Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | /* * $Id: time.c,v 1.47.2.4 1999/08/27 04:20:32 cort Exp $ * Common time routines among all ppc machines. * * Written by Cort Dougan (cort@cs.nmt.edu) to merge * Paul Mackerras' version and mine for PReP and Pmac. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). * * Since the MPC8xx has a programmable interrupt timer, I decided to * use that rather than the decrementer. Two reasons: 1.) the clock * frequency is low, causing 2.) a long wait in the timer interrupt * while ((d = get_dec()) == dval) * loop. The MPC8xx can be driven from a variety of input clocks, * so a number of assumptions have been made here because the kernel * parameter HZ is a constant. We assume (correctly, today :-) that * the MPC8xx on the MBX board is driven from a 32.768 kHz crystal. * This is then divided by 4, providing a 8192 Hz clock into the PIT. * Since it is not possible to get a nice 100 Hz clock out of this, without * creating a software PLL, I have set HZ to 128. -- Dan * * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills */ #include <linux/config.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/timex.h> #include <linux/kernel_stat.h> #include <linux/mc146818rtc.h> #include <linux/time.h> #include <linux/init.h> #include <asm/segment.h> #include <asm/io.h> #include <asm/processor.h> #include <asm/nvram.h> #include <asm/cache.h> #ifdef CONFIG_8xx #include <asm/8xx_immap.h> #endif #include <asm/machdep.h> #include "time.h" void smp_local_timer_interrupt(struct pt_regs *); /* keep track of when we need to update the rtc */ time_t last_rtc_update = 0; /* The decrementer counts down by 128 every 128ns on a 601. */ #define DECREMENTER_COUNT_601 (1000000000 / HZ) #define COUNT_PERIOD_NUM_601 1 #define COUNT_PERIOD_DEN_601 1000 unsigned decrementer_count; /* count value for 1e6/HZ microseconds */ unsigned count_period_num; /* 1 decrementer count equals */ unsigned count_period_den; /* count_period_num / count_period_den us */ /* * timer_interrupt - gets called when the decrementer overflows, * with interrupts disabled. * We set it up to overflow again in 1/HZ seconds. */ void timer_interrupt(struct pt_regs * regs) { int dval, d; unsigned long cpu = smp_processor_id(); hardirq_enter(cpu); #ifdef __SMP__ { unsigned int loops = 100000000; while (test_bit(0, &global_irq_lock)) { if (smp_processor_id() == global_irq_holder) { printk("uh oh, interrupt while we hold global irq lock!\n"); #ifdef CONFIG_XMON xmon(0); #endif break; } if (loops-- == 0) { printk("do_IRQ waiting for irq lock (holder=%d)\n", global_irq_holder); #ifdef CONFIG_XMON xmon(0); #endif } } } #endif /* __SMP__ */ while ((dval = get_dec()) < 0) { /* * Wait for the decrementer to change, then jump * in and add decrementer_count to its value * (quickly, before it changes again!) */ while ((d = get_dec()) == dval) ; set_dec(d + decrementer_count); if ( !smp_processor_id() ) { do_timer(regs); /* * update the rtc when needed */ if ( (time_status & STA_UNSYNC) && ((xtime.tv_sec > last_rtc_update + 60) || (xtime.tv_sec < last_rtc_update)) ) { if (ppc_md.set_rtc_time(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else /* do it again in 60 s */ last_rtc_update = xtime.tv_sec; } } } #ifdef __SMP__ smp_local_timer_interrupt(regs); #endif #ifdef CONFIG_APUS { extern void apus_heartbeat (void); apus_heartbeat (); } #endif #if defined(CONFIG_ALL_PPC) || defined(CONFIG_CHRP) if ( _machine == _MACH_chrp ) chrp_event_scan(); #endif hardirq_exit(cpu); } /* * This version of gettimeofday has microsecond resolution. */ void do_gettimeofday(struct timeval *tv) { unsigned long flags; save_flags(flags); cli(); *tv = xtime; /* XXX we don't seem to have the decrementers synced properly yet */ #ifndef __SMP__ tv->tv_usec += (decrementer_count - get_dec()) * count_period_num / count_period_den; if (tv->tv_usec >= 1000000) { tv->tv_usec -= 1000000; tv->tv_sec++; } #endif restore_flags(flags); } void do_settimeofday(struct timeval *tv) { unsigned long flags; int frac_tick; last_rtc_update = 0; /* so the rtc gets updated soon */ frac_tick = tv->tv_usec % (1000000 / HZ); save_flags(flags); cli(); xtime.tv_sec = tv->tv_sec; xtime.tv_usec = tv->tv_usec - frac_tick; set_dec(frac_tick * count_period_den / count_period_num); time_adjust = 0; /* stop active adjtime() */ time_status |= STA_UNSYNC; time_state = TIME_ERROR; /* p. 24, (a) */ time_maxerror = NTP_PHASE_LIMIT; time_esterror = NTP_PHASE_LIMIT; restore_flags(flags); } __initfunc(void time_init(void)) { if (ppc_md.time_init != NULL) { ppc_md.time_init(); } if ((_get_PVR() >> 16) == 1) { /* 601 processor: dec counts down by 128 every 128ns */ decrementer_count = DECREMENTER_COUNT_601; count_period_num = COUNT_PERIOD_NUM_601; count_period_den = COUNT_PERIOD_DEN_601; } else if (!smp_processor_id()) { ppc_md.calibrate_decr(); } xtime.tv_sec = ppc_md.get_rtc_time(); xtime.tv_usec = 0; set_dec(decrementer_count); /* allow updates right away */ last_rtc_update = 0; } /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. * * [For the Julian calendar (which was used in Russia before 1917, * Britain & colonies before 1752, anywhere else before 1582, * and is still in use by some communities) leave out the * -year/100+year/400 terms, and add 10.] * * This algorithm was first published by Gauss (I think). * * WARNING: this function will overflow on 2106-02-07 06:28:16 on * machines were long is 32-bit! (However, as time_t is signed, we * will already get problems at other places on 2038-01-19 03:14:08) */ unsigned long mktime(unsigned int year, unsigned int mon, unsigned int day, unsigned int hour, unsigned int min, unsigned int sec) { if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */ mon += 12; /* Puts Feb last since it has leap day */ year -= 1; } return ((( (unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) + year*365 - 719499 )*24 + hour /* now have hours */ )*60 + min /* now have minutes */ )*60 + sec; /* finally seconds */ } #define TICK_SIZE tick #define FEBRUARY 2 #define STARTOFTIME 1970 #define SECDAY 86400L #define SECYR (SECDAY * 365) #define leapyear(year) ((year) % 4 == 0) #define days_in_year(a) (leapyear(a) ? 366 : 365) #define days_in_month(a) (month_days[(a) - 1]) static int month_days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; /* * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) */ void GregorianDay(struct rtc_time * tm) { int leapsToDate; int lastYear; int day; int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; lastYear=tm->tm_year-1; /* * Number of leap corrections to apply up to end of last year */ leapsToDate = lastYear/4 - lastYear/100 + lastYear/400; /* * This year is a leap year if it is divisible by 4 except when it is * divisible by 100 unless it is divisible by 400 * * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 will be */ if((tm->tm_year%4==0) && ((tm->tm_year%100!=0) || (tm->tm_year%400==0)) && (tm->tm_mon>2)) { /* * We are past Feb. 29 in a leap year */ day=1; } else { day=0; } day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + tm->tm_mday; tm->tm_wday=day%7; } void to_tm(int tim, struct rtc_time * tm) { register int i; register long hms, day; day = tim / SECDAY; hms = tim % SECDAY; /* Hours, minutes, seconds are easy */ tm->tm_hour = hms / 3600; tm->tm_min = (hms % 3600) / 60; tm->tm_sec = (hms % 3600) % 60; /* Number of years in days */ for (i = STARTOFTIME; day >= days_in_year(i); i++) day -= days_in_year(i); tm->tm_year = i; /* Number of months in days left */ if (leapyear(tm->tm_year)) days_in_month(FEBRUARY) = 29; for (i = 1; day >= days_in_month(i); i++) day -= days_in_month(i); days_in_month(FEBRUARY) = 28; tm->tm_mon = i; /* Days are what is left over (+1) from all that. */ tm->tm_mday = day + 1; /* * Determine the day of week */ GregorianDay(tm); } |