Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 | /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching, * auto carrier detecting ethernet driver. Also known as the * "Happy Meal Ethernet" found on SunSwift SBUS cards. * * Copyright (C) 1996, 1998 David S. Miller (davem@caipfs.rutgers.edu) */ static char *version = "sunhme.c:v1.10 27/Jan/99 David S. Miller (davem@caipfs.rutgers.edu)\n"; #include <linux/module.h> #include <linux/config.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/malloc.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/init.h> #include <asm/system.h> #include <asm/bitops.h> #include <asm/io.h> #include <asm/dma.h> #include <linux/errno.h> #include <asm/byteorder.h> #include <asm/idprom.h> #include <asm/sbus.h> #include <asm/openprom.h> #include <asm/oplib.h> #include <asm/auxio.h> #include <asm/pgtable.h> #include <asm/irq.h> #ifndef __sparc_v9__ #include <asm/io-unit.h> #endif #include <asm/ethtool.h> #include <asm/uaccess.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #ifdef CONFIG_PCI #include <linux/pci.h> #include <asm/pbm.h> #endif #include "sunhme.h" #ifdef MODULE static struct happy_meal *root_happy_dev = NULL; #endif static struct quattro *qfe_sbus_list = NULL; #ifdef CONFIG_PCI static struct quattro *qfe_pci_list = NULL; #endif #undef HMEDEBUG #undef SXDEBUG #undef RXDEBUG #undef TXDEBUG #undef TXLOGGING #ifdef TXLOGGING struct hme_tx_logent { unsigned int tstamp; int tx_new, tx_old; unsigned int action; #define TXLOG_ACTION_IRQ 0x01 #define TXLOG_ACTION_TXMIT 0x02 #define TXLOG_ACTION_TBUSY 0x04 #define TXLOG_ACTION_NBUFS 0x08 unsigned int status; }; #define TX_LOG_LEN 128 static struct hme_tx_logent tx_log[TX_LOG_LEN]; static int txlog_cur_entry = 0; static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s) { struct hme_tx_logent *tlp; unsigned long flags; save_and_cli(flags); tlp = &tx_log[txlog_cur_entry]; tlp->tstamp = (unsigned int)jiffies; tlp->tx_new = hp->tx_new; tlp->tx_old = hp->tx_old; tlp->action = a; tlp->status = s; txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1); restore_flags(flags); } static __inline__ void tx_dump_log(void) { int i, this; this = txlog_cur_entry; for(i = 0; i < TX_LOG_LEN; i++) { printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i, tx_log[this].tstamp, tx_log[this].tx_new, tx_log[this].tx_old, tx_log[this].action, tx_log[this].status); this = (this + 1) & (TX_LOG_LEN - 1); } } static __inline__ void tx_dump_ring(struct happy_meal *hp) { struct hmeal_init_block *hb = hp->happy_block; struct happy_meal_txd *tp = &hb->happy_meal_txd[0]; int i; for(i = 0; i < TX_RING_SIZE; i+=4) { printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n", i, i + 4, le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr), le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr), le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr), le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr)); } } #else #define tx_add_log(hp, a, s) do { } while(0) #define tx_dump_log() do { } while(0) #define tx_dump_ring(hp) do { } while(0) #endif #ifdef HMEDEBUG #define HMD(x) printk x #else #define HMD(x) #endif /* #define AUTO_SWITCH_DEBUG */ #ifdef AUTO_SWITCH_DEBUG #define ASD(x) printk x #else #define ASD(x) #endif #define DEFAULT_IPG0 16 /* For lance-mode only */ #define DEFAULT_IPG1 8 /* For all modes */ #define DEFAULT_IPG2 4 /* For all modes */ #define DEFAULT_JAMSIZE 4 /* Toe jam */ /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */ #define BB_PUT_BIT(hp, tregs, bit) \ do { hme_write32(hp, &(tregs)->bb_data, (bit)); \ hme_write32(hp, &(tregs)->bb_clock, 0); \ hme_write32(hp, &(tregs)->bb_clock, 1); \ } while(0) #define BB_GET_BIT(hp, tregs, internal) \ ({ \ hme_write32(hp, &(tregs)->bb_clock, 0); \ hme_write32(hp, &(tregs)->bb_clock, 1); \ if(internal) \ hme_read32(hp, &(tregs)->cfg) & TCV_CFG_MDIO0; \ else \ hme_read32(hp, &(tregs)->cfg) & TCV_CFG_MDIO1; \ }) #define BB_GET_BIT2(hp, tregs, internal) \ ({ \ int retval; \ hme_write32(hp, &(tregs)->bb_clock, 0); \ udelay(1); \ if(internal) \ retval = hme_read32(hp, &(tregs)->cfg) & TCV_CFG_MDIO0; \ else \ retval = hme_read32(hp, &(tregs)->cfg) & TCV_CFG_MDIO1; \ hme_write32(hp, &(tregs)->bb_clock, 1); \ retval; \ }) #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */ static inline int happy_meal_bb_read(struct happy_meal *hp, struct hmeal_tcvregs *tregs, int reg) { volatile int unused; unsigned long tmp; int retval = 0; int i; ASD(("happy_meal_bb_read: reg=%d ", reg)); /* Enable the MIF BitBang outputs. */ hme_write32(hp, &tregs->bb_oenab, 1); /* Force BitBang into the idle state. */ for(i = 0; i < 32; i++) BB_PUT_BIT(hp, tregs, 1); /* Give it the read sequence. */ BB_PUT_BIT(hp, tregs, 0); BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 0); /* Give it the PHY address. */ tmp = hp->paddr & 0xff; for(i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Tell it what register we want to read. */ tmp = (reg & 0xff); for(i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Close down the MIF BitBang outputs. */ hme_write32(hp, &tregs->bb_oenab, 0); /* Now read in the value. */ unused = BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); for(i = 15; i >= 0; i--) retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); unused = BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); unused = BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); unused = BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal)); ASD(("value=%x\n", retval)); return retval; } static inline void happy_meal_bb_write(struct happy_meal *hp, struct hmeal_tcvregs *tregs, int reg, unsigned short value) { unsigned long tmp; int i; ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value)); /* Enable the MIF BitBang outputs. */ hme_write32(hp, &tregs->bb_oenab, 1); /* Force BitBang into the idle state. */ for(i = 0; i < 32; i++) BB_PUT_BIT(hp, tregs, 1); /* Give it write sequence. */ BB_PUT_BIT(hp, tregs, 0); BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 0); BB_PUT_BIT(hp, tregs, 1); /* Give it the PHY address. */ tmp = (hp->paddr & 0xff); for(i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Tell it what register we will be writing. */ tmp = (reg & 0xff); for(i = 4; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1)); /* Tell it to become ready for the bits. */ BB_PUT_BIT(hp, tregs, 1); BB_PUT_BIT(hp, tregs, 0); for(i = 15; i >= 0; i--) BB_PUT_BIT(hp, tregs, ((value >> i) & 1)); /* Close down the MIF BitBang outputs. */ hme_write32(hp, &tregs->bb_oenab, 0); } #define TCVR_READ_TRIES 16 static inline int happy_meal_tcvr_read(struct happy_meal *hp, struct hmeal_tcvregs *tregs, int reg) { int tries = TCVR_READ_TRIES; int retval; ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg)); if(hp->tcvr_type == none) { ASD(("no transceiver, value=TCVR_FAILURE\n")); return TCVR_FAILURE; } if(!(hp->happy_flags & HFLAG_FENABLE)) { ASD(("doing bit bang\n")); return happy_meal_bb_read(hp, tregs, reg); } hme_write32(hp, &tregs->frame, (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18))); while(!(hme_read32(hp, &tregs->frame) & 0x10000) && --tries) udelay(20); if(!tries) { printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n"); return TCVR_FAILURE; } retval = hme_read32(hp, &tregs->frame) & 0xffff; ASD(("value=%04x\n", retval)); return retval; } #define TCVR_WRITE_TRIES 16 static inline void happy_meal_tcvr_write(struct happy_meal *hp, struct hmeal_tcvregs *tregs, int reg, unsigned short value) { int tries = TCVR_WRITE_TRIES; ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value)); /* Welcome to Sun Microsystems, can I take your order please? */ if(!hp->happy_flags & HFLAG_FENABLE) return happy_meal_bb_write(hp, tregs, reg, value); /* Would you like fries with that? */ hme_write32(hp, &tregs->frame, (FRAME_WRITE | (hp->paddr << 23) | ((reg & 0xff) << 18) | (value & 0xffff))); while(!(hme_read32(hp, &tregs->frame) & 0x10000) && --tries) udelay(20); /* Anything else? */ if(!tries) printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n"); /* Fifty-two cents is your change, have a nice day. */ } /* Auto negotiation. The scheme is very simple. We have a timer routine * that keeps watching the auto negotiation process as it progresses. * The DP83840 is first told to start doing it's thing, we set up the time * and place the timer state machine in it's initial state. * * Here the timer peeks at the DP83840 status registers at each click to see * if the auto negotiation has completed, we assume here that the DP83840 PHY * will time out at some point and just tell us what (didn't) happen. For * complete coverage we only allow so many of the ticks at this level to run, * when this has expired we print a warning message and try another strategy. * This "other" strategy is to force the interface into various speed/duplex * configurations and we stop when we see a link-up condition before the * maximum number of "peek" ticks have occurred. * * Once a valid link status has been detected we configure the BigMAC and * the rest of the Happy Meal to speak the most efficient protocol we could * get a clean link for. The priority for link configurations, highest first * is: * 100 Base-T Full Duplex * 100 Base-T Half Duplex * 10 Base-T Full Duplex * 10 Base-T Half Duplex * * We start a new timer now, after a successful auto negotiation status has * been detected. This timer just waits for the link-up bit to get set in * the BMCR of the DP83840. When this occurs we print a kernel log message * describing the link type in use and the fact that it is up. * * If a fatal error of some sort is signalled and detected in the interrupt * service routine, and the chip is reset, or the link is ifconfig'd down * and then back up, this entire process repeats itself all over again. */ static int try_next_permutation(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); /* Downgrade from full to half duplex. Only possible * via ethtool. */ if(hp->sw_bmcr & BMCR_FULLDPLX) { hp->sw_bmcr &= ~(BMCR_FULLDPLX); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); return 0; } /* Downgrade from 100 to 10. */ if(hp->sw_bmcr & BMCR_SPEED100) { hp->sw_bmcr &= ~(BMCR_SPEED100); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); return 0; } /* We've tried everything. */ return -1; } static void display_link_mode(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { printk(KERN_INFO "%s: Link is up using ", hp->dev->name); if(hp->tcvr_type == external) printk("external "); else printk("internal "); printk("transceiver at "); hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, DP83840_LPA); if(hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) { if(hp->sw_lpa & LPA_100FULL) printk("100Mb/s, Full Duplex.\n"); else printk("100Mb/s, Half Duplex.\n"); } else { if(hp->sw_lpa & LPA_10FULL) printk("10Mb/s, Full Duplex.\n"); else printk("10Mb/s, Half Duplex.\n"); } } static void display_forced_link_mode(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name); if(hp->tcvr_type == external) printk("external "); else printk("internal "); printk("transceiver at "); hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(hp->sw_bmcr & BMCR_SPEED100) printk("100Mb/s, "); else printk("10Mb/s, "); if(hp->sw_bmcr & BMCR_FULLDPLX) printk("Full Duplex.\n"); else printk("Half Duplex.\n"); } static int set_happy_link_modes(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { int full; /* All we care about is making sure the bigmac tx_cfg has a * proper duplex setting. */ if(hp->timer_state == arbwait) { hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, DP83840_LPA); if(!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL))) goto no_response; if(hp->sw_lpa & LPA_100FULL) full = 1; else if(hp->sw_lpa & LPA_100HALF) full = 0; else if(hp->sw_lpa & LPA_10FULL) full = 1; else full = 0; } else { /* Forcing a link mode. */ hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(hp->sw_bmcr & BMCR_FULLDPLX) full = 1; else full = 0; } /* Before changing other bits in the tx_cfg register, and in * general any of other the TX config registers too, you * must: * 1) Clear Enable * 2) Poll with reads until that bit reads back as zero * 3) Make TX configuration changes * 4) Set Enable once more */ hme_write32(hp, &hp->bigmacregs->tx_cfg, hme_read32(hp, &hp->bigmacregs->tx_cfg) & ~(BIGMAC_TXCFG_ENABLE)); while(hme_read32(hp, &hp->bigmacregs->tx_cfg) & BIGMAC_TXCFG_ENABLE) barrier(); if(full) { hp->happy_flags |= HFLAG_FULL; hme_write32(hp, &hp->bigmacregs->tx_cfg, hme_read32(hp, &hp->bigmacregs->tx_cfg) | BIGMAC_TXCFG_FULLDPLX); } else { hp->happy_flags &= ~(HFLAG_FULL); hme_write32(hp, &hp->bigmacregs->tx_cfg, hme_read32(hp, &hp->bigmacregs->tx_cfg) & ~(BIGMAC_TXCFG_FULLDPLX)); } hme_write32(hp, &hp->bigmacregs->tx_cfg, hme_read32(hp, &hp->bigmacregs->tx_cfg) | BIGMAC_TXCFG_ENABLE); return 0; no_response: return 1; } static int happy_meal_init(struct happy_meal *hp, int from_irq); static int is_lucent_phy(struct happy_meal *hp) { struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned short mr2, mr3; int ret = 0; mr2 = happy_meal_tcvr_read(hp, tregs, 2); mr3 = happy_meal_tcvr_read(hp, tregs, 3); if ((mr2 & 0xffff) == 0x0180 && ((mr3 & 0xffff) >> 10) == 0x1d) { #if 0 printk("HMEDEBUG: Lucent PHY detected.\n"); #endif ret = 1; } return ret; } static void happy_meal_timer(unsigned long data) { struct happy_meal *hp = (struct happy_meal *) data; struct hmeal_tcvregs *tregs = hp->tcvregs; int restart_timer = 0; hp->timer_ticks++; switch(hp->timer_state) { case arbwait: /* Only allow for 5 ticks, thats 10 seconds and much too * long to wait for arbitration to complete. */ if(hp->timer_ticks >= 10) { /* Enter force mode. */ do_force_mode: hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n", hp->dev->name); hp->sw_bmcr = BMCR_SPEED100; happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); if (!is_lucent_phy(hp)) { /* OK, seems we need do disable the transceiver for * the first tick to make sure we get an accurate * link state at the second tick. */ hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); } hp->timer_state = ltrywait; hp->timer_ticks = 0; restart_timer = 1; } else { /* Anything interesting happen? */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); if(hp->sw_bmsr & BMSR_ANEGCOMPLETE) { int ret; /* Just what we've been waiting for... */ ret = set_happy_link_modes(hp, tregs); if(ret) { /* Ooops, something bad happened, go to force * mode. * * XXX Broken hubs which don't support 802.3u * XXX auto-negotiation make this happen as well. */ goto do_force_mode; } /* Success, at least so far, advance our state engine. */ hp->timer_state = lupwait; restart_timer = 1; } else { restart_timer = 1; } } break; case lupwait: /* Auto negotiation was successful and we are awaiting a * link up status. I have decided to let this timer run * forever until some sort of error is signalled, reporting * a message to the user at 10 second intervals. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); if(hp->sw_bmsr & BMSR_LSTATUS) { /* Wheee, it's up, display the link mode in use and put * the timer to sleep. */ display_link_mode(hp, tregs); hp->timer_state = asleep; restart_timer = 0; } else { if(hp->timer_ticks >= 10) { printk(KERN_NOTICE "%s: Auto negotiation successful, link still " "not completely up.\n", hp->dev->name); hp->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } break; case ltrywait: /* Making the timeout here too long can make it take * annoyingly long to attempt all of the link mode * permutations, but then again this is essentially * error recovery code for the most part. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); if(hp->timer_ticks == 1) { /* Re-enable transceiver, we'll re-enable the transceiver next * tick, then check link state on the following tick. * XXX But dont do this on Lucent PHY -DaveM */ if (!is_lucent_phy(hp)) { hp->sw_csconfig |= CSCONFIG_TCVDISAB; happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); } restart_timer = 1; break; } if(hp->timer_ticks == 2) { /* XXX See above about Lucent PHY -DaveM */ if (!is_lucent_phy(hp)) { hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); } restart_timer = 1; break; } if(hp->sw_bmsr & BMSR_LSTATUS) { /* Force mode selection success. */ display_forced_link_mode(hp, tregs); set_happy_link_modes(hp, tregs); /* XXX error? then what? */ hp->timer_state = asleep; restart_timer = 0; } else { if(hp->timer_ticks >= 4) { /* 6 seconds or so... */ int ret; ret = try_next_permutation(hp, tregs); if(ret == -1) { /* Aieee, tried them all, reset the * chip and try all over again. */ /* Let the user know... */ printk(KERN_NOTICE "%s: Link down, cable problem?\n", hp->dev->name); ret = happy_meal_init(hp, 0); if(ret) { /* ho hum... */ printk(KERN_ERR "%s: Error, cannot re-init the " "Happy Meal.\n", hp->dev->name); } return; } hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); if (!is_lucent_phy(hp)) { hp->sw_csconfig |= CSCONFIG_TCVDISAB; happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); } hp->timer_ticks = 0; restart_timer = 1; } else { restart_timer = 1; } } break; case asleep: default: /* Can't happens.... */ printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n", hp->dev->name); restart_timer = 0; hp->timer_ticks = 0; hp->timer_state = asleep; /* foo on you */ break; }; if(restart_timer) { hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */ add_timer(&hp->happy_timer); } } #define TX_RESET_TRIES 32 #define RX_RESET_TRIES 32 static inline void happy_meal_tx_reset(struct happy_meal *hp, struct hmeal_bigmacregs *bregs) { int tries = TX_RESET_TRIES; HMD(("happy_meal_tx_reset: reset, ")); /* Would you like to try our SMCC Delux? */ hme_write32(hp, &bregs->tx_swreset, 0); while((hme_read32(hp, &bregs->tx_swreset) & 1) && --tries) udelay(20); /* Lettuce, tomato, buggy hardware (no extra charge)? */ if(!tries) printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!"); /* Take care. */ HMD(("done\n")); } static inline void happy_meal_rx_reset(struct happy_meal *hp, struct hmeal_bigmacregs *bregs) { int tries = RX_RESET_TRIES; HMD(("happy_meal_rx_reset: reset, ")); /* We have a special on GNU/Viking hardware bugs today. */ hme_write32(hp, &bregs->rx_swreset, 0); while((hme_read32(hp, &bregs->rx_swreset) & 1) && --tries) udelay(20); /* Will that be all? */ if(!tries) printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!"); /* Don't forget your vik_1137125_wa. Have a nice day. */ HMD(("done\n")); } #define STOP_TRIES 16 static inline void happy_meal_stop(struct happy_meal *hp, struct hmeal_gregs *gregs) { int tries = STOP_TRIES; HMD(("happy_meal_stop: reset, ")); /* We're consolidating our STB products, it's your lucky day. */ hme_write32(hp, &gregs->sw_reset, GREG_RESET_ALL); while(hme_read32(hp, &gregs->sw_reset) && --tries) udelay(20); /* Come back next week when we are "Sun Microelectronics". */ if(!tries) printk(KERN_ERR "happy meal: Fry guys."); /* Remember: "Different name, same old buggy as shit hardware." */ HMD(("done\n")); } static void happy_meal_get_counters(struct happy_meal *hp, struct hmeal_bigmacregs *bregs) { struct net_device_stats *stats = &hp->net_stats; stats->rx_crc_errors += hme_read32(hp, &bregs->rcrce_ctr); hme_write32(hp, &bregs->rcrce_ctr, 0); stats->rx_frame_errors += hme_read32(hp, &bregs->unale_ctr); hme_write32(hp, &bregs->unale_ctr, 0); stats->rx_length_errors += hme_read32(hp, &bregs->gle_ctr); hme_write32(hp, &bregs->gle_ctr, 0); stats->tx_aborted_errors += hme_read32(hp, &bregs->ex_ctr); stats->collisions += (hme_read32(hp, &bregs->ex_ctr) + hme_read32(hp, &bregs->lt_ctr)); hme_write32(hp, &bregs->ex_ctr, 0); hme_write32(hp, &bregs->lt_ctr, 0); } static inline void happy_meal_poll_start(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { unsigned long tmp; int speed; ASD(("happy_meal_poll_start: ")); if(!(hp->happy_flags & HFLAG_POLLENABLE)) { HMD(("polling disabled, return\n")); return; } /* Start the MIF polling on the external transceiver. */ ASD(("polling on, ")); tmp = hme_read32(hp, &tregs->cfg); tmp &= ~(TCV_CFG_PDADDR | TCV_CFG_PREGADDR); tmp |= ((hp->paddr & 0x1f) << 10); tmp |= (TCV_PADDR_ETX << 3); tmp |= TCV_CFG_PENABLE; hme_write32(hp, &tregs->cfg, tmp); /* Let the bits set. */ udelay(200); /* We are polling now. */ ASD(("now polling, ")); hp->happy_flags |= HFLAG_POLL; /* Clear the poll flags, get the basic status as of now. */ hp->poll_flag = 0; hp->poll_data = tregs->status >> 16; if(hp->happy_flags & HFLAG_AUTO) speed = hp->auto_speed; else speed = hp->forced_speed; /* Listen only for the MIF interrupts we want to hear. */ ASD(("mif ints on, ")); if(speed == 100) hme_write32(hp, &tregs->int_mask, 0xfffb); else hme_write32(hp, &tregs->int_mask, 0xfff9); ASD(("done\n")); } static inline void happy_meal_poll_stop(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { ASD(("happy_meal_poll_stop: ")); /* If polling disabled or not polling already, nothing to do. */ if((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) != (HFLAG_POLLENABLE | HFLAG_POLL)) { HMD(("not polling, return\n")); return; } /* Shut up the MIF. */ ASD(("were polling, mif ints off, ")); hme_write32(hp, &tregs->int_mask, 0xffff); /* Turn off polling. */ ASD(("polling off, ")); hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) & ~(TCV_CFG_PENABLE)); /* We are no longer polling. */ hp->happy_flags &= ~(HFLAG_POLL); /* Let the bits set. */ udelay(200); ASD(("done\n")); } /* Only Sun can take such nice parts and fuck up the programming interface * like this. Good job guys... */ #define TCVR_RESET_TRIES 16 /* It should reset quickly */ #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */ static int happy_meal_tcvr_reset(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { unsigned long tconfig; int result, tries = TCVR_RESET_TRIES; tconfig = hme_read32(hp, &tregs->cfg); ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig)); if(hp->tcvr_type == external) { ASD(("external<")); hme_write32(hp, &tregs->cfg, tconfig & ~(TCV_CFG_PSELECT)); hp->tcvr_type = internal; hp->paddr = TCV_PADDR_ITX; ASD(("ISOLATE,")); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); result = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(result == TCVR_FAILURE) { ASD(("phyread_fail>\n")); return -1; } ASD(("phyread_ok,PSELECT>")); hme_write32(hp, &tregs->cfg, tconfig | TCV_CFG_PSELECT); hp->tcvr_type = external; hp->paddr = TCV_PADDR_ETX; } else { if(tconfig & TCV_CFG_MDIO1) { ASD(("internal<PSELECT,")); hme_write32(hp, &tregs->cfg, (tconfig | TCV_CFG_PSELECT)); ASD(("ISOLATE,")); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE)); result = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(result == TCVR_FAILURE) { ASD(("phyread_fail>\n")); return -1; } ASD(("phyread_ok,~PSELECT>")); hme_write32(hp, &tregs->cfg, (tconfig & ~(TCV_CFG_PSELECT))); hp->tcvr_type = internal; hp->paddr = TCV_PADDR_ITX; } } ASD(("BMCR_RESET ")); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, BMCR_RESET); while(--tries) { result = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(result == TCVR_FAILURE) return -1; hp->sw_bmcr = result; if(!(result & BMCR_RESET)) break; udelay(20); } if(!tries) { ASD(("BMCR RESET FAILED!\n")); return -1; } ASD(("RESET_OK\n")); /* Get fresh copies of the PHY registers. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, DP83840_PHYSID1); hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, DP83840_PHYSID2); hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, DP83840_ADVERTISE); ASD(("UNISOLATE")); hp->sw_bmcr &= ~(BMCR_ISOLATE); happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); tries = TCVR_UNISOLATE_TRIES; while(--tries) { result = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(result == TCVR_FAILURE) return -1; if(!(result & BMCR_ISOLATE)) break; udelay(20); } if(!tries) { ASD((" FAILED!\n")); return -1; } ASD((" SUCCESS and CSCONFIG_DFBYPASS\n")); if (!is_lucent_phy(hp)) { result = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS)); } return 0; } /* Figure out whether we have an internal or external transceiver. */ static void happy_meal_transceiver_check(struct happy_meal *hp, struct hmeal_tcvregs *tregs) { unsigned long tconfig = hme_read32(hp, &tregs->cfg); ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig)); if(hp->happy_flags & HFLAG_POLL) { /* If we are polling, we must stop to get the transceiver type. */ ASD(("<polling> ")); if(hp->tcvr_type == internal) { if(tconfig & TCV_CFG_MDIO1) { ASD(("<internal> <poll stop> ")); happy_meal_poll_stop(hp, tregs); hp->paddr = TCV_PADDR_ETX; hp->tcvr_type = external; ASD(("<external>\n")); tconfig &= ~(TCV_CFG_PENABLE); tconfig |= TCV_CFG_PSELECT; hme_write32(hp, &tregs->cfg, tconfig); } } else { if(hp->tcvr_type == external) { ASD(("<external> ")); if(!(hme_read32(hp, &tregs->status) >> 16)) { ASD(("<poll stop> ")); happy_meal_poll_stop(hp, tregs); hp->paddr = TCV_PADDR_ITX; hp->tcvr_type = internal; ASD(("<internal>\n")); hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) & ~(TCV_CFG_PSELECT)); } ASD(("\n")); } else { ASD(("<none>\n")); } } } else { unsigned long reread = hme_read32(hp, &tregs->cfg); /* Else we can just work off of the MDIO bits. */ ASD(("<not polling> ")); if(reread & TCV_CFG_MDIO1) { hme_write32(hp, &tregs->cfg, tconfig | TCV_CFG_PSELECT); hp->paddr = TCV_PADDR_ETX; hp->tcvr_type = external; ASD(("<external>\n")); } else { if(reread & TCV_CFG_MDIO0) { hme_write32(hp, &tregs->cfg, tconfig & ~(TCV_CFG_PSELECT)); hp->paddr = TCV_PADDR_ITX; hp->tcvr_type = internal; ASD(("<internal>\n")); } else { printk(KERN_ERR "happy meal: Transceiver and a coke please."); hp->tcvr_type = none; /* Grrr... */ ASD(("<none>\n")); } } } } /* The receive ring buffers are a bit tricky to get right. Here goes... * * The buffers we dma into must be 64 byte aligned. So we use a special * alloc_skb() routine for the happy meal to allocate 64 bytes more than * we really need. * * We use skb_reserve() to align the data block we get in the skb. We * also program the etxregs->cfg register to use an offset of 2. This * imperical constant plus the ethernet header size will always leave * us with a nicely aligned ip header once we pass things up to the * protocol layers. * * The numbers work out to: * * Max ethernet frame size 1518 * Ethernet header size 14 * Happy Meal base offset 2 * * Say a skb data area is at 0xf001b010, and its size alloced is * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes. * * First our alloc_skb() routine aligns the data base to a 64 byte * boundry. We now have 0xf001b040 as our skb data address. We * plug this into the receive descriptor address. * * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset. * So now the data we will end up looking at starts at 0xf001b042. When * the packet arrives, we will check out the size received and subtract * this from the skb->length. Then we just pass the packet up to the * protocols as is, and allocate a new skb to replace this slot we have * just received from. * * The ethernet layer will strip the ether header from the front of the * skb we just sent to it, this leaves us with the ip header sitting * nicely aligned at 0xf001b050. Also, for tcp and udp packets the * Happy Meal has even checksummed the tcp/udp data for us. The 16 * bit checksum is obtained from the low bits of the receive descriptor * flags, thus: * * skb->csum = rxd->rx_flags & 0xffff; * skb->ip_summed = CHECKSUM_HW; * * before sending off the skb to the protocols, and we are good as gold. */ static inline void happy_meal_clean_rings(struct happy_meal *hp) { int i; for(i = 0; i < RX_RING_SIZE; i++) { if(hp->rx_skbs[i] != NULL) { dev_kfree_skb(hp->rx_skbs[i]); hp->rx_skbs[i] = NULL; } } for(i = 0; i < TX_RING_SIZE; i++) { if(hp->tx_skbs[i] != NULL) { dev_kfree_skb(hp->tx_skbs[i]); hp->tx_skbs[i] = NULL; } } } static void happy_meal_init_rings(struct happy_meal *hp, int from_irq) { struct hmeal_init_block *hb = hp->happy_block; struct device *dev = hp->dev; int i, gfp_flags = GFP_KERNEL; if(from_irq || in_interrupt()) gfp_flags = GFP_ATOMIC; HMD(("happy_meal_init_rings: counters to zero, ")); hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0; /* Free any skippy bufs left around in the rings. */ HMD(("clean, ")); happy_meal_clean_rings(hp); /* Now get new skippy bufs for the receive ring. */ HMD(("init rxring, ")); for(i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb; skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, gfp_flags | GFP_DMA); if(!skb) continue; hp->rx_skbs[i] = skb; skb->dev = dev; /* Because we reserve afterwards. */ skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET)); #ifdef CONFIG_PCI if(hp->happy_flags & HFLAG_PCI) { pcihme_write_rxd(&hb->happy_meal_rxd[i], (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), (u32)virt_to_bus((volatile void *)skb->data)); } else #endif #ifndef __sparc_v9__ if (sparc_cpu_model == sun4d) { __u32 va = (__u32)hp->sun4d_buffers + i * PAGE_SIZE; hb->happy_meal_rxd[i].rx_addr = iounit_map_dma_page(va, skb->data, hp->happy_sbus_dev->my_bus); hb->happy_meal_rxd[i].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); } else #endif { hb->happy_meal_rxd[i].rx_addr = sbus_dvma_addr(skb->data); hb->happy_meal_rxd[i].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); } skb_reserve(skb, RX_OFFSET); } HMD(("init txring, ")); for(i = 0; i < TX_RING_SIZE; i++) hb->happy_meal_txd[i].tx_flags = 0; HMD(("done\n")); } #ifndef __sparc_v9__ static void sun4c_happy_meal_init_rings(struct happy_meal *hp) { struct hmeal_init_block *hb = hp->happy_block; __u32 hbufs = hp->s4c_buf_dvma; int i; HMD(("happy_meal_init_rings: counters to zero, ")); hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0; HMD(("init rxring, ")); for(i = 0; i < RX_RING_SIZE; i++) { hb->happy_meal_rxd[i].rx_addr = hbufs + hbuf_offset(rx_buf, i); hb->happy_meal_rxd[i].rx_flags = (RXFLAG_OWN | ((SUN4C_RX_BUFF_SIZE - RX_OFFSET) << 16)); } HMD(("init txring, ")); for(i = 0; i < TX_RING_SIZE; i++) hb->happy_meal_txd[i].tx_flags = 0; HMD(("done\n")); } #endif static void happy_meal_begin_auto_negotiation(struct happy_meal *hp, struct hmeal_tcvregs *tregs, struct ethtool_cmd *ep) { int timeout; /* Read all of the registers we are interested in now. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); hp->sw_physid1 = happy_meal_tcvr_read(hp, tregs, DP83840_PHYSID1); hp->sw_physid2 = happy_meal_tcvr_read(hp, tregs, DP83840_PHYSID2); /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */ hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, DP83840_ADVERTISE); if(ep == NULL || ep->autoneg == AUTONEG_ENABLE) { /* Advertise everything we can support. */ if(hp->sw_bmsr & BMSR_10HALF) hp->sw_advertise |= (ADVERTISE_10HALF); else hp->sw_advertise &= ~(ADVERTISE_10HALF); if(hp->sw_bmsr & BMSR_10FULL) hp->sw_advertise |= (ADVERTISE_10FULL); else hp->sw_advertise &= ~(ADVERTISE_10FULL); if(hp->sw_bmsr & BMSR_100HALF) hp->sw_advertise |= (ADVERTISE_100HALF); else hp->sw_advertise &= ~(ADVERTISE_100HALF); if(hp->sw_bmsr & BMSR_100FULL) hp->sw_advertise |= (ADVERTISE_100FULL); else hp->sw_advertise &= ~(ADVERTISE_100FULL); happy_meal_tcvr_write(hp, tregs, DP83840_ADVERTISE, hp->sw_advertise); /* XXX Currently no Happy Meal cards I know off support 100BaseT4, * XXX and this is because the DP83840 does not support it, changes * XXX would need to be made to the tx/rx logic in the driver as well * XXX so I completely skip checking for it in the BMSR for now. */ #ifdef AUTO_SWITCH_DEBUG ASD(("%s: Advertising [ ", hp->dev->name)); if(hp->sw_advertise & ADVERTISE_10HALF) ASD(("10H ")); if(hp->sw_advertise & ADVERTISE_10FULL) ASD(("10F ")); if(hp->sw_advertise & ADVERTISE_100HALF) ASD(("100H ")); if(hp->sw_advertise & ADVERTISE_100FULL) ASD(("100F ")); #endif /* Enable Auto-Negotiation, this is usually on already... */ hp->sw_bmcr |= BMCR_ANENABLE; happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); /* Restart it to make sure it is going. */ hp->sw_bmcr |= BMCR_ANRESTART; happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); /* BMCR_ANRESTART self clears when the process has begun. */ timeout = 64; /* More than enough. */ while(--timeout) { hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); if(!(hp->sw_bmcr & BMCR_ANRESTART)) break; /* got it. */ udelay(10); } if(!timeout) { printk(KERN_ERR "%s: Happy Meal would not start auto negotiation " "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr); printk(KERN_NOTICE "%s: Performing force link detection.\n", hp->dev->name); goto force_link; } else { hp->timer_state = arbwait; } } else { force_link: /* Force the link up, trying first a particular mode. * Either we are here at the request of ethtool or * because the Happy Meal would not start to autoneg. */ /* Disable auto-negotiation in BMCR, enable the duplex and * speed setting, init the timer state machine, and fire it off. */ if(ep == NULL || ep->autoneg == AUTONEG_ENABLE) { hp->sw_bmcr = BMCR_SPEED100; } else { if(ep->speed == SPEED_100) hp->sw_bmcr = BMCR_SPEED100; else hp->sw_bmcr = 0; if(ep->duplex == DUPLEX_FULL) hp->sw_bmcr |= BMCR_FULLDPLX; } happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); if (!is_lucent_phy(hp)) { /* OK, seems we need do disable the transceiver for the first * tick to make sure we get an accurate link state at the * second tick. */ hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG); hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB); happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig); } hp->timer_state = ltrywait; } hp->timer_ticks = 0; hp->happy_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */ hp->happy_timer.data = (unsigned long) hp; hp->happy_timer.function = &happy_meal_timer; add_timer(&hp->happy_timer); } #define CRC_POLYNOMIAL_BE 0x04c11db7UL /* Ethernet CRC, big endian */ #define CRC_POLYNOMIAL_LE 0xedb88320UL /* Ethernet CRC, little endian */ static int happy_meal_init(struct happy_meal *hp, int from_irq) { struct hmeal_gregs *gregs = hp->gregs; struct hmeal_etxregs *etxregs = hp->etxregs; struct hmeal_erxregs *erxregs = hp->erxregs; struct hmeal_bigmacregs *bregs = hp->bigmacregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned long regtmp, rxcfg; unsigned char *e = &hp->dev->dev_addr[0]; /* If auto-negotiation timer is running, kill it. */ del_timer(&hp->happy_timer); HMD(("happy_meal_init: happy_flags[%08x] ", hp->happy_flags)); if(!(hp->happy_flags & HFLAG_INIT)) { HMD(("set HFLAG_INIT, ")); hp->happy_flags |= HFLAG_INIT; happy_meal_get_counters(hp, bregs); } /* Stop polling. */ HMD(("to happy_meal_poll_stop\n")); happy_meal_poll_stop(hp, tregs); /* Stop transmitter and receiver. */ HMD(("happy_meal_init: to happy_meal_stop\n")); happy_meal_stop(hp, gregs); /* Alloc and reset the tx/rx descriptor chains. */ HMD(("happy_meal_init: to happy_meal_init_rings\n")); #ifndef __sparc_v9__ if(sparc_cpu_model == sun4c) sun4c_happy_meal_init_rings(hp); else #endif happy_meal_init_rings(hp, from_irq); /* Shut up the MIF. */ HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ", hme_read32(hp, &tregs->int_mask))); hme_write32(hp, &tregs->int_mask, 0xffff); /* See if we can enable the MIF frame on this card to speak to the DP83840. */ if(hp->happy_flags & HFLAG_FENABLE) { HMD(("use frame old[%08x], ", hme_read32(hp, &tregs->cfg))); hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) & ~(TCV_CFG_BENABLE)); } else { HMD(("use bitbang old[%08x], ", hme_read32(hp, &tregs->cfg))); hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) | TCV_CFG_BENABLE); } /* Check the state of the transceiver. */ HMD(("to happy_meal_transceiver_check\n")); happy_meal_transceiver_check(hp, tregs); /* Put the Big Mac into a sane state. */ HMD(("happy_meal_init: ")); switch(hp->tcvr_type) { case none: /* Cannot operate if we don't know the transceiver type! */ HMD(("AAIEEE no transceiver type, EAGAIN")); return -EAGAIN; case internal: /* Using the MII buffers. */ HMD(("internal, using MII, ")); hme_write32(hp, &bregs->xif_cfg, 0); break; case external: /* Not using the MII, disable it. */ HMD(("external, disable MII, ")); hme_write32(hp, &bregs->xif_cfg, BIGMAC_XCFG_MIIDISAB); break; }; if(happy_meal_tcvr_reset(hp, tregs)) return -EAGAIN; /* Reset the Happy Meal Big Mac transceiver and the receiver. */ HMD(("tx/rx reset, ")); happy_meal_tx_reset(hp, bregs); happy_meal_rx_reset(hp, bregs); /* Set jam size and inter-packet gaps to reasonable defaults. */ HMD(("jsize/ipg1/ipg2, ")); hme_write32(hp, &bregs->jsize, DEFAULT_JAMSIZE); hme_write32(hp, &bregs->ipkt_gap1, DEFAULT_IPG1); hme_write32(hp, &bregs->ipkt_gap2, DEFAULT_IPG2); /* Load up the MAC address and random seed. */ HMD(("rseed/macaddr, ")); /* The docs recommend to use the 10LSB of our MAC here. */ hme_write32(hp, &bregs->rand_seed, ((e[5] | e[4]<<8)&0x3ff)); hme_write32(hp, &bregs->mac_addr2, ((e[4] << 8) | e[5])); hme_write32(hp, &bregs->mac_addr1, ((e[2] << 8) | e[3])); hme_write32(hp, &bregs->mac_addr0, ((e[0] << 8) | e[1])); HMD(("htable, ")); if((hp->dev->flags & IFF_ALLMULTI) || (hp->dev->mc_count > 64)) { hme_write32(hp, &bregs->htable0, 0xffff); hme_write32(hp, &bregs->htable1, 0xffff); hme_write32(hp, &bregs->htable2, 0xffff); hme_write32(hp, &bregs->htable3, 0xffff); } else if((hp->dev->flags & IFF_PROMISC) == 0) { u16 hash_table[4]; struct dev_mc_list *dmi = hp->dev->mc_list; char *addrs; int i, j, bit, byte; u32 crc, poly = CRC_POLYNOMIAL_LE; for(i = 0; i < 4; i++) hash_table[i] = 0; for(i = 0; i < hp->dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; if(!(*addrs & 1)) continue; crc = 0xffffffffU; for(byte = 0; byte < 6; byte++) { for(bit = *addrs++, j = 0; j < 8; j++, bit >>= 1) { int test; test = ((bit ^ crc) & 0x01); crc >>= 1; if(test) crc = crc ^ poly; } } crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } hme_write32(hp, &bregs->htable0, hash_table[0]); hme_write32(hp, &bregs->htable1, hash_table[1]); hme_write32(hp, &bregs->htable2, hash_table[2]); hme_write32(hp, &bregs->htable3, hash_table[3]); } else { hme_write32(hp, &bregs->htable3, 0); hme_write32(hp, &bregs->htable2, 0); hme_write32(hp, &bregs->htable1, 0); hme_write32(hp, &bregs->htable0, 0); } /* Set the RX and TX ring ptrs. */ HMD(("ring ptrs rxr[%08x] txr[%08x]\n", (hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)), (hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)))); hme_write32(hp, &erxregs->rx_ring, (hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))); hme_write32(hp, &etxregs->tx_ring, (hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))); /* Set the supported burst sizes. */ HMD(("happy_meal_init: old[%08x] bursts<", hme_read32(hp, &gregs->cfg))); #ifdef __sparc_v9__ /* XXX Can sun4d do these too? */ if(hp->happy_bursts & DMA_BURST64) { u32 gcfg = GREG_CFG_BURST64; /* I have no idea if I should set the extended * transfer mode bit for Cheerio, so for now I * do not. -DaveM */ if((hp->happy_flags & HFLAG_PCI) == 0) { mmu_set_sbus64(hp->happy_sbus_dev, hp->happy_bursts); gcfg |= GREG_CFG_64BIT; } HMD(("64>")); hme_write32(hp, &gregs->cfg, gcfg); } else #endif if(hp->happy_bursts & DMA_BURST32) { HMD(("32>")); hme_write32(hp, &gregs->cfg, GREG_CFG_BURST32); } else if(hp->happy_bursts & DMA_BURST16) { HMD(("16>")); hme_write32(hp, &gregs->cfg, GREG_CFG_BURST16); } else { HMD(("XXX>")); hme_write32(hp, &gregs->cfg, 0); } /* Turn off interrupts we do not want to hear. */ HMD((", enable global interrupts, ")); hme_write32(hp, &gregs->imask, (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP | GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR)); /* Set the transmit ring buffer size. */ HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE, hme_read32(hp, &etxregs->tx_rsize))); hme_write32(hp, &etxregs->tx_rsize, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1); /* Enable transmitter DVMA. */ HMD(("tx dma enable old[%08x], ", hme_read32(hp, &etxregs->cfg))); hme_write32(hp, &etxregs->cfg, hme_read32(hp, &etxregs->cfg) | ETX_CFG_DMAENABLE); /* This chip really rots, for the receiver sometimes when you * write to it's control registers not all the bits get there * properly. I cannot think of a sane way to provide complete * coverage for this hardware bug yet. */ HMD(("erx regs bug old[%08x]\n", hme_read32(hp, &erxregs->cfg))); hme_write32(hp, &erxregs->cfg, ERX_CFG_DEFAULT(RX_OFFSET)); regtmp = hme_read32(hp, &erxregs->cfg); hme_write32(hp, &erxregs->cfg, ERX_CFG_DEFAULT(RX_OFFSET)); if(hme_read32(hp, &erxregs->cfg) != ERX_CFG_DEFAULT(RX_OFFSET)) { printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n"); printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08lx\n", ERX_CFG_DEFAULT(RX_OFFSET), regtmp); /* XXX Should return failure here... */ } /* Enable Big Mac hash table filter. */ HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ", hme_read32(hp, &bregs->rx_cfg))); rxcfg = BIGMAC_RXCFG_HENABLE; if(hp->dev->flags & IFF_PROMISC) rxcfg |= BIGMAC_RXCFG_PMISC; hme_write32(hp, &bregs->rx_cfg, rxcfg); /* Let the bits settle in the chip. */ udelay(10); /* Ok, configure the Big Mac transmitter. */ HMD(("BIGMAC init, ")); regtmp = 0; if(hp->happy_flags & HFLAG_FULL) regtmp |= BIGMAC_TXCFG_FULLDPLX; hme_write32(hp, &bregs->tx_cfg, regtmp | BIGMAC_TXCFG_DGIVEUP); /* Enable the output drivers no matter what. */ regtmp = BIGMAC_XCFG_ODENABLE; /* If card can do lance mode, enable it. */ if(hp->happy_flags & HFLAG_LANCE) regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE; /* Disable the MII buffers if using external transceiver. */ if(hp->tcvr_type == external) regtmp |= BIGMAC_XCFG_MIIDISAB; HMD(("XIF config old[%08x], ", hme_read32(hp, &bregs->xif_cfg))); hme_write32(hp, &bregs->xif_cfg, regtmp); /* Start things up. */ HMD(("tx old[%08x] and rx [%08x] ON!\n", hme_read32(hp, &bregs->tx_cfg), hme_read32(hp, &bregs->rx_cfg))); hme_write32(hp, &bregs->tx_cfg, hme_read32(hp, &bregs->tx_cfg) | BIGMAC_TXCFG_ENABLE); hme_write32(hp, &bregs->rx_cfg, hme_read32(hp, &bregs->rx_cfg) | BIGMAC_RXCFG_ENABLE); /* Get the autonegotiation started, and the watch timer ticking. */ happy_meal_begin_auto_negotiation(hp, tregs, NULL); /* Success. */ return 0; } static void happy_meal_set_initial_advertisement(struct happy_meal *hp) { struct hmeal_tcvregs *tregs = hp->tcvregs; struct hmeal_bigmacregs *bregs = hp->bigmacregs; struct hmeal_gregs *gregs = hp->gregs; happy_meal_stop(hp, gregs); hme_write32(hp, &tregs->int_mask, 0xffff); if(hp->happy_flags & HFLAG_FENABLE) hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) & ~(TCV_CFG_BENABLE)); else hme_write32(hp, &tregs->cfg, hme_read32(hp, &tregs->cfg) | TCV_CFG_BENABLE); happy_meal_transceiver_check(hp, tregs); switch(hp->tcvr_type) { case none: return; case internal: hme_write32(hp, &bregs->xif_cfg, 0); break; case external: hme_write32(hp, &bregs->xif_cfg, BIGMAC_XCFG_MIIDISAB); break; }; if(happy_meal_tcvr_reset(hp, tregs)) return; /* Latch PHY registers as of now. */ hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, DP83840_BMSR); hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, DP83840_ADVERTISE); /* Advertise everything we can support. */ if(hp->sw_bmsr & BMSR_10HALF) hp->sw_advertise |= (ADVERTISE_10HALF); else hp->sw_advertise &= ~(ADVERTISE_10HALF); if(hp->sw_bmsr & BMSR_10FULL) hp->sw_advertise |= (ADVERTISE_10FULL); else hp->sw_advertise &= ~(ADVERTISE_10FULL); if(hp->sw_bmsr & BMSR_100HALF) hp->sw_advertise |= (ADVERTISE_100HALF); else hp->sw_advertise &= ~(ADVERTISE_100HALF); if(hp->sw_bmsr & BMSR_100FULL) hp->sw_advertise |= (ADVERTISE_100FULL); else hp->sw_advertise &= ~(ADVERTISE_100FULL); /* Update the PHY advertisement register. */ happy_meal_tcvr_write(hp, tregs, DP83840_ADVERTISE, hp->sw_advertise); } /* Once status is latched (by happy_meal_interrupt) it is cleared by * the hardware, so we cannot re-read it and get a correct value. */ static int happy_meal_is_not_so_happy(struct happy_meal *hp, struct hmeal_gregs *gregs, unsigned long status) { int reset = 0; /* Only print messages for non-counter related interrupts. */ if(status & (GREG_STAT_RFIFOVF | GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND | GREG_STAT_MAXPKTERR | GREG_STAT_RXERR | GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR | GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR | GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR | GREG_STAT_SLVPERR)) printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08lx\n", hp->dev->name, status); if(status & GREG_STAT_RFIFOVF) { /* The receive FIFO overflowwed, usually a DMA error. */ printk(KERN_ERR "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name); reset = 1; } if(status & GREG_STAT_STSTERR) { /* BigMAC SQE link test failed. */ printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name); reset = 1; } if(status & GREG_STAT_TFIFO_UND) { /* Transmit FIFO underrun, again DMA error likely. */ printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n", hp->dev->name); reset = 1; } if(status & GREG_STAT_MAXPKTERR) { /* Driver error, tried to transmit something larger * than ethernet max mtu. */ printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name); reset = 1; } if(status & GREG_STAT_NORXD) { /* This is harmless, it just means the system is * quite loaded and the incomming packet rate was * faster than the interrupt handler could keep up * with. */ printk(KERN_INFO "%s: Happy Meal out of receive " "descriptors, packet dropped.\n", hp->dev->name); } if(status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) { /* All sorts of DMA receive errors. */ printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name); if(status & GREG_STAT_RXERR) printk("GenericError "); if(status & GREG_STAT_RXPERR) printk("ParityError "); if(status & GREG_STAT_RXTERR) printk("RxTagBotch "); printk("]\n"); reset = 1; } if(status & GREG_STAT_EOPERR) { /* Driver bug, didn't set EOP bit in tx descriptor given * to the happy meal. */ printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n", hp->dev->name); reset = 1; } if(status & GREG_STAT_MIFIRQ) { /* MIF signalled an interrupt, were we polling it? */ printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name); } if(status & (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) { /* All sorts of transmit DMA errors. */ printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name); if(status & GREG_STAT_TXEACK) printk("GenericError "); if(status & GREG_STAT_TXLERR) printk("LateError "); if(status & GREG_STAT_TXPERR) printk("ParityErro "); if(status & GREG_STAT_TXTERR) printk("TagBotch "); printk("]\n"); reset = 1; } if(status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) { /* Bus or parity error when cpu accessed happy meal registers * or it's internal FIFO's. Should never see this. */ printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n", hp->dev->name, (status & GREG_STAT_SLVPERR) ? "parity" : "generic"); reset = 1; } if(reset) { printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name); happy_meal_init(hp, 1); return 1; } return 0; } static inline void happy_meal_mif_interrupt(struct happy_meal *hp, struct hmeal_gregs *gregs, struct hmeal_tcvregs *tregs) { printk(KERN_INFO "%s: Link status change.\n", hp->dev->name); hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, DP83840_BMCR); hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, DP83840_LPA); /* Use the fastest transmission protocol possible. */ if(hp->sw_lpa & LPA_100FULL) { printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name); hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100); } else if(hp->sw_lpa & LPA_100HALF) { printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name); hp->sw_bmcr |= BMCR_SPEED100; } else if(hp->sw_lpa & LPA_10FULL) { printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name); hp->sw_bmcr |= BMCR_FULLDPLX; } else { printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name); } happy_meal_tcvr_write(hp, tregs, DP83840_BMCR, hp->sw_bmcr); /* Finally stop polling and shut up the MIF. */ happy_meal_poll_stop(hp, tregs); } #ifdef TXDEBUG #define TXD(x) printk x #else #define TXD(x) #endif static inline void happy_meal_tx(struct happy_meal *hp) { struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; struct happy_meal_txd *this; int elem = hp->tx_old; TXD(("TX<")); while(elem != hp->tx_new) { struct sk_buff *skb; TXD(("[%d]", elem)); this = &txbase[elem]; if(this->tx_flags & TXFLAG_OWN) break; skb = hp->tx_skbs[elem]; hp->tx_skbs[elem] = NULL; hp->net_stats.tx_bytes+=skb->len; dev_kfree_skb(skb); hp->net_stats.tx_packets++; elem = NEXT_TX(elem); } hp->tx_old = elem; TXD((">")); } #ifdef CONFIG_PCI static inline void pci_happy_meal_tx(struct happy_meal *hp) { struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; struct happy_meal_txd *this; int elem = hp->tx_old; TXD(("TX<")); while(elem != hp->tx_new) { struct sk_buff *skb; unsigned int flags; TXD(("[%d]", elem)); this = &txbase[elem]; #ifdef __sparc_v9__ __asm__ __volatile__("lduwa [%1] %2, %0" : "=r" (flags) : "r" (&this->tx_flags), "i" (ASI_PL)); #else flags = flip_dword(this->tx_flags); #endif if(flags & TXFLAG_OWN) break; skb = hp->tx_skbs[elem]; hp->tx_skbs[elem] = NULL; hp->net_stats.tx_bytes+=skb->len; dev_kfree_skb(skb); hp->net_stats.tx_packets++; elem = NEXT_TX(elem); } hp->tx_old = elem; TXD((">")); } #endif #ifndef __sparc_v9__ static inline void sun4c_happy_meal_tx(struct happy_meal *hp) { struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0]; struct happy_meal_txd *this; int elem = hp->tx_old; TXD(("TX<")); while(elem != hp->tx_new) { TXD(("[%d]", elem)); this = &txbase[elem]; if(this->tx_flags & TXFLAG_OWN) break; hp->net_stats.tx_packets++; elem = NEXT_TX(elem); } hp->tx_old = elem; TXD((">")); } #endif #ifdef RXDEBUG #define RXD(x) printk x #else #define RXD(x) #endif /* Originally I used to handle the allocation failure by just giving back just * that one ring buffer to the happy meal. Problem is that usually when that * condition is triggered, the happy meal expects you to do something reasonable * with all of the packets it has DMA'd in. So now I just drop the entire * ring when we cannot get a new skb and give them all back to the happy meal, * maybe things will be "happier" now. */ static inline void happy_meal_rx(struct happy_meal *hp, struct device *dev, struct hmeal_gregs *gregs) { struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; struct happy_meal_rxd *this; int elem = hp->rx_new, drops = 0; RXD(("RX<")); this = &rxbase[elem]; while(!(this->rx_flags & RXFLAG_OWN)) { struct sk_buff *skb; unsigned int flags = this->rx_flags; int len = flags >> 16; u16 csum = flags & RXFLAG_CSUM; RXD(("[%d ", elem)); /* Check for errors. */ if((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { RXD(("ERR(%08x)]", flags)); hp->net_stats.rx_errors++; if(len < ETH_ZLEN) hp->net_stats.rx_length_errors++; if(len & (RXFLAG_OVERFLOW >> 16)) { hp->net_stats.rx_over_errors++; hp->net_stats.rx_fifo_errors++; } /* Return it to the Happy meal. */ drop_it: hp->net_stats.rx_dropped++; this->rx_addr = kva_to_hva(hp, hp->rx_skbs[elem]->data); this->rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); goto next; } skb = hp->rx_skbs[elem]; #ifdef NEED_DMA_SYNCHRONIZATION mmu_sync_dma(kva_to_hva(hp, skb->data), skb->len, hp->happy_sbus_dev->my_bus); #endif if(len > RX_COPY_THRESHOLD) { struct sk_buff *new_skb; /* Now refill the entry, if we can. */ new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, (GFP_DMA|GFP_ATOMIC)); if(!new_skb) { drops++; goto drop_it; } hp->rx_skbs[elem] = new_skb; new_skb->dev = dev; skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET)); rxbase[elem].rx_addr = kva_to_hva(hp, new_skb->data); skb_reserve(new_skb, RX_OFFSET); rxbase[elem].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); /* Trim the original skb for the netif. */ skb_trim(skb, len); } else { struct sk_buff *copy_skb = dev_alloc_skb(len + 2); if(!copy_skb) { drops++; goto drop_it; } copy_skb->dev = dev; skb_reserve(copy_skb, 2); skb_put(copy_skb, len); memcpy(copy_skb->data, skb->data, len); /* Reuse original ring buffer. */ rxbase[elem].rx_addr = kva_to_hva(hp, skb->data); rxbase[elem].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); skb = copy_skb; } /* This card is _fucking_ hot... */ if(!(csum ^ 0xffff)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; RXD(("len=%d csum=%4x]", len, csum)); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); hp->net_stats.rx_packets++; hp->net_stats.rx_bytes+=len; next: elem = NEXT_RX(elem); this = &rxbase[elem]; } hp->rx_new = elem; if(drops) printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name); RXD((">")); } #ifdef CONFIG_PCI static inline void pci_happy_meal_rx(struct happy_meal *hp, struct device *dev, struct hmeal_gregs *gregs) { struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; struct happy_meal_rxd *this; unsigned int flags; int elem = hp->rx_new, drops = 0; RXD(("RX<")); this = &rxbase[elem]; #ifdef __sparc_v9__ __asm__ __volatile__("lduwa [%1] %2, %0" : "=r" (flags) : "r" (&this->rx_flags), "i" (ASI_PL)); #else flags = flip_dword(this->rx_flags); /* FIXME */ #endif while(!(flags & RXFLAG_OWN)) { struct sk_buff *skb; int len; u16 csum; RXD(("[%d ", elem)); len = flags >> 16; csum = flags & RXFLAG_CSUM; /* Check for errors. */ if((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { RXD(("ERR(%08x)]", flags)); hp->net_stats.rx_errors++; if(len < ETH_ZLEN) hp->net_stats.rx_length_errors++; if(len & (RXFLAG_OVERFLOW >> 16)) { hp->net_stats.rx_over_errors++; hp->net_stats.rx_fifo_errors++; } /* Return it to the Happy meal. */ drop_it: hp->net_stats.rx_dropped++; pcihme_write_rxd(this, (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), (u32) virt_to_bus((volatile void *)hp->rx_skbs[elem]->data)); goto next; } skb = hp->rx_skbs[elem]; if(len > RX_COPY_THRESHOLD) { struct sk_buff *new_skb; /* Now refill the entry, if we can. */ new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, (GFP_DMA|GFP_ATOMIC)); if(!new_skb) { drops++; goto drop_it; } hp->rx_skbs[elem] = new_skb; new_skb->dev = dev; skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET)); pcihme_write_rxd(&rxbase[elem], (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), (u32)virt_to_bus((volatile void *)new_skb->data)); skb_reserve(new_skb, RX_OFFSET); /* Trim the original skb for the netif. */ skb_trim(skb, len); } else { struct sk_buff *copy_skb = dev_alloc_skb(len + 2); if(!copy_skb) { drops++; goto drop_it; } copy_skb->dev = dev; skb_reserve(copy_skb, 2); skb_put(copy_skb, len); memcpy(copy_skb->data, skb->data, len); /* Reuse original ring buffer. */ pcihme_write_rxd(&rxbase[elem], (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)), (u32)virt_to_bus((volatile void *)skb->data)); skb = copy_skb; } /* This card is _fucking_ hot... */ if(!~(csum)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; RXD(("len=%d csum=%4x]", len, csum)); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); hp->net_stats.rx_packets++; hp->net_stats.rx_bytes+=len; next: elem = NEXT_RX(elem); this = &rxbase[elem]; #ifdef __sparc_v9__ __asm__ __volatile__("lduwa [%1] %2, %0" : "=r" (flags) : "r" (&this->rx_flags), "i" (ASI_PL)); #else flags = flip_dword(this->rx_flags); /* FIXME */ #endif } hp->rx_new = elem; if(drops) printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name); RXD((">")); } #endif #ifndef __sparc_v9__ static inline void sun4c_happy_meal_rx(struct happy_meal *hp, struct device *dev, struct hmeal_gregs *gregs) { struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; struct happy_meal_rxd *this; struct hmeal_buffers *hbufs = hp->sun4c_buffers; __u32 hbufs_dvma = hp->s4c_buf_dvma; int elem = hp->rx_new, drops = 0; RXD(("RX<")); this = &rxbase[elem]; while(!(this->rx_flags & RXFLAG_OWN)) { struct sk_buff *skb; unsigned int flags = this->rx_flags; unsigned char *thisbuf = &hbufs->rx_buf[elem][0]; __u32 thisbuf_dvma = hbufs_dvma + hbuf_offset(rx_buf, elem); int len = flags >> 16; RXD(("[%d ", elem)); /* Check for errors. */ if((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { RXD(("ERR(%08x)]", flags)); hp->net_stats.rx_errors++; if(len < ETH_ZLEN) hp->net_stats.rx_length_errors++; if(len & (RXFLAG_OVERFLOW >> 16)) { hp->net_stats.rx_over_errors++; hp->net_stats.rx_fifo_errors++; } hp->net_stats.rx_dropped++; } else { skb = dev_alloc_skb(len + 2); if(skb == 0) { drops++; hp->net_stats.rx_dropped++; } else { RXD(("len=%d]", len)); skb->dev = hp->dev; skb_reserve(skb, 2); skb_put(skb, len); eth_copy_and_sum(skb, (thisbuf+2), len, 0); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); hp->net_stats.rx_packets++; hp->net_stats.rx_bytes+=len; } } /* Return the buffer to the Happy Meal. */ this->rx_addr = thisbuf_dvma; this->rx_flags = (RXFLAG_OWN | ((SUN4C_RX_BUFF_SIZE - RX_OFFSET) << 16)); elem = NEXT_RX(elem); this = &rxbase[elem]; } hp->rx_new = elem; if(drops) printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name); RXD((">")); } static inline void sun4d_happy_meal_rx(struct happy_meal *hp, struct device *dev, struct hmeal_gregs *gregs) { struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0]; struct happy_meal_rxd *this; int elem = hp->rx_new, drops = 0; __u32 va; RXD(("RX<")); this = &rxbase[elem]; while(!(this->rx_flags & RXFLAG_OWN)) { struct sk_buff *skb; unsigned int flags = this->rx_flags; int len = flags >> 16; u16 csum = flags & RXFLAG_CSUM; RXD(("[%d ", elem)); /* Check for errors. */ if((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) { RXD(("ERR(%08x)]", flags)); hp->net_stats.rx_errors++; if(len < ETH_ZLEN) hp->net_stats.rx_length_errors++; if(len & (RXFLAG_OVERFLOW >> 16)) { hp->net_stats.rx_over_errors++; hp->net_stats.rx_fifo_errors++; } /* Return it to the Happy meal. */ drop_it: hp->net_stats.rx_dropped++; va = (__u32)hp->sun4d_buffers + elem * PAGE_SIZE; this->rx_addr = iounit_map_dma_page(va, hp->rx_skbs[elem]->data, hp->happy_sbus_dev->my_bus); this->rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); goto next; } skb = hp->rx_skbs[elem]; if(len > RX_COPY_THRESHOLD) { struct sk_buff *new_skb; /* Now refill the entry, if we can. */ new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, (GFP_DMA | GFP_ATOMIC)); if(!new_skb) { drops++; goto drop_it; } hp->rx_skbs[elem] = new_skb; new_skb->dev = dev; skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET)); va = (__u32)hp->sun4d_buffers + elem * PAGE_SIZE; rxbase[elem].rx_addr = iounit_map_dma_page(va, new_skb->data, hp->happy_sbus_dev->my_bus); skb_reserve(new_skb, RX_OFFSET); rxbase[elem].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); /* Trim the original skb for the netif. */ skb_trim(skb, len); } else { struct sk_buff *copy_skb = dev_alloc_skb(len + 2); if(!copy_skb) { drops++; goto drop_it; } copy_skb->dev = dev; skb_reserve(copy_skb, 2); skb_put(copy_skb, len); memcpy(copy_skb->data, skb->data, len); /* Reuse original ring buffer. */ va = (__u32)hp->sun4d_buffers + elem * PAGE_SIZE; rxbase[elem].rx_addr = iounit_map_dma_page(va, skb->data, hp->happy_sbus_dev->my_bus); rxbase[elem].rx_flags = (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)); skb = copy_skb; } /* This card is _fucking_ hot... */ if(!(csum ^ 0xffff)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; RXD(("len=%d csum=%4x]", len, csum)); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); hp->net_stats.rx_packets++; hp->net_stats.rx_bytes+=len; next: elem = NEXT_RX(elem); this = &rxbase[elem]; } hp->rx_new = elem; if(drops) printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name); RXD((">")); } #endif static void happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *) dev_id; struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_gregs *gregs = hp->gregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned int happy_status = hme_read32(hp, &gregs->stat); HMD(("happy_meal_interrupt: status=%08x ", happy_status)); dev->interrupt = 1; if(happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if(happy_meal_is_not_so_happy(hp, gregs, /* un- */ happy_status)) { dev->interrupt = 0; return; } } if(happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp, gregs, tregs); } if(happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); happy_meal_tx(hp); } if(happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); happy_meal_rx(hp, dev, gregs); } if(dev->tbusy && (TX_BUFFS_AVAIL(hp) >= 0)) { hp->dev->tbusy = 0; mark_bh(NET_BH); } dev->interrupt = 0; HMD(("done\n")); } #ifdef CONFIG_PCI static void pci_happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *) dev_id; struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_gregs *gregs = hp->gregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned int happy_status = readl((unsigned long)&gregs->stat); HMD(("happy_meal_interrupt: status=%08x ", happy_status)); dev->interrupt = 1; if(happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if(happy_meal_is_not_so_happy(hp, gregs, /* un- */ happy_status)) { dev->interrupt = 0; return; } } if(happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp, gregs, tregs); } if(happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); pci_happy_meal_tx(hp); } if(happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); pci_happy_meal_rx(hp, dev, gregs); } if(dev->tbusy && (TX_BUFFS_AVAIL(hp) >= 0)) { hp->dev->tbusy = 0; mark_bh(NET_BH); } tx_add_log(hp, TXLOG_ACTION_IRQ, happy_status); dev->interrupt = 0; HMD(("done\n")); } #endif #ifndef __sparc_v9__ static void sun4c_happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *) dev_id; struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_gregs *gregs = hp->gregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned int happy_status = hme_read32(hp, &gregs->stat); HMD(("happy_meal_interrupt: status=%08x ", happy_status)); dev->interrupt = 1; if(happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if(happy_meal_is_not_so_happy(hp, gregs, /* un- */ happy_status)) { dev->interrupt = 0; return; } } if(happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp, gregs, tregs); } if(happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); sun4c_happy_meal_tx(hp); } if(happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); sun4c_happy_meal_rx(hp, dev, gregs); } if(dev->tbusy && (TX_BUFFS_AVAIL(hp) >= 0)) { hp->dev->tbusy = 0; mark_bh(NET_BH); } dev->interrupt = 0; HMD(("done\n")); } static void sun4d_happy_meal_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *) dev_id; struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_gregs *gregs = hp->gregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned int happy_status = hme_read32(hp, &gregs->stat); HMD(("happy_meal_interrupt: status=%08x ", happy_status)); dev->interrupt = 1; if(happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if(happy_meal_is_not_so_happy(hp, gregs, /* un- */ happy_status)) { dev->interrupt = 0; return; } } if(happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp, gregs, tregs); } if(happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); happy_meal_tx(hp); } if(happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); sun4d_happy_meal_rx(hp, dev, gregs); } if(dev->tbusy && (TX_BUFFS_AVAIL(hp) >= 0)) { hp->dev->tbusy = 0; mark_bh(NET_BH); } dev->interrupt = 0; HMD(("done\n")); } #endif static void quattro_sbus_interrupt(int irq, void *cookie, struct pt_regs *ptregs) { struct quattro *qp = (struct quattro *)cookie; int i; for(i = 0; i < 4; i++) { struct device *dev = qp->happy_meals[i]; struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_gregs *gregs = hp->gregs; struct hmeal_tcvregs *tregs = hp->tcvregs; unsigned int happy_status = hme_read32(hp, &gregs->stat); HMD(("quattro_interrupt: status=%08x ",happy_status)); dev->interrupt=1; if(happy_status & GREG_STAT_ERRORS) { HMD(("ERRORS ")); if(happy_meal_is_not_so_happy(hp, gregs, happy_status)) { dev->interrupt=0; break; } } if(happy_status & GREG_STAT_MIFIRQ) { HMD(("MIFIRQ ")); happy_meal_mif_interrupt(hp, gregs, tregs); } if(happy_status & GREG_STAT_TXALL) { HMD(("TXALL ")); happy_meal_tx(hp); } if(happy_status & GREG_STAT_RXTOHOST) { HMD(("RXTOHOST ")); happy_meal_rx(hp, dev, gregs); } if(dev->tbusy && (TX_BUFFS_AVAIL(hp) >= 0)) { hp->dev->tbusy = 0; mark_bh(NET_BH); } dev->interrupt=0; } HMD(("done\n")); } static int happy_meal_open(struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; int res; HMD(("happy_meal_open: ")); /* On SBUS Quattro QFE cards, all hme interrupts are concentrated * into a single source which we register handling at probe time. */ if((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) == HFLAG_QUATTRO) { hp->qfe_parent->irq_status[hp->qfe_ent] = &hp->gregs->stat; goto after_request_irq; } #ifndef __sparc_v9__ if(sparc_cpu_model == sun4c) { if(request_irq(dev->irq, &sun4c_happy_meal_interrupt, SA_SHIRQ, "HAPPY MEAL", (void *) dev)) { HMD(("EAGAIN\n")); printk(KERN_ERR "happy meal: Can't order irq %d to go.\n", dev->irq); return -EAGAIN; } } else if (sparc_cpu_model == sun4d) { if(request_irq(dev->irq, &sun4d_happy_meal_interrupt, SA_SHIRQ, "HAPPY MEAL", (void *) dev)) { HMD(("EAGAIN\n")); printk(KERN_ERR "happy_meal(SBUS): Can't order irq %s to go.\n", __irq_itoa(dev->irq)); return -EAGAIN; } } else #endif #ifdef CONFIG_PCI if(hp->happy_flags & HFLAG_PCI) { if(request_irq(dev->irq, &pci_happy_meal_interrupt, SA_SHIRQ, "HAPPY MEAL (PCI)", dev)) { HMD(("EAGAIN\n")); printk(KERN_ERR "happy_meal(PCI: Can't order irq %s to go.\n", __irq_itoa(dev->irq)); return -EAGAIN; } } else #endif if(request_irq(dev->irq, &happy_meal_interrupt, SA_SHIRQ, "HAPPY MEAL", (void *)dev)) { HMD(("EAGAIN\n")); printk(KERN_ERR "happy_meal(SBUS): Can't order irq %s to go.\n", __irq_itoa(dev->irq)); return -EAGAIN; } after_request_irq: HMD(("to happy_meal_init\n")); res = happy_meal_init(hp, 0); if(!res) { MOD_INC_USE_COUNT; } return res; } static int happy_meal_close(struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; happy_meal_stop(hp, hp->gregs); happy_meal_clean_rings(hp); /* If auto-negotiation timer is running, kill it. */ del_timer(&hp->happy_timer); /* On Quattro QFE cards, all hme interrupts are concentrated * into a single source which we register handling at probe * time and never unregister. */ if((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) { free_irq(dev->irq, (void *)dev); } else { /* Zap the status register pointer. */ hp->qfe_parent->irq_status[hp->qfe_ent] = NULL; } MOD_DEC_USE_COUNT; return 0; } #ifdef SXDEBUG #define SXD(x) printk x #else #define SXD(x) #endif static int happy_meal_start_xmit(struct sk_buff *skb, struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; int len, entry; if(test_and_set_bit(0, (void *) &dev->tbusy) != 0) { int tickssofar = jiffies - dev->trans_start; if (tickssofar >= 40) { printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name); hp->net_stats.tx_errors++; tx_dump_log(); printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name, hme_read32(hp, &hp->gregs->stat), hme_read32(hp, &hp->etxregs->cfg), hme_read32(hp, &hp->bigmacregs->tx_cfg)); happy_meal_init(hp, 0); dev->tbusy = 0; dev->trans_start = jiffies; } else tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_TBUSY, 0); return 1; } if(!TX_BUFFS_AVAIL(hp)) { tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_NBUFS, 0); return 1; } #ifdef __sparc_v9__ if ((unsigned long)(skb->data + skb->len) >= MAX_DMA_ADDRESS) { struct sk_buff *new_skb = skb_copy(skb, GFP_DMA | GFP_ATOMIC); if (!new_skb) return 1; dev_kfree_skb(skb); skb = new_skb; } #endif len = skb->len; entry = hp->tx_new; SXD(("SX<l[%d]e[%d]>", len, entry)); #ifdef NEED_DMA_SYNCHRONIZATION mmu_sync_dma(kva_to_hva(hp, skb->data), skb->len, hp->happy_sbus_dev->my_bus); #endif hp->tx_skbs[entry] = skb; hp->happy_block->happy_meal_txd[entry].tx_addr = kva_to_hva(hp, skb->data); hp->happy_block->happy_meal_txd[entry].tx_flags = (TXFLAG_OWN | TXFLAG_SOP | TXFLAG_EOP | (len & TXFLAG_SIZE)); hp->tx_new = NEXT_TX(entry); /* Get it going. */ dev->trans_start = jiffies; hme_write32(hp, &hp->etxregs->tx_pnding, ETX_TP_DMAWAKEUP); if(TX_BUFFS_AVAIL(hp)) dev->tbusy = 0; tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); return 0; } #ifdef CONFIG_PCI static int pci_happy_meal_start_xmit(struct sk_buff *skb, struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; int len, entry; if(test_and_set_bit(0, (void *) &dev->tbusy) != 0) { int tickssofar = jiffies - dev->trans_start; if (tickssofar >= 40) { unsigned long flags; printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name); save_and_cli(flags); tx_dump_log(); tx_dump_ring(hp); restore_flags(flags); hp->net_stats.tx_errors++; happy_meal_init(hp, 0); dev->tbusy = 0; dev->trans_start = jiffies; } else tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_TBUSY, 0); return 1; } if(!TX_BUFFS_AVAIL(hp)) { tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_NBUFS, 0); return 1; } len = skb->len; entry = hp->tx_new; SXD(("SX<l[%d]e[%d]>", len, entry)); hp->tx_skbs[entry] = skb; pcihme_write_txd(&hp->happy_block->happy_meal_txd[entry], (TXFLAG_OWN|TXFLAG_SOP|TXFLAG_EOP|(len & TXFLAG_SIZE)), (u32) virt_to_bus((volatile void *)skb->data)); hp->tx_new = NEXT_TX(entry); /* Get it going. */ dev->trans_start = jiffies; writel(ETX_TP_DMAWAKEUP, (unsigned long)&hp->etxregs->tx_pnding); if(TX_BUFFS_AVAIL(hp)) dev->tbusy = 0; tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); return 0; } #endif #ifndef __sparc_v9__ static int sun4c_happy_meal_start_xmit(struct sk_buff *skb, struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_buffers *hbufs = hp->sun4c_buffers; __u32 txbuf_dvma, hbufs_dvma = hp->s4c_buf_dvma; unsigned char *txbuf; int len, entry; if(dev->tbusy) { int tickssofar = jiffies - dev->trans_start; if (tickssofar < 40) { return 1; } else { printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name); hp->net_stats.tx_errors++; happy_meal_init(hp, 0); dev->tbusy = 0; dev->trans_start = jiffies; return 0; } } if(test_and_set_bit(0, (void *) &dev->tbusy) != 0) { printk(KERN_ERR "happy meal: Transmitter access conflict.\n"); return 1; } if(!TX_BUFFS_AVAIL(hp)) return 1; len = skb->len; entry = hp->tx_new; txbuf = &hbufs->tx_buf[entry][0]; memcpy(txbuf, skb->data, len); SXD(("SX<l[%d]e[%d]>", len, entry)); txbuf_dvma = hbufs_dvma + hbuf_offset(tx_buf, entry); hp->happy_block->happy_meal_txd[entry].tx_addr = txbuf_dvma; hp->happy_block->happy_meal_txd[entry].tx_flags = (TXFLAG_OWN | TXFLAG_SOP | TXFLAG_EOP | (len & TXFLAG_SIZE)); hp->tx_new = NEXT_TX(entry); /* Get it going. */ dev->trans_start = jiffies; hp->etxregs->tx_pnding = ETX_TP_DMAWAKEUP; dev_kfree_skb(skb); if(TX_BUFFS_AVAIL(hp)) dev->tbusy = 0; return 0; } static int sun4d_happy_meal_start_xmit(struct sk_buff *skb, struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; int len, entry; __u32 va; if(test_and_set_bit(0, (void *) &dev->tbusy) != 0) { int tickssofar = jiffies - dev->trans_start; if (tickssofar >= 40) { printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name); hp->net_stats.tx_errors++; tx_dump_log(); printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name, hme_read32(hp, &hp->gregs->stat), hme_read32(hp, &hp->etxregs->cfg), hme_read32(hp, &hp->bigmacregs->tx_cfg)); happy_meal_init(hp, 0); dev->tbusy = 0; dev->trans_start = jiffies; } else tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_TBUSY, 0); return 1; } if(!TX_BUFFS_AVAIL(hp)) { tx_add_log(hp, TXLOG_ACTION_TXMIT|TXLOG_ACTION_NBUFS, 0); return 1; } len = skb->len; entry = hp->tx_new; SXD(("SX<l[%d]e[%d]>", len, entry)); hp->tx_skbs[entry] = skb; va = (__u32)hp->sun4d_buffers + (RX_RING_SIZE + entry) * PAGE_SIZE; hp->happy_block->happy_meal_txd[entry].tx_addr = iounit_map_dma_page(va, skb->data, hp->happy_sbus_dev->my_bus); hp->happy_block->happy_meal_txd[entry].tx_flags = (TXFLAG_OWN | TXFLAG_SOP | TXFLAG_EOP | (len & TXFLAG_SIZE)); hp->tx_new = NEXT_TX(entry); /* Get it going. */ dev->trans_start = jiffies; hme_write32(hp, &hp->etxregs->tx_pnding, ETX_TP_DMAWAKEUP); if(TX_BUFFS_AVAIL(hp)) dev->tbusy = 0; tx_add_log(hp, TXLOG_ACTION_TXMIT, 0); return 0; } #endif static struct net_device_stats *happy_meal_get_stats(struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; happy_meal_get_counters(hp, hp->bigmacregs); return &hp->net_stats; } static void happy_meal_set_multicast(struct device *dev) { struct happy_meal *hp = (struct happy_meal *) dev->priv; struct hmeal_bigmacregs *bregs = hp->bigmacregs; struct dev_mc_list *dmi = dev->mc_list; char *addrs; int i, j, bit, byte; u32 crc, poly = CRC_POLYNOMIAL_LE; /* Lock out others. */ set_bit(0, (void *) &dev->tbusy); if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { hme_write32(hp, &bregs->htable0, 0xffff); hme_write32(hp, &bregs->htable1, 0xffff); hme_write32(hp, &bregs->htable2, 0xffff); hme_write32(hp, &bregs->htable3, 0xffff); } else if(dev->flags & IFF_PROMISC) { hme_write32(hp, &bregs->rx_cfg, hme_read32(hp, &bregs->rx_cfg) | BIGMAC_RXCFG_PMISC); } else { u16 hash_table[4]; for(i = 0; i < 4; i++) hash_table[i] = 0; for(i = 0; i < dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; if(!(*addrs & 1)) continue; crc = 0xffffffffU; for(byte = 0; byte < 6; byte++) { for(bit = *addrs++, j = 0; j < 8; j++, bit >>= 1) { int test; test = ((bit ^ crc) & 0x01); crc >>= 1; if(test) crc = crc ^ poly; } } crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } hme_write32(hp, &bregs->htable0, hash_table[0]); hme_write32(hp, &bregs->htable1, hash_table[1]); hme_write32(hp, &bregs->htable2, hash_table[2]); hme_write32(hp, &bregs->htable3, hash_table[3]); } /* Let us get going again. */ dev->tbusy = 0; } /* Ethtool support... */ static int happy_meal_ioctl(struct device *dev, struct ifreq *rq, int cmd) { struct happy_meal *hp = (struct happy_meal *) dev->priv; struct ethtool_cmd *ep_user = (struct ethtool_cmd *) rq->ifr_data; struct ethtool_cmd ecmd; if(cmd != SIOCETHTOOL) return -EOPNOTSUPP; if(copy_from_user(&ecmd, ep_user, sizeof(ecmd))) return -EFAULT; if(ecmd.cmd == SPARC_ETH_GSET) { ecmd.supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII); /* XXX hardcoded stuff for now */ ecmd.port = PORT_TP; /* XXX no MII support */ ecmd.transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */ ecmd.phy_address = 0; /* XXX fixed PHYAD */ /* Record PHY settings. */ hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, DP83840_BMCR); hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, DP83840_LPA); if(hp->sw_bmcr & BMCR_ANENABLE) { ecmd.autoneg = AUTONEG_ENABLE; ecmd.speed = (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ? SPEED_100 : SPEED_10; if(ecmd.speed == SPEED_100) ecmd.duplex = (hp->sw_lpa & (LPA_100FULL)) ? DUPLEX_FULL : DUPLEX_HALF; else ecmd.duplex = (hp->sw_lpa & (LPA_10FULL)) ? DUPLEX_FULL : DUPLEX_HALF; } else { ecmd.autoneg = AUTONEG_DISABLE; ecmd.speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10; ecmd.duplex = (hp->sw_bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF; } if(copy_to_user(ep_user, &ecmd, sizeof(ecmd))) return -EFAULT; return 0; } else if(ecmd.cmd == SPARC_ETH_SSET) { if(!capable(CAP_NET_ADMIN)) return -EPERM; /* Verify the settings we care about. */ if(ecmd.autoneg != AUTONEG_ENABLE && ecmd.autoneg != AUTONEG_DISABLE) return -EINVAL; if(ecmd.autoneg == AUTONEG_DISABLE && ((ecmd.speed != SPEED_100 && ecmd.speed != SPEED_10) || (ecmd.duplex != DUPLEX_HALF && ecmd.duplex != DUPLEX_FULL))) return -EINVAL; /* Ok, do it to it. */ del_timer(&hp->happy_timer); happy_meal_begin_auto_negotiation(hp, hp->tcvregs, &ecmd); return 0; } else return -EOPNOTSUPP; } void __init quattro_get_ranges(struct quattro *qp) { int err; err = prom_getproperty(qp->quattro_sbus_dev->prom_node, "ranges", (char *)&qp->ranges[0], sizeof(qp->ranges)); if(err == 0 || err == -1) { qp->nranges = 0; return; } qp->nranges = (err / sizeof(struct linux_prom_ranges)); } static void __init quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp) { struct linux_sbus_device *sdev = hp->happy_sbus_dev; int rng; for(rng = 0; rng < qp->nranges; rng++) { struct linux_prom_ranges *rngp = &qp->ranges[rng]; int reg; for(reg = 0; reg < 5; reg++) { if(sdev->reg_addrs[reg].which_io == rngp->ot_child_space) break; } if(reg == 5) continue; sdev->reg_addrs[reg].which_io = rngp->ot_parent_space; sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base; } } /* Given a happy meal sbus device, find it's quattro parent. * If none exist, allocate and return a new one. * * Return NULL on failure. */ static struct quattro * __init quattro_sbus_find(struct linux_sbus_device *goal_sdev) { struct linux_sbus *sbus; struct linux_sbus_device *sdev; struct quattro *qp; if(qfe_sbus_list == NULL) goto found; for(qp = qfe_sbus_list; qp != NULL; qp = qp->next) { for(sdev = qp->quattro_sbus_dev; sdev != NULL; sdev = sdev->next) { if(sdev == goal_sdev) return qp; } } for_each_sbus(sbus) { for_each_sbusdev(sdev, sbus) { if(sdev->child != NULL) { struct linux_sbus_device *p; for(p = sdev->child; p != NULL; p = p->next) if(p == goal_sdev) goto found; } } } /* Cannot find quattro parent, fail. */ return NULL; found: qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); if(qp != NULL) { int i; for(i = 0; i < 4; i++) { qp->irq_status[i] = NULL; qp->happy_meals[i] = NULL; } qp->handler = NULL; qp->quattro_sbus_dev = goal_sdev; #ifdef CONFIG_PCI qp->quattro_pci_dev = NULL; #endif qp->next = qfe_sbus_list; qfe_sbus_list = qp; quattro_get_ranges(qp); } return qp; } #ifdef CONFIG_PCI static struct quattro * __init quattro_pci_find(struct pci_dev *pdev) { struct pci_dev *bdev = pdev->bus->self; struct quattro *qp; if (!bdev) return NULL; for(qp = qfe_pci_list; qp != NULL; qp = qp->next) { if(qp->quattro_pci_dev == bdev) return qp; } qp = kmalloc(sizeof(struct quattro), GFP_KERNEL); if(qp != NULL) { int i; for(i = 0; i < 4; i++) { qp->irq_status[i] = NULL; qp->happy_meals[i] = NULL; } qp->handler = NULL; qp->quattro_sbus_dev = NULL; qp->quattro_pci_dev = bdev; qp->next = qfe_pci_list; qfe_pci_list = qp; /* No range tricks necessary on PCI. */ qp->nranges = 0; } return qp; } #endif /* After all quattro cards have been probed, we call these functions * to register the IRQ handlers. */ static void __init quattro_sbus_register_irqs(void) { struct quattro *qp; for(qp = qfe_sbus_list; qp != NULL; qp = qp->next) { int err; /* Set the handler. */ #ifndef __sparc_v9__ if(sparc_cpu_model == sun4c) qp->handler = sun4c_happy_meal_interrupt; else if(sparc_cpu_model == sun4d) qp->handler = sun4d_happy_meal_interrupt; else #endif #ifdef CONFIG_PCI if(qp->quattro_pci_dev != NULL) panic("QFE: PCI qfe in sbus_register_irqs!"); else #endif qp->handler = happy_meal_interrupt; err = request_irq(qp->quattro_sbus_dev->irqs[0], quattro_sbus_interrupt, SA_SHIRQ, "Quattro", qp); if(err != 0) { printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err); panic("QFE request irq"); } } } static unsigned hme_version_printed = 0; static int __init happy_meal_ether_init(struct device *dev, struct linux_sbus_device *sdev, int is_qfe) { struct quattro *qp = NULL; struct happy_meal *hp; int i, qfe_slot = -1; if(is_qfe) { qp = quattro_sbus_find(sdev); if(qp == NULL) return ENODEV; for(qfe_slot = 0; qfe_slot < 4; qfe_slot++) if(qp->happy_meals[qfe_slot] == NULL) break; if(qfe_slot == 4) return ENODEV; } if(dev == NULL) { dev = init_etherdev(0, sizeof(struct happy_meal)); } else { dev->priv = kmalloc(sizeof(struct happy_meal), GFP_KERNEL); if(dev->priv == NULL) return -ENOMEM; } if(hme_version_printed++ == 0) printk(KERN_INFO "%s", version); if(qfe_slot != -1) printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ", dev->name, qfe_slot); else printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ", dev->name); dev->base_addr = (long) sdev; /* XXX Check for local-mac-address property on Quattro... -DaveM */ /* Quattro local-mac-address... */ if(qfe_slot != -1 && prom_getproplen(sdev->prom_node,"local-mac-address")==6) prom_getproperty(sdev->prom_node,"local-mac-address",dev->dev_addr,6); else memcpy(dev->dev_addr,idprom->id_ethaddr,6); for(i = 0; i < 6; i++) printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':'); printk("\n"); hp = (struct happy_meal *) dev->priv; memset(hp, 0, sizeof(*hp)); hp->happy_sbus_dev = sdev; #ifdef CONFIG_PCI hp->happy_pci_dev = NULL; #endif if(sdev->num_registers != 5) { printk(KERN_ERR "happymeal: Device does not have 5 regs, it has %d.\n", sdev->num_registers); printk(KERN_ERR "happymeal: Would you like that for here or to go?\n"); return ENODEV; } if(qp != NULL) { hp->qfe_parent = qp; hp->qfe_ent = qfe_slot; qp->happy_meals[qfe_slot] = dev; quattro_apply_ranges(qp, hp); } prom_apply_sbus_ranges(sdev->my_bus, &sdev->reg_addrs[0], sdev->num_registers, sdev); hp->gregs = sparc_alloc_io(sdev->reg_addrs[0].phys_addr, 0, sizeof(struct hmeal_gregs), "Happy Meal Global Regs", sdev->reg_addrs[0].which_io, 0); if(!hp->gregs) { printk(KERN_ERR "happymeal: Cannot map Happy Meal global registers.\n"); return ENODEV; } hp->etxregs = sparc_alloc_io(sdev->reg_addrs[1].phys_addr, 0, sizeof(struct hmeal_etxregs), "Happy Meal MAC TX Regs", sdev->reg_addrs[1].which_io, 0); if(!hp->etxregs) { printk(KERN_ERR "happymeal: Cannot map Happy Meal MAC Transmit registers.\n"); return ENODEV; } hp->erxregs = sparc_alloc_io(sdev->reg_addrs[2].phys_addr, 0, sizeof(struct hmeal_erxregs), "Happy Meal MAC RX Regs", sdev->reg_addrs[2].which_io, 0); if(!hp->erxregs) { printk(KERN_ERR "happymeal: Cannot map Happy Meal MAC Receive registers.\n"); return ENODEV; } hp->bigmacregs = sparc_alloc_io(sdev->reg_addrs[3].phys_addr, 0, sizeof(struct hmeal_bigmacregs), "Happy Meal BIGMAC Regs", sdev->reg_addrs[3].which_io, 0); if(!hp->bigmacregs) { printk(KERN_ERR "happymeal: Cannot map Happy Meal BIGMAC registers.\n"); return ENODEV; } hp->tcvregs = sparc_alloc_io(sdev->reg_addrs[4].phys_addr, 0, sizeof(struct hmeal_tcvregs), "Happy Meal Tranceiver Regs", sdev->reg_addrs[4].which_io, 0); if(!hp->tcvregs) { printk(KERN_ERR "happymeal: Cannot map Happy Meal Tranceiver registers.\n"); return ENODEV; } hp->hm_revision = prom_getintdefault(sdev->prom_node, "hm-rev", 0xff); if(hp->hm_revision == 0xff) hp->hm_revision = 0xa0; /* Now enable the feature flags we can. */ if(hp->hm_revision == 0x20 || hp->hm_revision == 0x21) hp->happy_flags = HFLAG_20_21; else if(hp->hm_revision != 0xa0) hp->happy_flags = HFLAG_NOT_A0; if(qp != NULL) hp->happy_flags |= HFLAG_QUATTRO; /* Get the supported DVMA burst sizes from our Happy SBUS. */ hp->happy_bursts = prom_getintdefault(hp->happy_sbus_dev->my_bus->prom_node, "burst-sizes", 0x00); hp->happy_block = (struct hmeal_init_block *) sparc_dvma_malloc(PAGE_SIZE, "Happy Meal Init Block", &hp->hblock_dvma); #ifndef __sparc_v9__ if(sparc_cpu_model == sun4c) hp->sun4c_buffers = (struct hmeal_buffers *) sparc_dvma_malloc(sizeof(struct hmeal_buffers), "Happy Meal Bufs", &hp->s4c_buf_dvma); else if (sparc_cpu_model == sun4d) hp->sun4d_buffers = (struct hmeal_buffers *) iounit_map_dma_init(hp->happy_sbus_dev->my_bus, (RX_RING_SIZE + TX_RING_SIZE) * PAGE_SIZE); else #endif hp->sun4c_buffers = 0; /* Force check of the link first time we are brought up. */ hp->linkcheck = 0; /* Force timer state to 'asleep' with count of zero. */ hp->timer_state = asleep; hp->timer_ticks = 0; /* Grrr, Happy Meal comes up by default not advertising * full duplex 100baseT capabilities, fix this. */ happy_meal_set_initial_advertisement(hp); init_timer(&hp->happy_timer); hp->dev = dev; dev->open = &happy_meal_open; dev->stop = &happy_meal_close; #ifndef __sparc_v9__ if(sparc_cpu_model == sun4c) dev->hard_start_xmit = &sun4c_happy_meal_start_xmit; else if (sparc_cpu_model == sun4d) dev->hard_start_xmit = &sun4d_happy_meal_start_xmit; else #endif dev->hard_start_xmit = &happy_meal_start_xmit; dev->get_stats = &happy_meal_get_stats; dev->set_multicast_list = &happy_meal_set_multicast; dev->do_ioctl = &happy_meal_ioctl; dev->irq = sdev->irqs[0]; dev->dma = 0; ether_setup(dev); #ifdef MODULE /* We are home free at this point, link us in to the happy * module device list. */ dev->ifindex = dev_new_index(); hp->next_module = root_happy_dev; root_happy_dev = hp; #endif return 0; } #ifdef CONFIG_PCI static int __init happy_meal_pci_init(struct device *dev, struct pci_dev *pdev) { struct quattro *qp = NULL; struct pcidev_cookie *pcp; struct happy_meal *hp; unsigned long hpreg_base; unsigned short pci_command; int i, node, qfe_slot = -1; char prom_name[64]; /* Now make sure pci_dev cookie is there. */ pcp = pdev->sysdata; if(pcp == NULL || pcp->prom_node == -1) { printk(KERN_ERR "happymeal(PCI): Some PCI device info missing\n"); return ENODEV; } node = pcp->prom_node; prom_getstring(node, "name", prom_name, sizeof(prom_name)); if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) { qp = quattro_pci_find(pdev); if(qp == NULL) return ENODEV; for(qfe_slot = 0; qfe_slot < 4; qfe_slot++) if(qp->happy_meals[qfe_slot] == NULL) break; if(qfe_slot == 4) return ENODEV; } if(dev == NULL) { dev = init_etherdev(0, sizeof(struct happy_meal)); } else { dev->priv = kmalloc(sizeof(struct happy_meal), GFP_KERNEL); if(dev->priv == NULL) return -ENOMEM; } if(hme_version_printed++ == 0) printk(KERN_INFO "%s", version); if (!qfe_slot) { prom_name[0] = 0; if (!strncmp(dev->name, "eth", 3)) { int i = simple_strtoul(dev->name + 3, NULL, 10); sprintf(prom_name, "-%d", i + 3); } printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name); if (qp->quattro_pci_dev->vendor == PCI_VENDOR_ID_DEC && qp->quattro_pci_dev->device == PCI_DEVICE_ID_DEC_21153) printk("DEC 21153 PCI Bridge\n"); else printk("unknown bridge %04x.%04x\n", qp->quattro_pci_dev->vendor, qp->quattro_pci_dev->device); } if(qfe_slot != -1) printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, qfe_slot); else printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ", dev->name); dev->base_addr = (long) pdev; hp = (struct happy_meal *)dev->priv; memset(hp, 0, sizeof(*hp)); hp->happy_sbus_dev = NULL; hp->happy_pci_dev = pdev; if(qp != NULL) { hp->qfe_parent = qp; hp->qfe_ent = qfe_slot; qp->happy_meals[qfe_slot] = dev; } hpreg_base = pdev->base_address[0]; if((hpreg_base & PCI_BASE_ADDRESS_SPACE) != PCI_BASE_ADDRESS_SPACE_MEMORY) { printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n"); return ENODEV; } hpreg_base &= PCI_BASE_ADDRESS_MEM_MASK; if (qfe_slot != -1 && prom_getproplen(node, "local-mac-address") == 6) prom_getproperty(node, "local-mac-address", dev->dev_addr, 6); else memcpy(dev->dev_addr, idprom->id_ethaddr, 6); for(i = 0; i < 6; i++) printk("%2.2x%c", dev->dev_addr[i], i == 5 ? ' ' : ':'); printk("\n"); /* Layout registers. */ hp->gregs = (struct hmeal_gregs *) (hpreg_base + 0x0000); hp->etxregs = (struct hmeal_etxregs *) (hpreg_base + 0x2000); hp->erxregs = (struct hmeal_erxregs *) (hpreg_base + 0x4000); hp->bigmacregs = (struct hmeal_bigmacregs *) (hpreg_base + 0x6000); hp->tcvregs = (struct hmeal_tcvregs *) (hpreg_base + 0x7000); hp->hm_revision = prom_getintdefault(node, "hm-rev", 0xff); if(hp->hm_revision == 0xff) hp->hm_revision = 0xa0; /* Now enable the feature flags we can. */ if(hp->hm_revision == 0x20 || hp->hm_revision == 0x21) hp->happy_flags = HFLAG_20_21; else if(hp->hm_revision != 0xa0) hp->happy_flags = HFLAG_NOT_A0; if(qp != NULL) hp->happy_flags |= HFLAG_QUATTRO; /* And of course, indicate this is PCI. */ hp->happy_flags |= HFLAG_PCI; /* Assume PCI happy meals can handle all burst sizes. */ hp->happy_bursts = DMA_BURSTBITS; hp->happy_block = (struct hmeal_init_block *) get_free_page(GFP_DMA); if(!hp->happy_block) { printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n"); return ENODEV; } hp->hblock_dvma = (u32) virt_to_bus(hp->happy_block); #ifndef __sparc_v9__ /* This case we currently need to use 'sparc_alloc_io' */ hp->happy_block = sparc_alloc_io (hp->hblock_dvma, NULL, PAGE_SIZE, "sunhme", 0, 0); #endif hp->sun4c_buffers = 0; hp->linkcheck = 0; hp->timer_state = asleep; hp->timer_ticks = 0; happy_meal_set_initial_advertisement(hp); init_timer(&hp->happy_timer); hp->dev = dev; dev->open = &happy_meal_open; dev->stop = &happy_meal_close; dev->hard_start_xmit = &pci_happy_meal_start_xmit; dev->get_stats = &happy_meal_get_stats; dev->set_multicast_list = &happy_meal_set_multicast; dev->do_ioctl = &happy_meal_ioctl; dev->irq = pdev->irq; dev->dma = 0; ether_setup(dev); /* If we don't do this, nothing works. */ pci_read_config_word(pdev, PCI_COMMAND, &pci_command); pci_command |= PCI_COMMAND_MASTER; pci_write_config_word(pdev, PCI_COMMAND, pci_command); /* Set the latency timer and cache line size as well, * PROM leaves it at zero. */ { #if 1 unsigned char latency_timer = 64; #else unsigned char min_gnt, latency_timer; pci_read_config_byte(pdev, PCI_MIN_GNT, &min_gnt); if (min_gnt == 0) latency_timer = 64; else latency_timer = ((min_gnt << 3) & 0xff); #endif pci_write_config_byte(pdev, PCI_LATENCY_TIMER, latency_timer); } #ifdef __sparc_v9__ /* NOTE: Cache line size is in 32-bit word units. */ pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x10); #endif #ifdef MODULE /* We are home free at this point, link us in to the happy * module device list. */ dev->ifindex = dev_new_index(); hp->next_module = root_happy_dev; root_happy_dev = hp; #endif return 0; } #endif int __init happy_meal_probe(struct device *dev) { struct linux_sbus *bus; struct linux_sbus_device *sdev = 0; static int called = 0; int cards = 0, v; if(called) return ENODEV; called++; for_each_sbus(bus) { for_each_sbusdev(sdev, bus) { if(cards) dev = NULL; if(!strcmp(sdev->prom_name, "SUNW,hme")) { cards++; if((v = happy_meal_ether_init(dev, sdev, 0))) return v; } else if(!strcmp(sdev->prom_name, "qfe") || !strcmp(sdev->prom_name, "SUNW,qfe")) { cards++; if((v = happy_meal_ether_init(dev, sdev, 1))) return v; } } } if(cards != 0) quattro_sbus_register_irqs(); #ifdef CONFIG_PCI if(pci_present()) { struct pci_dev *pdev; pdev = pci_find_device(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL, 0); while (pdev) { if(cards) dev = NULL; cards++; if((v = happy_meal_pci_init(dev, pdev))) return v; pdev = pci_find_device(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL, pdev); } } #endif if(!cards) return ENODEV; return 0; } #ifdef MODULE int init_module(void) { root_happy_dev = NULL; return happy_meal_probe(NULL); } void cleanup_module(void) { struct happy_meal *sunshine; /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_happy_dev) { struct happy_meal *hp = root_happy_dev; sunshine = root_happy_dev->next_module; sparc_free_io(hp->gregs, sizeof(struct hmeal_gregs)); sparc_free_io(hp->etxregs, sizeof(struct hmeal_etxregs)); sparc_free_io(hp->erxregs, sizeof(struct hmeal_erxregs)); sparc_free_io(hp->bigmacregs, sizeof(struct hmeal_bigmacregs)); sparc_free_io(hp->tcvregs, sizeof(struct hmeal_tcvregs)); #ifndef __sparc_v9__ if (sparc_cpu_model == sun4d) iounit_map_dma_finish(hp->happy_sbus_dev->my_bus, (__u32)hp->sun4d_buffers, (RX_RING_SIZE + TX_RING_SIZE) * PAGE_SIZE); #endif unregister_netdev(hp->dev); kfree(hp->dev); root_happy_dev = sunshine; } } #endif /* MODULE */ |