Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | /* * linux/fs/file_table.c * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/slab.h> #include <linux/file.h> #include <linux/init.h> /* SLAB cache for filp's. */ static kmem_cache_t *filp_cache; /* sysctl tunables... */ int nr_files = 0; /* read only */ int nr_free_files = 0; /* read only */ int max_files = NR_FILE;/* tunable */ /* Free list management, if you are here you must have f_count == 0 */ static struct file * free_filps = NULL; static void insert_file_free(struct file *file) { if((file->f_next = free_filps) != NULL) free_filps->f_pprev = &file->f_next; free_filps = file; file->f_pprev = &free_filps; nr_free_files++; } /* The list of in-use filp's must be exported (ugh...) */ struct file *inuse_filps = NULL; static inline void put_inuse(struct file *file) { if((file->f_next = inuse_filps) != NULL) inuse_filps->f_pprev = &file->f_next; inuse_filps = file; file->f_pprev = &inuse_filps; } /* It does not matter which list it is on. */ static inline void remove_filp(struct file *file) { if(file->f_next) file->f_next->f_pprev = file->f_pprev; *file->f_pprev = file->f_next; } void __init file_table_init(void) { filp_cache = kmem_cache_create("filp", sizeof(struct file), 0, SLAB_HWCACHE_ALIGN, NULL, NULL); if(!filp_cache) panic("VFS: Cannot alloc filp SLAB cache."); /* * We could allocate the reserved files here, but really * shouldn't need to: the normal boot process will create * plenty of free files. */ } /* Find an unused file structure and return a pointer to it. * Returns NULL, if there are no more free file structures or * we run out of memory. */ struct file * get_empty_filp(void) { static int old_max = 0; struct file * f; if (nr_free_files > NR_RESERVED_FILES) { used_one: f = free_filps; remove_filp(f); nr_free_files--; new_one: memset(f, 0, sizeof(*f)); f->f_count = 1; f->f_version = ++event; f->f_uid = current->fsuid; f->f_gid = current->fsgid; put_inuse(f); return f; } /* * Use a reserved one if we're the superuser */ if (nr_free_files && !current->euid) goto used_one; /* * Allocate a new one if we're below the limit. */ if (nr_files < max_files) { f = kmem_cache_alloc(filp_cache, SLAB_KERNEL); if (f) { nr_files++; goto new_one; } /* Big problems... */ printk("VFS: filp allocation failed\n"); } else if (max_files > old_max) { printk("VFS: file-max limit %d reached\n", max_files); old_max = max_files; } return NULL; } /* * Clear and initialize a (private) struct file for the given dentry, * and call the open function (if any). The caller must verify that * inode->i_op and inode->i_op->default_file_ops are not NULL. */ int init_private_file(struct file *filp, struct dentry *dentry, int mode) { memset(filp, 0, sizeof(*filp)); filp->f_mode = mode; filp->f_count = 1; filp->f_dentry = dentry; filp->f_uid = current->fsuid; filp->f_gid = current->fsgid; filp->f_op = dentry->d_inode->i_op->default_file_ops; if (filp->f_op->open) return filp->f_op->open(dentry->d_inode, filp); else return 0; } void fput(struct file *file) { int count = file->f_count-1; if (!count) { locks_remove_flock(file); __fput(file); file->f_count = 0; remove_filp(file); insert_file_free(file); } else file->f_count = count; } void put_filp(struct file *file) { if(--file->f_count == 0) { remove_filp(file); insert_file_free(file); } } |