache control logic, Cbus control logic, and
 * interrupt control logic on it.  There is a duplicate tag store to speed
 * up maintaining cache coherency.
 */

struct sable_cpu_csr {
  unsigned long bcc;     long fill_00[3]; /* Backup Cache Control */
  unsigned long bcce;    long fill_01[3]; /* Backup Cache Correctable Error */
  unsigned long bccea;   long fill_02[3]; /* B-Cache Corr Err Address Latch */
  unsigned long bcue;    long fill_03[3]; /* B-Cache Uncorrectable Error */
  unsigned long bcuea;   long fill_04[3]; /* B-Cache Uncorr Err Addr Latch */
  unsigned long dter;    long fill_05[3]; /* Duplicate Tag Error */
  unsigned long cbctl;   long fill_06[3]; /* CBus Control */
  unsigned long cbe;     long fill_07[3]; /* CBus Error */
  unsigned long cbeal;   long fill_08[3]; /* CBus Error Addr Latch low */
  unsigned long cbeah;   long fill_09[3]; /* CBus Error Addr Latch high */
  unsigned long pmbx;    long fill_10[3]; /* Processor Mailbox */
  unsigned long ipir;    long fill_11[3]; /* Inter-Processor Int Request */
  unsigned long sic;     long fill_12[3]; /* System Interrupt Clear */
  unsigned long adlk;    long fill_13[3]; /* Address Lock (LDxL/STxC) */
  unsigned long madrl;   long fill_14[3]; /* CBus Miss Address */
  unsigned long rev;     long fill_15[3]; /* CMIC Revision */
};

/*
 * Data structure for handling T2 machine checks:
 */
struct el_t2_frame_header {
	unsigned int	elcf_fid;	/* Frame ID (from above) */
	unsigned int	elcf_size;	/* Size of frame in bytes */
};

struct el_t2_procdata_mcheck {
	unsigned long	elfmc_paltemp[32];	/* PAL TEMP REGS. */
	/* EV4-specific fields */
	unsigned long	elfmc_exc_addr;	/* Addr of excepting insn. */
	unsigned long	elfmc_exc_sum;	/* Summary of arith traps. */
	unsigned long	elfmc_exc_mask;	/* Exception mask (from exc_sum). */
	unsigned long	elfmc_iccsr;	/* IBox hardware enables. */
	unsigned long	elfmc_pal_base;	/* Base address for PALcode. */
	unsigned long	elfmc_hier;	/* Hardware Interrupt Enable. */
	unsigned long	elfmc_hirr;	/* Hardware Interrupt Request. */
	unsigned long	elfmc_mm_csr;	/* D-stream fault info. */
	unsigned long	elfmc_dc_stat;	/* D-cache status (ECC/Parity Err). */
	unsigned long	elfmc_dc_addr;	/* EV3 Phys Addr for ECC/DPERR. */
	unsigned long	elfmc_abox_ctl;	/* ABox Control Register. */
	unsigned long	elfmc_biu_stat;	/* BIU Status. */
	unsigned long	elfmc_biu_addr;	/* BUI Address. */
	unsigned long	elfmc_biu_ctl;	/* BIU Control. */
	unsigned long	elfmc_fill_syndrome; /* For correcting ECC errors. */
	unsigned long	elfmc_fill_addr;/* Cache block which was being read. */
	unsigned long	elfmc_va;	/* Effective VA of fault or miss. */
	unsigned long	elfmc_bc_tag;	/* Backup Cache Tag Probe Results. */
};

/* 
 * Sable processor specific Machine Check Data segment.
 */

struct el_t2_logout_header {
	unsigned int	elfl_size;	/* size in bytes of logout area. */
	int		elfl_sbz1:31;	/* Should be zero. */
	char		elfl_retry:1;	/* Retry flag. */
        unsigned int	elfl_procoffset; /* Processor-specific offset. */
	unsigned int	elfl_sysoffset;	 /* Offset of system-specific. */
	unsigned int	elfl_error_type;	/* PAL error type code. */
	unsigned int	elfl_frame_rev;		/* PAL Frame revision. */
};
struct el_t2_sysdata_mcheck {
	unsigned long    elcmc_bcc;	      /* CSR 0 */
	unsigned long    elcmc_bcce;	      /* CSR 1 */
	unsigned long    elcmc_bccea;      /* CSR 2 */
	unsigned long    elcmc_bcue;	      /* CSR 3 */
	unsigned long    elcmc_bcuea;      /* CSR 4 */
	unsigned long    elcmc_dter;	      /* CSR 5 */
	unsigned long    elcmc_cbctl;      /* CSR 6 */
	unsigned long    elcmc_cbe;	      /* CSR 7 */
	unsigned long    elcmc_cbeal;      /* CSR 8 */
	unsigned long    elcmc_cbeah;      /* CSR 9 */
	unsigned long    elcmc_pmbx;	      /* CSR 10 */
	unsigned long    elcmc_ipir;	      /* CSR 11 */
	unsigned long    elcmc_sic;	      /* CSR 12 */
	unsigned long    elcmc_adlk;	      /* CSR 13 */
	unsigned long    elcmc_madrl;      /* CSR 14 */
	unsigned long    elcmc_crrev4;     /* CSR 15 */
};

/*
 * Sable memory error frame - sable pfms section 3.42
 */
struct el_t2_data_memory {
	struct	el_t2_frame_header elcm_hdr;	/* ID$MEM-FERR = 0x08 */
	unsigned int  elcm_module;	/* Module id. */
	unsigned int  elcm_res04;	/* Reserved. */
	unsigned long elcm_merr;	/* CSR0: Error Reg 1. */
	unsigned long elcm_mcmd1;	/* CSR1: Command Trap 1. */
	unsigned long elcm_mcmd2;	/* CSR2: Command Trap 2. */
	unsigned long elcm_mconf;	/* CSR3: Configuration. */
	unsigned long elcm_medc1;	/* CSR4: EDC Status 1. */
	unsigned long elcm_medc2;	/* CSR5: EDC Status 2. */
	unsigned long elcm_medcc;	/* CSR6: EDC Control. */
	unsigned long elcm_msctl;	/* CSR7: Stream Buffer Control. */
	unsigned long elcm_mref;	/* CSR8: Refresh Control. */
	unsigned long elcm_filter;	/* CSR9: CRD Filter Control. */
};


/*
 * Sable other CPU error frame - sable pfms section 3.43
 */
struct el_t2_data_other_cpu {
	short	      elco_cpuid;	/* CPU ID */
	short	      elco_res02[3];	
	unsigned long elco_bcc;	/* CSR 0 */
	unsigned long elco_bcce;	/* CSR 1 */
	unsigned long elco_bccea;	/* CSR 2 */
	unsigned long elco_bcue;	/* CSR 3 */
	unsigned long elco_bcuea;	/* CSR 4 */
	unsigned long elco_dter;	/* CSR 5 */
	unsigned long elco_cbctl;	/* CSR 6 */
	unsigned long elco_cbe;	/* CSR 7 */
	unsigned long elco_cbeal;	/* CSR 8 */
	unsigned long elco_cbeah;	/* CSR 9 */
	unsigned long elco_pmbx;	/* CSR 10 */
	unsigned long elco_ipir;	/* CSR 11 */
	unsigned long elco_sic;	/* CSR 12 */
	unsigned long elco_adlk;	/* CSR 13 */
	unsigned long elco_madrl;	/* CSR 14 */
	unsigned long elco_crrev4;	/* CSR 15 */
};

/*
 * Sable other CPU error frame - sable pfms section 3.44
 */
struct el_t2_data_t2{
        struct el_t2_frame_header elct_hdr;	/* ID$T2-FRAME */
	unsigned long elct_iocsr;	/* IO Control and Status Register */
	unsigned long elct_cerr1;	/* Cbus Error Register 1 */
	unsigned long elct_cerr2;	/* Cbus Error Register 2 */
	unsigned long elct_cerr3;	/* Cbus Error Register 3 */
	unsigned long elct_perr1;	/* PCI Error Register 1 */
	unsigned long elct_perr2;	/* PCI Error Register 2 */
	unsigned long elct_hae0_1;	/* High Address Extension Register 1 */
	unsigned long elct_hae0_2;	/* High Address Extension Register 2 */
	unsigned long elct_hbase;	/* High Base Register */
	unsigned long elct_wbase1;	/* Window Base Register 1 */
	unsigned long elct_wmask1;	/* Window Mask Register 1 */
	unsigned long elct_tbase1;	/* Translated Base Register 1 */
	unsigned long elct_wbase2;	/* Window Base Register 2 */
	unsigned long elct_wmask2;	/* Window Mask Register 2 */
	unsigned long elct_tbase2;	/* Translated Base Register 2 */
	unsigned long elct_tdr0;	/* TLB Data Register 0 */
	unsigned long elct_tdr1;	/* TLB Data Register 1 */
	unsigned long elct_tdr2;	/* TLB Data Register 2 */
	unsigned long elct_tdr3;	/* TLB Data Register 3 */
	unsigned long elct_tdr4;	/* TLB Data Register 4 */
	unsigned long elct_tdr5;	/* TLB Data Register 5 */
	unsigned long elct_tdr6;	/* TLB Data Register 6 */
	unsigned long elct_tdr7;	/* TLB Data Register 7 */
};

/*
 * Sable error log data structure - sable pfms section 3.40
 */
struct el_t2_data_corrected {
	unsigned long elcpb_biu_stat;
	unsigned long elcpb_biu_addr;
	unsigned long elcpb_biu_ctl;
	unsigned long elcpb_fill_syndrome;
	unsigned long elcpb_fill_addr;
	unsigned long elcpb_bc_tag;
};

/* 
 * Sable error log data structure
 * Note there are 4 memory slots on sable (see t2.h)
 */
struct el_t2_frame_mcheck {
        struct el_t2_frame_header elfmc_header;	/* ID$P-FRAME_MCHECK */
	struct el_t2_logout_header elfmc_hdr;
	struct el_t2_procdata_mcheck elfmc_procdata;
	struct el_t2_sysdata_mcheck elfmc_sysdata;
	struct el_t2_data_t2 elfmc_t2data;
	struct el_t2_data_memory elfmc_memdata[4]; 
        struct el_t2_frame_header elfmc_footer;	/* empty */
};


/* 
 * Sable error log data structures on memory errors
 */
struct el_t2_frame_corrected {
        struct el_t2_frame_header elfcc_header;	/* ID$P-BC-COR */
	struct el_t2_logout_header elfcc_hdr;
	struct el_t2_data_corrected elfcc_procdata; 
/*	struct el_t2_data_t2 elfcc_t2data;		*/
/*	struct el_t2_data_memory elfcc_memdata[4];	*/
        struct el_t2_frame_header elfcc_footer;	/* empty */
};


#ifdef __KERNEL__

#ifndef __EXTERN_INLINE
#define __EXTERN_INLINE extern inline
#define __IO_EXTERN_INLINE
#endif

/*
 * Translate physical memory address as seen on (PCI) bus into
 * a kernel virtual address and vv.
 */

__EXTERN_INLINE unsigned long t2_virt_to_bus(void * address)
{
	return virt_to_phys(address) + T2_DMA_WIN_BASE;
}

__EXTERN_INLINE void * t2_bus_to_virt(unsigned long address)
{
	return phys_to_virt(address - T2_DMA_WIN_BASE);
}

/*
 * I/O functions:
 *
 * T2 (the core logic PCI/memory support chipset for the SABLE
 * series of processors uses a sparse address mapping scheme to
 * get at PCI memory and I/O.
 */

#define vip	volatile int *
#define vuip	volatile unsigned int *

__EXTERN_INLINE unsigned int t2_inb(unsigned long addr)
{
	long result = *(vip) ((addr << 5) + T2_IO + 0x00);
	return __kernel_extbl(result, addr & 3);
}

__EXTERN_INLINE void t2_outb(unsigned char b, unsigned long addr)
{
	unsigned long w;

	w = __kernel_insbl(b, addr & 3);
	*(vuip) ((addr << 5) + T2_IO + 0x00) = w;
	mb();
}

__EXTERN_INLINE unsigned int t2_inw(unsigned long addr)
{
	long result = *(vip) ((addr << 5) + T2_IO + 0x08);
	return __kernel_extwl(result, addr & 3);
}

__EXTERN_INLINE void t2_outw(unsigned short b, unsigned long addr)
{
	unsigned long w;

	w = __kernel_inswl(b, addr & 3);
	*(vuip) ((addr << 5) + T2_IO + 0x08) = w;
	mb();
}

__EXTERN_INLINE unsigned int t2_inl(unsigned long addr)
{
	return *(vuip) ((addr << 5) + T2_IO + 0x18);
}

__EXTERN_INLINE void t2_outl(unsigned int b, unsigned long addr)
{
	*(vuip) ((addr << 5) + T2_IO + 0x18) = b;
	mb();
}


/*
 * Memory functions.  64-bit and 32-bit accesses are done through
 * dense memory space, everything else through sparse space.
 * 
 * For reading and writing 8 and 16 bit quantities we need to 
 * go through one of the three sparse address mapping regions
 * and use the HAE_MEM CSR to provide some bits of the address.
 * The following few routines use only sparse address region 1
 * which gives 1Gbyte of accessible space which relates exactly
 * to the amount of PCI memory mapping *into* system address space.
 * See p 6-17 of the specification but it looks something like this:
 *
 * 21164 Address:
 * 
 *          3         2         1                                                               
 * 9876543210987654321098765432109876543210
 * 1ZZZZ0.PCI.QW.Address............BBLL                 
 *
 * ZZ = SBZ
 * BB = Byte offset
 * LL = Transfer length
 *
 * PCI Address:
 *
 * 3         2         1                                                               
 * 10987654321098765432109876543210
 * HHH....PCI.QW.Address........ 00
 *
 * HHH = 31:29 HAE_MEM CSR
 * 
 */

__EXTERN_INLINE unsigned long t2_srm_base(unsigned long addr)
{
	if ((addr >= alpha_mv.sm_base_r1
	     && addr <= alpha_mv.sm_base_r1 + T2_MEM_R1_MASK)
	    || (addr >= 512*1024 && addr < 1024*1024)) {
		return ((addr & T2_MEM_R1_MASK) << 5) + T2_SPARSE_MEM;
	}
#if 0
	printk("T2: address 0x%lx not covered by HAE\n", addr);
#endif
	return 0;
}

__EXTERN_INLINE unsigned long t2_srm_readb(unsigned long addr)
{
	unsigned long result, work;

	if ((work = t2_srm_base(addr)) == 0)
		return 0xff;
	work += 0x00;	/* add transfer length */

	result = *(vip) work;
	return __kernel_extbl(result, addr & 3);
}

__EXTERN_INLINE unsigned long t2_srm_readw(unsigned long addr)
{
	unsigned long result, work;

	if ((work = t2_srm_base(addr)) == 0)
		return 0xffff;
	work += 0x08;	/* add transfer length */

	result = *(vip) work;
	return __kernel_extwl(result, addr & 3);
}

/* On SABLE with T2, we must use SPARSE memory even for 32-bit access ... */
__EXTERN_INLINE unsigned long t2_srm_readl(unsigned long addr)
{
	unsigned long work;

	if ((work = t2_srm_base(addr)) == 0)
		return 0xffffffff;
	work += 0x18;	/* add transfer length */

	return *(vuip) work;
}

/* ... which makes me wonder why we advertise we have DENSE memory at all.
   Anyway, guess that means we should emulate 64-bit access as two cycles.  */
__EXTERN_INLINE unsigned long t2_srm_readq(unsigned long addr)
{
	unsigned long work, r0, r1;

	if ((work = t2_srm_base(addr)) == 0)
		return ~0UL;
	work += 0x18;	/* add transfer length */

	r0 = *(vuip) work;
	r1 = *(vuip) (work + (4 << 5));
	return r1 << 32 | r0;
}

__EXTERN_INLINE void t2_srm_writeb(unsigned char b, unsigned long addr)
{
	unsigned long work = t2_srm_base(addr);
	if (work) {
		work += 0x00;	/* add transfer length */
		*(vuip) work = b * 0x01010101;
	}
}

__EXTERN_INLINE void t2_srm_writew(unsigned short b, unsigned long addr)
{
	unsigned long work = t2_srm_base(addr);
	if (work) {
		work += 0x08;	/* add transfer length */
		*(vuip) work = b * 0x00010001;
	}
}

/* On SABLE with T2, we must use SPARSE memory even for 32-bit access ... */
__EXTERN_INLINE void t2_srm_writel(unsigned int b, unsigned long addr)
{
	unsigned long work = t2_srm_base(addr);
	if (work) {
		work += 0x18;	/* add transfer length */
		*(vuip) work = b;
	}
}

/* ... which makes me wonder why we advertise we have DENSE memory at all.
   Anyway, guess that means we should emulate 64-bit access as two cycles.  */
__EXTERN_INLINE void t2_srm_writeq(unsigned long b, unsigned long addr)
{
	unsigned long work = t2_srm_base(addr);
	if (work) {
		work += 0x18;	/* add transfer length */
		*(vuip) work = b;
		*(vuip) (work + (4 << 5)) = b >> 32;
	}
}

__EXTERN_INLINE unsigned long t2_readb(unsigned long addr)
{
	unsigned long result, msb;

	msb = addr & 0xE0000000 ;
	addr &= T2_MEM_R1_MASK ;
	set_hae(msb);

	result = *(vip) ((addr << 5) + T2_SPARSE_MEM + 0x00) ;
	return __kernel_extbl(result, addr & 3);
}

__EXTERN_INLINE unsigned long t2_readw(unsigned long addr)
{
	unsigned long result, msb;

	msb = addr & 0xE0000000 ;
	addr &= T2_MEM_R1_MASK ;
	set_hae(msb);

	result = *(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x08);
	return __kernel_extwl(result, addr & 3);
}

/* On SABLE with T2, we must use SPARSE memory even for 32-bit access. */
__EXTERN_INLINE unsigned long t2_readl(unsigned long addr)
{
	unsigned long msb;

	msb = addr & 0xE0000000 ;
	addr &= T2_MEM_R1_MASK ;
	set_hae(msb);

	return *(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x18);
}

__EXTERN_INLINE unsigned long t2_readq(unsigned long addr)
{
	unsigned long r0, r1, work, msb;

	msb = addr & 0xE0000000 ;
	addr &= T2_MEM_R1_MASK ;
	set_hae(msb);

	work = (addr << 5) + T2_SPARSE_MEM + 0x18;
	r0 = *(vuip)(work);
	r1 = *(vuip)(work + (4 << 5));
	return r1 << 32 | r0;
}

__EXTERN_INLINE void t2_writeb(unsigned char b, unsigned long addr)
{
        unsigned long msb ; 

	msb = addr & 0xE0000000 ;
	addr &= T2_MEM_R1_MASK ;
	set_hae(msb);

	*(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x00) = b * 0x01010101;
}

__EXTERN_INLINE void t2_writew(unsigned short b, unsigned long addr)
{
        unsigned long msb ; 

	msb = addr & 0xE0000000 ;
	addr &= T2_MEM_R1_MASK ;
	set_hae(msb);

	*(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x08) = b * 0x00010001;
}

/* On SABLE with T2, we must use SPARSE memory even for 32-bit access. */
__EXTERN_INLINE void t2_writel(unsigned int b, unsigned long addr)
{
        unsigned long msb ; 

	msb = addr & 0xE0000000 ;
	addr &= T2_MEM_R1_MASK ;
	set_hae(msb);

	*(vuip) ((addr << 5) + T2_SPARSE_MEM + 0x18) = b;
}

__EXTERN_INLINE void t2_writeq(unsigned long b, unsigned long addr)
{
        unsigned long msb, work;

	msb = addr & 0xE0000000 ;
	addr &= T2_MEM_R1_MASK ;
	set_hae(msb);

	work = (addr << 5) + T2_SPARSE_MEM + 0x18;
	*(vuip)work = b;
	*(vuip)(work + (4 << 5)) = b >> 32;
}

/* Find the DENSE memory area for a given bus address.  */

__EXTERN_INLINE unsigned long t2_dense_mem(unsigned long addr)
{
	return T2_DENSE_MEM;
}

#undef vip
#undef vuip

#ifdef __WANT_IO_DEF

#define virt_to_bus	t2_virt_to_bus
#define bus_to_virt	t2_bus_to_virt
#define __inb		t2_inb
#define __inw		t2_inw
#define __inl		t2_inl
#define __outb		t2_outb
#define __outw		t2_outw
#define __outl		t2_outl

#ifdef CONFIG_ALPHA_SRM_SETUP
#define __readb		t2_srm_readb
#define __readw		t2_srm_readw
#define __readl		t2_srm_readl
#define __readq		t2_srm_readq
#define __writeb	t2_srm_writeb
#define __writew	t2_srm_writew
#define __writel	t2_srm_writel
#define __writeq	t2_srm_writeq
#else
#define __readb		t2_readb
#define __readw		t2_readw
#define __readl		t2_readl
#define __readq		t2_readq
#define __writeb	t2_writeb
#define __writew	t2_writew
#define __writel	t2_writel
#define __writeq	t2_writeq
#endif

#define dense_mem	t2_dense_mem

#define inb(port) \
(__builtin_constant_p((port))?__inb(port):_inb(port))

#define outb(x, port) \
(__builtin_constant_p((port))?__outb((x),(port)):_outb((x),(port)))

#endif /* __WANT_IO_DEF */

#ifdef __IO_EXTERN_INLINE
#undef __EXTERN_INLINE
#undef __IO_EXTERN_INLINE
#endif

#endif /* __KERNEL__ */

#endif /* __ALPHA_T2__H__ */