Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 | /************************************************************************ * raid1.c : Multiple Devices driver for Linux * Copyright (C) 1996 Ingo Molnar, Miguel de Icaza, Gadi Oxman * * RAID-1 management functions. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example /usr/src/linux/COPYING); if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/locks.h> #include <linux/malloc.h> #include <linux/md.h> #include <linux/raid1.h> #include <asm/bitops.h> #include <asm/atomic.h> #define MAJOR_NR MD_MAJOR #define MD_DRIVER #define MD_PERSONALITY /* * The following can be used to debug the driver */ /*#define RAID1_DEBUG*/ #ifdef RAID1_DEBUG #define PRINTK(x) do { printk x; } while (0); #else #define PRINTK(x) do { ; } while (0); #endif #define MAX(a,b) ((a) > (b) ? (a) : (b)) #define MIN(a,b) ((a) < (b) ? (a) : (b)) static struct md_personality raid1_personality; static struct md_thread *raid1_thread = NULL; struct buffer_head *raid1_retry_list = NULL; static int __raid1_map (struct md_dev *mddev, kdev_t *rdev, unsigned long *rsector, unsigned long size) { struct raid1_data *raid_conf = (struct raid1_data *) mddev->private; int i, n = raid_conf->raid_disks; /* * Later we do read balancing on the read side * now we use the first available disk. */ PRINTK(("raid1_map().\n")); for (i=0; i<n; i++) { if (raid_conf->mirrors[i].operational) { *rdev = raid_conf->mirrors[i].dev; return (0); } } printk (KERN_ERR "raid1_map(): huh, no more operational devices?\n"); return (-1); } static int raid1_map (struct md_dev *mddev, kdev_t *rdev, unsigned long *rsector, unsigned long size) { return 0; } void raid1_reschedule_retry (struct buffer_head *bh) { struct raid1_bh * r1_bh = (struct raid1_bh *)(bh->b_dev_id); PRINTK(("raid1_reschedule_retry().\n")); r1_bh->next_retry = raid1_retry_list; raid1_retry_list = bh; md_wakeup_thread(raid1_thread); } /* * raid1_end_buffer_io() is called when we have finished servicing a mirrored * operation and are ready to return a success/failure code to the buffer * cache layer. */ static inline void raid1_end_buffer_io(struct raid1_bh *r1_bh, int uptodate) { struct buffer_head *bh = r1_bh->master_bh; bh->b_end_io(bh, uptodate); kfree(r1_bh); } int raid1_one_error=0; void raid1_end_request (struct buffer_head *bh, int uptodate) { struct raid1_bh * r1_bh = (struct raid1_bh *)(bh->b_dev_id); unsigned long flags; save_flags(flags); cli(); PRINTK(("raid1_end_request().\n")); if (raid1_one_error) { raid1_one_error=0; uptodate=0; } /* * this branch is our 'one mirror IO has finished' event handler: */ if (!uptodate) md_error (bh->b_dev, bh->b_rdev); else { /* * Set BH_Uptodate in our master buffer_head, so that * we will return a good error code for to the higher * levels even if IO on some other mirrored buffer fails. * * The 'master' represents the complex operation to * user-side. So if something waits for IO, then it will * wait for the 'master' buffer_head. */ set_bit (BH_Uptodate, &r1_bh->state); } /* * We split up the read and write side, imho they are * conceptually different. */ if ( (r1_bh->cmd == READ) || (r1_bh->cmd == READA) ) { PRINTK(("raid1_end_request(), read branch.\n")); /* * we have only one buffer_head on the read side */ if (uptodate) { PRINTK(("raid1_end_request(), read branch, uptodate.\n")); raid1_end_buffer_io(r1_bh, uptodate); restore_flags(flags); return; } /* * oops, read error: */ printk(KERN_ERR "raid1: %s: rescheduling block %lu\n", kdevname(bh->b_dev), bh->b_blocknr); raid1_reschedule_retry (bh); restore_flags(flags); return; } /* * WRITE or WRITEA. */ PRINTK(("raid1_end_request(), write branch.\n")); /* * Let's see if all mirrored write operations have finished * already [we have irqs off, so we can decrease]: */ if (!--r1_bh->remaining) { struct md_dev *mddev = r1_bh->mddev; struct raid1_data *raid_conf = (struct raid1_data *) mddev->private; int i, n = raid_conf->raid_disks; PRINTK(("raid1_end_request(), remaining == 0.\n")); for ( i=0; i<n; i++) if (r1_bh->mirror_bh[i]) kfree(r1_bh->mirror_bh[i]); raid1_end_buffer_io(r1_bh, test_bit(BH_Uptodate, &r1_bh->state)); } else PRINTK(("raid1_end_request(), remaining == %u.\n", r1_bh->remaining)); restore_flags(flags); } /* This routine checks if the undelying device is an md device and in that * case it maps the blocks before putting the request on the queue */ static inline void map_and_make_request (int rw, struct buffer_head *bh) { if (MAJOR (bh->b_rdev) == MD_MAJOR) md_map (MINOR (bh->b_rdev), &bh->b_rdev, &bh->b_rsector, bh->b_size >> 9); clear_bit(BH_Lock, &bh->b_state); make_request (MAJOR (bh->b_rdev), rw, bh); } static int raid1_make_request (struct md_dev *mddev, int rw, struct buffer_head * bh) { struct raid1_data *raid_conf = (struct raid1_data *) mddev->private; struct buffer_head *mirror_bh[MD_SB_DISKS], *bh_req; struct raid1_bh * r1_bh; int n = raid_conf->raid_disks, i, sum_bhs = 0, switch_disks = 0, sectors; struct mirror_info *mirror; PRINTK(("raid1_make_request().\n")); while (!( /* FIXME: now we are rather fault tolerant than nice */ r1_bh = kmalloc (sizeof (struct raid1_bh), GFP_KERNEL) ) ) { printk ("raid1_make_request(#1): out of memory\n"); current->policy |= SCHED_YIELD; schedule(); } memset (r1_bh, 0, sizeof (struct raid1_bh)); /* * make_request() can abort the operation when READA or WRITEA are being * used and no empty request is available. * * Currently, just replace the command with READ/WRITE. */ if (rw == READA) rw = READ; if (rw == WRITEA) rw = WRITE; if (rw == WRITE || rw == WRITEA) mark_buffer_clean(bh); /* Too early ? */ /* * i think the read and write branch should be separated completely, since we want * to do read balancing on the read side for example. Comments? :) --mingo */ r1_bh->master_bh=bh; r1_bh->mddev=mddev; r1_bh->cmd = rw; if (rw==READ || rw==READA) { int last_used = raid_conf->last_used; PRINTK(("raid1_make_request(), read branch.\n")); mirror = raid_conf->mirrors + last_used; bh->b_rdev = mirror->dev; sectors = bh->b_size >> 9; if (bh->b_blocknr * sectors == raid_conf->next_sect) { raid_conf->sect_count += sectors; if (raid_conf->sect_count >= mirror->sect_limit) switch_disks = 1; } else switch_disks = 1; raid_conf->next_sect = (bh->b_blocknr + 1) * sectors; if (switch_disks) { PRINTK(("read-balancing: switching %d -> %d (%d sectors)\n", last_used, mirror->next, raid_conf->sect_count)); raid_conf->sect_count = 0; last_used = raid_conf->last_used = mirror->next; /* * Do not switch to write-only disks ... resyncing * is in progress */ while (raid_conf->mirrors[last_used].write_only) raid_conf->last_used = raid_conf->mirrors[last_used].next; } PRINTK (("raid1 read queue: %d %d\n", MAJOR (bh->b_rdev), MINOR (bh->b_rdev))); bh_req = &r1_bh->bh_req; memcpy(bh_req, bh, sizeof(*bh)); bh_req->b_end_io = raid1_end_request; bh_req->b_dev_id = r1_bh; map_and_make_request (rw, bh_req); return 0; } /* * WRITE or WRITEA. */ PRINTK(("raid1_make_request(n=%d), write branch.\n",n)); for (i = 0; i < n; i++) { if (!raid_conf->mirrors [i].operational) { /* * the r1_bh->mirror_bh[i] pointer remains NULL */ mirror_bh[i] = NULL; continue; } /* * We should use a private pool (size depending on NR_REQUEST), * to avoid writes filling up the memory with bhs * * Such pools are much faster than kmalloc anyways (so we waste almost * nothing by not using the master bh when writing and win alot of cleanness) * * but for now we are cool enough. --mingo * * It's safe to sleep here, buffer heads cannot be used in a shared * manner in the write branch. Look how we lock the buffer at the beginning * of this function to grok the difference ;) */ while (!( /* FIXME: now we are rather fault tolerant than nice */ mirror_bh[i] = kmalloc (sizeof (struct buffer_head), GFP_KERNEL) ) ) { printk ("raid1_make_request(#2): out of memory\n"); current->policy |= SCHED_YIELD; schedule(); } memset (mirror_bh[i], 0, sizeof (struct buffer_head)); /* * prepare mirrored bh (fields ordered for max mem throughput): */ mirror_bh [i]->b_blocknr = bh->b_blocknr; mirror_bh [i]->b_dev = bh->b_dev; mirror_bh [i]->b_rdev = raid_conf->mirrors [i].dev; mirror_bh [i]->b_rsector = bh->b_rsector; mirror_bh [i]->b_state = (1<<BH_Req) | (1<<BH_Dirty); mirror_bh [i]->b_count = 1; mirror_bh [i]->b_size = bh->b_size; mirror_bh [i]->b_data = bh->b_data; mirror_bh [i]->b_list = BUF_LOCKED; mirror_bh [i]->b_end_io = raid1_end_request; mirror_bh [i]->b_dev_id = r1_bh; r1_bh->mirror_bh[i] = mirror_bh[i]; sum_bhs++; } r1_bh->remaining = sum_bhs; PRINTK(("raid1_make_request(), write branch, sum_bhs=%d.\n",sum_bhs)); /* * We have to be a bit careful about the semaphore above, thats why we * start the requests separately. Since kmalloc() could fail, sleep and * make_request() can sleep too, this is the safer solution. Imagine, * end_request decreasing the semaphore before we could have set it up ... * We could play tricks with the semaphore (presetting it and correcting * at the end if sum_bhs is not 'n' but we have to do end_request by hand * if all requests finish until we had a chance to set up the semaphore * correctly ... lots of races). */ for (i = 0; i < n; i++) if (mirror_bh [i] != NULL) map_and_make_request (rw, mirror_bh [i]); return (0); } static int raid1_status (char *page, int minor, struct md_dev *mddev) { struct raid1_data *raid_conf = (struct raid1_data *) mddev->private; int sz = 0, i; sz += sprintf (page+sz, " [%d/%d] [", raid_conf->raid_disks, raid_conf->working_disks); for (i = 0; i < raid_conf->raid_disks; i++) sz += sprintf (page+sz, "%s", raid_conf->mirrors [i].operational ? "U" : "_"); sz += sprintf (page+sz, "]"); return sz; } static void raid1_fix_links (struct raid1_data *raid_conf, int failed_index) { int disks = raid_conf->raid_disks; int j; for (j = 0; j < disks; j++) if (raid_conf->mirrors [j].next == failed_index) raid_conf->mirrors [j].next = raid_conf->mirrors [failed_index].next; } #define LAST_DISK KERN_ALERT \ "raid1: only one disk left and IO error.\n" #define NO_SPARE_DISK KERN_ALERT \ "raid1: no spare disk left, degrading mirror level by one.\n" #define DISK_FAILED KERN_ALERT \ "raid1: Disk failure on %s, disabling device. \n" \ " Operation continuing on %d devices\n" #define START_SYNCING KERN_ALERT \ "raid1: start syncing spare disk.\n" #define ALREADY_SYNCING KERN_INFO \ "raid1: syncing already in progress.\n" static int raid1_error (struct md_dev *mddev, kdev_t dev) { struct raid1_data *raid_conf = (struct raid1_data *) mddev->private; struct mirror_info *mirror; md_superblock_t *sb = mddev->sb; int disks = raid_conf->raid_disks; int i; PRINTK(("raid1_error called\n")); if (raid_conf->working_disks == 1) { /* * Uh oh, we can do nothing if this is our last disk, but * first check if this is a queued request for a device * which has just failed. */ for (i = 0, mirror = raid_conf->mirrors; i < disks; i++, mirror++) if (mirror->dev == dev && !mirror->operational) return 0; printk (LAST_DISK); } else { /* Mark disk as unusable */ for (i = 0, mirror = raid_conf->mirrors; i < disks; i++, mirror++) { if (mirror->dev == dev && mirror->operational){ mirror->operational = 0; raid1_fix_links (raid_conf, i); sb->disks[mirror->number].state |= (1 << MD_FAULTY_DEVICE); sb->disks[mirror->number].state &= ~(1 << MD_SYNC_DEVICE); sb->disks[mirror->number].state &= ~(1 << MD_ACTIVE_DEVICE); sb->active_disks--; sb->working_disks--; sb->failed_disks++; mddev->sb_dirty = 1; md_wakeup_thread(raid1_thread); raid_conf->working_disks--; printk (DISK_FAILED, kdevname (dev), raid_conf->working_disks); } } } return 0; } #undef LAST_DISK #undef NO_SPARE_DISK #undef DISK_FAILED #undef START_SYNCING /* * This is the personality-specific hot-addition routine */ #define NO_SUPERBLOCK KERN_ERR \ "raid1: cannot hot-add disk to the array with no RAID superblock\n" #define WRONG_LEVEL KERN_ERR \ "raid1: hot-add: level of disk is not RAID-1\n" #define HOT_ADD_SUCCEEDED KERN_INFO \ "raid1: device %s hot-added\n" static int raid1_hot_add_disk (struct md_dev *mddev, kdev_t dev) { unsigned long flags; struct raid1_data *raid_conf = (struct raid1_data *) mddev->private; struct mirror_info *mirror; md_superblock_t *sb = mddev->sb; struct real_dev * realdev; int n; /* * The device has its superblock already read and it was found * to be consistent for generic RAID usage. Now we check whether * it's usable for RAID-1 hot addition. */ n = mddev->nb_dev++; realdev = &mddev->devices[n]; if (!realdev->sb) { printk (NO_SUPERBLOCK); return -EINVAL; } if (realdev->sb->level != 1) { printk (WRONG_LEVEL); return -EINVAL; } /* FIXME: are there other things left we could sanity-check? */ /* * We have to disable interrupts, as our RAID-1 state is used * from irq handlers as well. */ save_flags(flags); cli(); raid_conf->raid_disks++; mirror = raid_conf->mirrors+n; mirror->number=n; mirror->raid_disk=n; mirror->dev=dev; mirror->next=0; /* FIXME */ mirror->sect_limit=128; mirror->operational=0; mirror->spare=1; mirror->write_only=0; sb->disks[n].state |= (1 << MD_FAULTY_DEVICE); sb->disks[n].state &= ~(1 << MD_SYNC_DEVICE); sb->disks[n].state &= ~(1 << MD_ACTIVE_DEVICE); sb->nr_disks++; sb->spare_disks++; restore_flags(flags); md_update_sb(MINOR(dev)); printk (HOT_ADD_SUCCEEDED, kdevname(realdev->dev)); return 0; } #undef NO_SUPERBLOCK #undef WRONG_LEVEL #undef HOT_ADD_SUCCEEDED /* * Insert the spare disk into the drive-ring */ static void add_ring(struct raid1_data *raid_conf, struct mirror_info *mirror) { int j, next; struct mirror_info *p = raid_conf->mirrors; for (j = 0; j < raid_conf->raid_disks; j++, p++) if (p->operational && !p->write_only) { next = p->next; p->next = mirror->raid_disk; mirror->next = next; return; } printk("raid1: bug: no read-operational devices\n"); } static int raid1_mark_spare(struct md_dev *mddev, md_descriptor_t *spare, int state) { int i = 0, failed_disk = -1; struct raid1_data *raid_conf = mddev->private; struct mirror_info *mirror = raid_conf->mirrors; md_descriptor_t *descriptor; unsigned long flags; for (i = 0; i < MD_SB_DISKS; i++, mirror++) { if (mirror->spare && mirror->number == spare->number) goto found; } return 1; found: for (i = 0, mirror = raid_conf->mirrors; i < raid_conf->raid_disks; i++, mirror++) if (!mirror->operational) failed_disk = i; save_flags(flags); cli(); switch (state) { case SPARE_WRITE: mirror->operational = 1; mirror->write_only = 1; raid_conf->raid_disks = MAX(raid_conf->raid_disks, mirror->raid_disk + 1); break; case SPARE_INACTIVE: mirror->operational = 0; mirror->write_only = 0; break; case SPARE_ACTIVE: mirror->spare = 0; mirror->write_only = 0; raid_conf->working_disks++; add_ring(raid_conf, mirror); if (failed_disk != -1) { descriptor = &mddev->sb->disks[raid_conf->mirrors[failed_disk].number]; i = spare->raid_disk; spare->raid_disk = descriptor->raid_disk; descriptor->raid_disk = i; } break; default: printk("raid1_mark_spare: bug: state == %d\n", state); restore_flags(flags); return 1; } restore_flags(flags); return 0; } /* * This is a kernel thread which: * * 1. Retries failed read operations on working mirrors. * 2. Updates the raid superblock when problems encounter. */ void raid1d (void *data) { struct buffer_head *bh; kdev_t dev; unsigned long flags; struct raid1_bh * r1_bh; struct md_dev *mddev; PRINTK(("raid1d() active\n")); save_flags(flags); cli(); while (raid1_retry_list) { bh = raid1_retry_list; r1_bh = (struct raid1_bh *)(bh->b_dev_id); raid1_retry_list = r1_bh->next_retry; restore_flags(flags); mddev = md_dev + MINOR(bh->b_dev); if (mddev->sb_dirty) { printk("dirty sb detected, updating.\n"); mddev->sb_dirty = 0; md_update_sb(MINOR(bh->b_dev)); } dev = bh->b_rdev; __raid1_map (md_dev + MINOR(bh->b_dev), &bh->b_rdev, &bh->b_rsector, bh->b_size >> 9); if (bh->b_rdev == dev) { printk (KERN_ALERT "raid1: %s: unrecoverable I/O read error for block %lu\n", kdevname(bh->b_dev), bh->b_blocknr); raid1_end_buffer_io(r1_bh, 0); } else { printk (KERN_ERR "raid1: %s: redirecting sector %lu to another mirror\n", kdevname(bh->b_dev), bh->b_blocknr); map_and_make_request (r1_bh->cmd, bh); } cli(); } restore_flags(flags); } /* * This will catch the scenario in which one of the mirrors was * mounted as a normal device rather than as a part of a raid set. */ static int __check_consistency (struct md_dev *mddev, int row) { struct raid1_data *raid_conf = mddev->private; kdev_t dev; struct buffer_head *bh = NULL; int i, rc = 0; char *buffer = NULL; for (i = 0; i < raid_conf->raid_disks; i++) { if (!raid_conf->mirrors[i].operational) continue; dev = raid_conf->mirrors[i].dev; set_blocksize(dev, 4096); if ((bh = bread(dev, row / 4, 4096)) == NULL) break; if (!buffer) { buffer = (char *) __get_free_page(GFP_KERNEL); if (!buffer) break; memcpy(buffer, bh->b_data, 4096); } else if (memcmp(buffer, bh->b_data, 4096)) { rc = 1; break; } bforget(bh); fsync_dev(dev); invalidate_buffers(dev); bh = NULL; } if (buffer) free_page((unsigned long) buffer); if (bh) { dev = bh->b_dev; bforget(bh); fsync_dev(dev); invalidate_buffers(dev); } return rc; } static int check_consistency (struct md_dev *mddev) { int size = mddev->sb->size; int row; for (row = 0; row < size; row += size / 8) if (__check_consistency(mddev, row)) return 1; return 0; } static int raid1_run (int minor, struct md_dev *mddev) { struct raid1_data *raid_conf; int i, j, raid_disk; md_superblock_t *sb = mddev->sb; md_descriptor_t *descriptor; struct real_dev *realdev; MOD_INC_USE_COUNT; if (sb->level != 1) { printk("raid1: %s: raid level not set to mirroring (%d)\n", kdevname(MKDEV(MD_MAJOR, minor)), sb->level); MOD_DEC_USE_COUNT; return -EIO; } /**** * copy the now verified devices into our private RAID1 bookkeeping * area. [whatever we allocate in raid1_run(), should be freed in * raid1_stop()] */ while (!( /* FIXME: now we are rather fault tolerant than nice */ mddev->private = kmalloc (sizeof (struct raid1_data), GFP_KERNEL) ) ) { printk ("raid1_run(): out of memory\n"); current->policy |= SCHED_YIELD; schedule(); } raid_conf = mddev->private; memset(raid_conf, 0, sizeof(*raid_conf)); PRINTK(("raid1_run(%d) called.\n", minor)); for (i = 0; i < mddev->nb_dev; i++) { realdev = &mddev->devices[i]; if (!realdev->sb) { printk(KERN_ERR "raid1: disabled mirror %s (couldn't access raid superblock)\n", kdevname(realdev->dev)); continue; } /* * This is important -- we are using the descriptor on * the disk only to get a pointer to the descriptor on * the main superblock, which might be more recent. */ descriptor = &sb->disks[realdev->sb->descriptor.number]; if (descriptor->state & (1 << MD_FAULTY_DEVICE)) { printk(KERN_ERR "raid1: disabled mirror %s (errors detected)\n", kdevname(realdev->dev)); continue; } if (descriptor->state & (1 << MD_ACTIVE_DEVICE)) { if (!(descriptor->state & (1 << MD_SYNC_DEVICE))) { printk(KERN_ERR "raid1: disabled mirror %s (not in sync)\n", kdevname(realdev->dev)); continue; } raid_disk = descriptor->raid_disk; if (descriptor->number > sb->nr_disks || raid_disk > sb->raid_disks) { printk(KERN_ERR "raid1: disabled mirror %s (inconsistent descriptor)\n", kdevname(realdev->dev)); continue; } if (raid_conf->mirrors[raid_disk].operational) { printk(KERN_ERR "raid1: disabled mirror %s (mirror %d already operational)\n", kdevname(realdev->dev), raid_disk); continue; } printk(KERN_INFO "raid1: device %s operational as mirror %d\n", kdevname(realdev->dev), raid_disk); raid_conf->mirrors[raid_disk].number = descriptor->number; raid_conf->mirrors[raid_disk].raid_disk = raid_disk; raid_conf->mirrors[raid_disk].dev = mddev->devices [i].dev; raid_conf->mirrors[raid_disk].operational = 1; raid_conf->mirrors[raid_disk].sect_limit = 128; raid_conf->working_disks++; } else { /* * Must be a spare disk .. */ printk(KERN_INFO "raid1: spare disk %s\n", kdevname(realdev->dev)); raid_disk = descriptor->raid_disk; raid_conf->mirrors[raid_disk].number = descriptor->number; raid_conf->mirrors[raid_disk].raid_disk = raid_disk; raid_conf->mirrors[raid_disk].dev = mddev->devices [i].dev; raid_conf->mirrors[raid_disk].sect_limit = 128; raid_conf->mirrors[raid_disk].operational = 0; raid_conf->mirrors[raid_disk].write_only = 0; raid_conf->mirrors[raid_disk].spare = 1; } } if (!raid_conf->working_disks) { printk(KERN_ERR "raid1: no operational mirrors for %s\n", kdevname(MKDEV(MD_MAJOR, minor))); kfree(raid_conf); mddev->private = NULL; MOD_DEC_USE_COUNT; return -EIO; } raid_conf->raid_disks = sb->raid_disks; raid_conf->mddev = mddev; for (j = 0; !raid_conf->mirrors[j].operational; j++); raid_conf->last_used = j; for (i = raid_conf->raid_disks - 1; i >= 0; i--) { if (raid_conf->mirrors[i].operational) { PRINTK(("raid_conf->mirrors[%d].next == %d\n", i, j)); raid_conf->mirrors[i].next = j; j = i; } } if (check_consistency(mddev)) { printk(KERN_ERR "raid1: detected mirror differences -- run ckraid\n"); sb->state |= 1 << MD_SB_ERRORS; kfree(raid_conf); mddev->private = NULL; MOD_DEC_USE_COUNT; return -EIO; } /* * Regenerate the "device is in sync with the raid set" bit for * each device. */ for (i = 0; i < sb->nr_disks ; i++) { sb->disks[i].state &= ~(1 << MD_SYNC_DEVICE); for (j = 0; j < sb->raid_disks; j++) { if (!raid_conf->mirrors[j].operational) continue; if (sb->disks[i].number == raid_conf->mirrors[j].number) sb->disks[i].state |= 1 << MD_SYNC_DEVICE; } } sb->active_disks = raid_conf->working_disks; printk("raid1: raid set %s active with %d out of %d mirrors\n", kdevname(MKDEV(MD_MAJOR, minor)), sb->active_disks, sb->raid_disks); /* Ok, everything is just fine now */ return (0); } static int raid1_stop (int minor, struct md_dev *mddev) { struct raid1_data *raid_conf = (struct raid1_data *) mddev->private; kfree (raid_conf); mddev->private = NULL; MOD_DEC_USE_COUNT; return 0; } static struct md_personality raid1_personality= { "raid1", raid1_map, raid1_make_request, raid1_end_request, raid1_run, raid1_stop, raid1_status, NULL, /* no ioctls */ 0, raid1_error, raid1_hot_add_disk, /* raid1_hot_remove_drive */ NULL, raid1_mark_spare }; int raid1_init (void) { if ((raid1_thread = md_register_thread(raid1d, NULL)) == NULL) return -EBUSY; return register_md_personality (RAID1, &raid1_personality); } #ifdef MODULE int init_module (void) { return raid1_init(); } void cleanup_module (void) { md_unregister_thread (raid1_thread); unregister_md_personality (RAID1); } #endif |