Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
#include <linux/config.h>

#ifndef _PPC_PGTABLE_H
#define _PPC_PGTABLE_H

#ifndef __ASSEMBLY__
#include <linux/mm.h>
#include <asm/processor.h>		/* For TASK_SIZE */
#include <asm/mmu.h>
#include <asm/page.h>

extern void local_flush_tlb_all(void);
extern void local_flush_tlb_mm(struct mm_struct *mm);
extern void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr);
extern void local_flush_tlb_range(struct mm_struct *mm, unsigned long start,
			    unsigned long end);

#define flush_tlb_all local_flush_tlb_all
#define flush_tlb_mm local_flush_tlb_mm
#define flush_tlb_page local_flush_tlb_page
#define flush_tlb_range local_flush_tlb_range

/*
 * No cache flushing is required when address mappings are
 * changed, because the caches on PowerPCs are physically
 * addressed.
 * Also, when SMP we use the coherency (M) bit of the
 * BATs and PTEs.  -- Cort
 */
#define flush_cache_all()		do { } while (0)
#define flush_cache_mm(mm)		do { } while (0)
#define flush_cache_range(mm, a, b)	do { } while (0)
#define flush_cache_page(vma, p)	do { } while (0)

extern void flush_icache_range(unsigned long, unsigned long);
extern void flush_page_to_ram(unsigned long);

extern unsigned long va_to_phys(unsigned long address);
extern pte_t *va_to_pte(struct task_struct *tsk, unsigned long address);
extern unsigned long ioremap_bot, ioremap_base;
#endif /* __ASSEMBLY__ */
/*
 * The PowerPC MMU uses a hash table containing PTEs, together with
 * a set of 16 segment registers (on 32-bit implementations), to define
 * the virtual to physical address mapping.
 *
 * We use the hash table as an extended TLB, i.e. a cache of currently
 * active mappings.  We maintain a two-level page table tree, much like
 * that used by the i386, for the sake of the Linux memory management code.
 * Low-level assembler code in head.S (procedure hash_page) is responsible
 * for extracting ptes from the tree and putting them into the hash table
 * when necessary, and updating the accessed and modified bits in the
 * page table tree.
 *
 * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
 * We also use the two level tables, but we can put the real bits in them
 * needed for the TLB and tablewalk.  These definitions require Mx_CTR.PPM = 0,
 * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1.  The level 2 descriptor has
 * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
 * based upon user/super access.  The TLB does not have accessed nor write
 * protect.  We assume that if the TLB get loaded with an entry it is
 * accessed, and overload the changed bit for write protect.  We use
 * two bits in the software pte that are supposed to be set to zero in
 * the TLB entry (24 and 25) for these indicators.  Although the level 1
 * descriptor contains the guarded and writethrough/copyback bits, we can
 * set these at the page level since they get copied from the Mx_TWC
 * register when the TLB entry is loaded.  We will use bit 27 for guard, since
 * that is where it exists in the MD_TWC, and bit 26 for writethrough.
 * These will get masked from the level 2 descriptor at TLB load time, and
 * copied to the MD_TWC before it gets loaded.
 */

/* PMD_SHIFT determines the size of the area mapped by the second-level page tables */
#define PMD_SHIFT	22
#define PMD_SIZE	(1UL << PMD_SHIFT)
#define PMD_MASK	(~(PMD_SIZE-1))

/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT	22
#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
#define PGDIR_MASK	(~(PGDIR_SIZE-1))

/*
 * entries per page directory level: our page-table tree is two-level, so
 * we don't really have any PMD directory.
 */
#define PTRS_PER_PTE	1024
#define PTRS_PER_PMD	1
#define PTRS_PER_PGD	1024
#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)

/* Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 64MB value just means that there will be a 64MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 *
 * We no longer map larger than phys RAM with the BATs so we don't have
 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
 * about clashes between our early calls to ioremap() that start growing down
 * from ioremap_base being run into the VM area allocations (growing upwards
 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
 * we actually run into our mappings setup in the early boot with the VM
 * system.  This really does become a problem for machines with good amounts
 * of RAM.  -- Cort
 */
#define VMALLOC_OFFSET (0x4000000) /* 64M */
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END	ioremap_bot

/*
 * Bits in a linux-style PTE.  These match the bits in the
 * (hardware-defined) PowerPC PTE as closely as possible.
 */
#ifndef CONFIG_8xx
#define _PAGE_PRESENT	0x001	/* software: pte contains a translation */
#define _PAGE_USER	0x002	/* matches one of the PP bits */
#define _PAGE_RW	0x004	/* software: user write access allowed */
#define _PAGE_GUARDED	0x008
#define _PAGE_COHERENT	0x010	/* M: enforce memory coherence (SMP systems) */
#define _PAGE_NO_CACHE	0x020	/* I: cache inhibit */
#define _PAGE_WRITETHRU	0x040	/* W: cache write-through */
#define _PAGE_DIRTY	0x080	/* C: page changed */
#define _PAGE_ACCESSED	0x100	/* R: page referenced */
#define _PAGE_HWWRITE	0x200	/* software: _PAGE_RW & _PAGE_DIRTY */
#define _PAGE_SHARED	0

#else
#define _PAGE_PRESENT	0x0001	/* Page is valid */
#define _PAGE_NO_CACHE	0x0002	/* I: cache inhibit */
#define _PAGE_SHARED	0x0004	/* No ASID (context) compare */

/* These four software bits must be masked out when the entry is loaded
 * into the TLB.
 */
#define _PAGE_GUARDED	0x0010	/* software: guarded access */
#define _PAGE_WRITETHRU 0x0020	/* software: use writethrough cache */
#define _PAGE_RW	0x0040	/* software: user write access allowed */
#define _PAGE_ACCESSED	0x0080	/* software: page referenced */

#define _PAGE_DIRTY	0x0100	/* C: page changed (write protect) */
#define _PAGE_USER	0x0800	/* One of the PP bits, the other must be 0 */

/* This is used to enable or disable the actual hardware write
 * protection.
 */
#define _PAGE_HWWRITE	_PAGE_DIRTY

#endif /* CONFIG_8xx */

#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)

#ifdef __SMP__
#define _PAGE_BASE	_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT
#else
#define _PAGE_BASE	_PAGE_PRESENT | _PAGE_ACCESSED
#endif
#define _PAGE_WRENABLE	_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE

#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)

#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | \
				 _PAGE_SHARED)
#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED)
#define PAGE_KERNEL_CI	__pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | \
				 _PAGE_NO_CACHE )

/*
 * The PowerPC can only do execute protection on a segment (256MB) basis,
 * not on a page basis.  So we consider execute permission the same as read.
 * Also, write permissions imply read permissions.
 * This is the closest we can get..
 */
#define __P000	PAGE_NONE
#define __P001	PAGE_READONLY
#define __P010	PAGE_COPY
#define __P011	PAGE_COPY
#define __P100	PAGE_READONLY
#define __P101	PAGE_READONLY
#define __P110	PAGE_COPY
#define __P111	PAGE_COPY

#define __S000	PAGE_NONE
#define __S001	PAGE_READONLY
#define __S010	PAGE_SHARED
#define __S011	PAGE_SHARED
#define __S100	PAGE_READONLY
#define __S101	PAGE_READONLY
#define __S110	PAGE_SHARED
#define __S111	PAGE_SHARED

/*
 * BAD_PAGETABLE is used when we need a bogus page-table, while
 * BAD_PAGE is used for a bogus page.
 *
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
#ifndef __ASSEMBLY__
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);

extern unsigned long empty_zero_page[1024];
#endif __ASSEMBLY__
#define BAD_PAGETABLE	__bad_pagetable()
#define BAD_PAGE	__bad_page()
#define ZERO_PAGE(vaddr)	((unsigned long) empty_zero_page)

/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR	(8*sizeof(unsigned long))

/* to align the pointer to a pointer address */
#define PTR_MASK	(~(sizeof(void*)-1))

/* sizeof(void*) == 1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware!  SRB. */
#define SIZEOF_PTR_LOG2	2

/* to set the page-dir */
/* tsk is a task_struct and pgdir is a pte_t */
#ifndef CONFIG_8xx
#define SET_PAGE_DIR(tsk,pgdir)  \
	((tsk)->tss.pg_tables = (unsigned long *)(pgdir))
#else /* CONFIG_8xx */     
#define SET_PAGE_DIR(tsk,pgdir)  \
 do { \
	unsigned long __pgdir = (unsigned long)pgdir; \
	((tsk)->tss.pg_tables = (unsigned long *)(__pgdir)); \
	asm("mtspr %0,%1 \n\t" : : "i"(M_TWB), "r"(__pa(__pgdir))); \
 } while (0)
#endif /* CONFIG_8xx */
     
#ifndef __ASSEMBLY__
extern inline int pte_none(pte_t pte)		{ return !pte_val(pte); }
extern inline int pte_present(pte_t pte)	{ return pte_val(pte) & _PAGE_PRESENT; }
extern inline void pte_clear(pte_t *ptep)	{ pte_val(*ptep) = 0; }

extern inline int pmd_none(pmd_t pmd)		{ return !pmd_val(pmd); }
extern inline int pmd_bad(pmd_t pmd)		{ return (pmd_val(pmd) & ~PAGE_MASK) != 0; }
extern inline int pmd_present(pmd_t pmd)	{ return (pmd_val(pmd) & PAGE_MASK) != 0; }
extern inline void pmd_clear(pmd_t * pmdp)	{ pmd_val(*pmdp) = 0; }


/*
 * The "pgd_xxx()" functions here are trivial for a folded two-level
 * setup: the pgd is never bad, and a pmd always exists (as it's folded
 * into the pgd entry)
 */
extern inline int pgd_none(pgd_t pgd)		{ return 0; }
extern inline int pgd_bad(pgd_t pgd)		{ return 0; }
extern inline int pgd_present(pgd_t pgd)	{ return 1; }
extern inline void pgd_clear(pgd_t * pgdp)	{ }

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
extern inline int pte_read(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
extern inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_RW; }
extern inline int pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_USER; }
extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }

extern inline void pte_uncache(pte_t pte)       { pte_val(pte) |= _PAGE_NO_CACHE; }
extern inline void pte_cache(pte_t pte)         { pte_val(pte) &= ~_PAGE_NO_CACHE; }

extern inline pte_t pte_rdprotect(pte_t pte) {
	pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_exprotect(pte_t pte) {
	pte_val(pte) &= ~_PAGE_USER; return pte; }
extern inline pte_t pte_wrprotect(pte_t pte) {
	pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
extern inline pte_t pte_mkclean(pte_t pte) {
	pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
extern inline pte_t pte_mkold(pte_t pte) {
	pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }

extern inline pte_t pte_mkread(pte_t pte) {
	pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkexec(pte_t pte) {
	pte_val(pte) |= _PAGE_USER; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte)
{
	pte_val(pte) |= _PAGE_RW;
	if (pte_val(pte) & _PAGE_DIRTY)
		pte_val(pte) |= _PAGE_HWWRITE;
	return pte;
}
extern inline pte_t pte_mkdirty(pte_t pte)
{
	pte_val(pte) |= _PAGE_DIRTY;
	if (pte_val(pte) & _PAGE_RW)
		pte_val(pte) |= _PAGE_HWWRITE;
	return pte;
}
extern inline pte_t pte_mkyoung(pte_t pte) {
	pte_val(pte) |= _PAGE_ACCESSED; return pte; }

/* Certain architectures need to do special things when pte's
 * within a page table are directly modified.  Thus, the following
 * hook is made available.
 */
#if 1
#define set_pte(pteptr, pteval)	((*(pteptr)) = (pteval))
#else
extern inline void set_pte(pte_t *pteptr, pte_t pteval)
{
	unsigned long val = pte_val(pteval);
	extern void xmon(void *);

	if ((val & _PAGE_PRESENT) && ((val < 0x111000 || (val & 0x800)
	    || ((val & _PAGE_HWWRITE) && (~val & (_PAGE_RW|_PAGE_DIRTY)))) {
		printk("bad pte val %lx ptr=%p\n", val, pteptr);
		xmon(0);
	}
	*pteptr = pteval;
}
#endif

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */

static inline pte_t mk_pte_phys(unsigned long page, pgprot_t pgprot)
{ pte_t pte; pte_val(pte) = (page) | pgprot_val(pgprot); return pte; }

extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot)
{ pte_t pte; pte_val(pte) = __pa(page) | pgprot_val(pgprot); return pte; }

extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }

extern inline unsigned long pte_page(pte_t pte)
{ return (unsigned long) __va(pte_val(pte) & PAGE_MASK); }

extern inline unsigned long pmd_page(pmd_t pmd)
{ return pmd_val(pmd); }


/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)

/* to find an entry in a page-table-directory */
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
	return mm->pgd + (address >> PGDIR_SHIFT);
}

/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
	return (pmd_t *) dir;
}

/* Find an entry in the third-level page table.. */ 
extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
{
	return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}

/*
 * This is handled very differently on the PPC since out page tables
 * are all 0's and I want to be able to use these zero'd pages elsewhere
 * as well - it gives us quite a speedup.
 *
 * Note that the SMP/UP versions are the same but we don't need a
 * per cpu list of zero pages because we do the zero-ing with the cache
 * off and the access routines are lock-free but the pgt cache stuff
 * is per-cpu since it isn't done with any lock-free access routines
 * (although I think we need arch-specific routines so I can do lock-free).
 *
 * I need to generalize this so we can use it for other arch's as well.
 * -- Cort
 */
#ifdef __SMP__
#define quicklists	cpu_data[smp_processor_id()]
#else
extern struct pgtable_cache_struct {
	unsigned long *pgd_cache;
	unsigned long *pte_cache;
	unsigned long pgtable_cache_sz;
} quicklists;
#endif

#define pgd_quicklist 		(quicklists.pgd_cache)
#define pmd_quicklist 		((unsigned long *)0)
#define pte_quicklist 		(quicklists.pte_cache)
#define pgtable_cache_size 	(quicklists.pgtable_cache_sz)

extern unsigned long *zero_cache;    /* head linked list of pre-zero'd pages */
extern unsigned long zero_sz;	     /* # currently pre-zero'd pages */
extern unsigned long zeropage_hits;  /* # zero'd pages request that we've done */
extern unsigned long zeropage_calls; /* # zero'd pages request that've been made */
extern unsigned long zerototal;      /* # pages zero'd over time */

#define zero_quicklist     	(zero_cache)
#define zero_cache_sz  	 	(zero_sz)
#define zero_cache_calls 	(zeropage_calls)
#define zero_cache_hits  	(zeropage_hits)
#define zero_cache_total 	(zerototal)

/* return a pre-zero'd page from the list, return NULL if none available -- Cort */
extern unsigned long get_zero_page_fast(void);

extern __inline__ pgd_t *get_pgd_slow(void)
{
	pgd_t *ret/* = (pgd_t *)__get_free_page(GFP_KERNEL)*/, *init;

	if ( (ret = (pgd_t *)get_zero_page_fast()) == NULL )
	{
		if ( (ret = (pgd_t *)__get_free_page(GFP_KERNEL)) != NULL )
			memset (ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
	}
	if (ret) {
		init = pgd_offset(&init_mm, 0);
		/*memset (ret, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));*/
		memcpy (ret + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
			(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
	}
	return ret;
}

extern __inline__ pgd_t *get_pgd_fast(void)
{
        unsigned long *ret;

        if((ret = pgd_quicklist) != NULL) {
                pgd_quicklist = (unsigned long *)(*ret);
                ret[0] = ret[1];
                pgtable_cache_size--;
        } else
                ret = (unsigned long *)get_pgd_slow();
        return (pgd_t *)ret;
}

extern __inline__ void free_pgd_fast(pgd_t *pgd)
{
        *(unsigned long *)pgd = (unsigned long) pgd_quicklist;
        pgd_quicklist = (unsigned long *) pgd;
        pgtable_cache_size++;
}

extern __inline__ void free_pgd_slow(pgd_t *pgd)
{
	free_page((unsigned long)pgd);
}

extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long address_preadjusted);

extern __inline__ pte_t *get_pte_fast(void)
{
        unsigned long *ret;

        if((ret = (unsigned long *)pte_quicklist) != NULL) {
                pte_quicklist = (unsigned long *)(*ret);
                ret[0] = ret[1];
                pgtable_cache_size--;
         }
        return (pte_t *)ret;
}

extern __inline__ void free_pte_fast(pte_t *pte)
{
        *(unsigned long *)pte = (unsigned long) pte_quicklist;
        pte_quicklist = (unsigned long *) pte;
        pgtable_cache_size++;
}

extern __inline__ void free_pte_slow(pte_t *pte)
{
	free_page((unsigned long)pte);
}

/* We don't use pmd cache, so this is a dummy routine */
extern __inline__ pmd_t *get_pmd_fast(void)
{
	return (pmd_t *)0;
}

extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
}

extern __inline__ void free_pmd_slow(pmd_t *pmd)
{
}

extern void __bad_pte(pmd_t *pmd);

#define pte_free_kernel(pte)    free_pte_fast(pte)
#define pte_free(pte)           free_pte_fast(pte)
#define pgd_free(pgd)           free_pgd_fast(pgd)
#define pgd_alloc()             get_pgd_fast()

extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
	address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	if (pmd_none(*pmd)) {
		pte_t * page = (pte_t *) get_pte_fast();
		
		if (!page)
			return get_pte_slow(pmd, address);
		pmd_val(*pmd) = (unsigned long) page;
		return page + address;
	}
	if (pmd_bad(*pmd)) {
		__bad_pte(pmd);
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + address;
}

/*
 * allocating and freeing a pmd is trivial: the 1-entry pmd is
 * inside the pgd, so has no extra memory associated with it.
 */
extern inline void pmd_free(pmd_t * pmd)
{
}

extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
	return (pmd_t *) pgd;
}

#define pmd_free_kernel		pmd_free
#define pmd_alloc_kernel	pmd_alloc
#define pte_alloc_kernel	pte_alloc

extern int do_check_pgt_cache(int, int);

extern inline void set_pgdir(unsigned long address, pgd_t entry)
{
	struct task_struct * p;
	pgd_t *pgd;
#ifdef __SMP__
	int i;
#endif	
        
	read_lock(&tasklist_lock);
	for_each_task(p) {
		if (!p->mm)
			continue;
		*pgd_offset(p->mm,address) = entry;
	}
	read_unlock(&tasklist_lock);
#ifndef __SMP__
	for (pgd = (pgd_t *)pgd_quicklist; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
		pgd[address >> PGDIR_SHIFT] = entry;
#else
	/* To pgd_alloc/pgd_free, one holds master kernel lock and so does our callee, so we can
	   modify pgd caches of other CPUs as well. -jj */
	for (i = 0; i < NR_CPUS; i++)
		for (pgd = (pgd_t *)cpu_data[i].pgd_cache; pgd; pgd = (pgd_t *)*(unsigned long *)pgd)
			pgd[address >> PGDIR_SHIFT] = entry;
#endif
}

extern pgd_t swapper_pg_dir[1024];

extern __inline__ pte_t *find_pte(struct mm_struct *mm,unsigned long va)
{
	pgd_t *dir;
	pmd_t *pmd;
	pte_t *pte;

	va &= PAGE_MASK;
	
	dir = pgd_offset( mm, va );
	if (dir)
	{
		pmd = pmd_offset(dir, va & PAGE_MASK);
		if (pmd && pmd_present(*pmd))
		{
			pte = pte_offset(pmd, va);
			if (pte && pte_present(*pte))
			{			
				pte_uncache(*pte);
				flush_tlb_page(find_vma(mm,va),va);
			}
		}
	}
	return pte;
}

/*
 * Page tables may have changed.  We don't need to do anything here
 * as entries are faulted into the hash table by the low-level
 * data/instruction access exception handlers.
 */
#define update_mmu_cache(vma, addr, pte)	do { } while (0)

/*
 * When flushing the tlb entry for a page, we also need to flush the
 * hash table entry.  flush_hash_page is assembler (for speed) in head.S.
 */
extern void flush_hash_segments(unsigned low_vsid, unsigned high_vsid);
extern void flush_hash_page(unsigned context, unsigned long va);


#define SWP_TYPE(entry) (((entry) >> 1) & 0x7f)
#define SWP_OFFSET(entry) ((entry) >> 8)
#define SWP_ENTRY(type,offset) (((type) << 1) | ((offset) << 8))

#define module_map      vmalloc
#define module_unmap    vfree

/* CONFIG_APUS */
/* For virtual address to physical address conversion */
extern void cache_clear(__u32 addr, int length);
extern void cache_push(__u32 addr, int length);
extern int mm_end_of_chunk (unsigned long addr, int len);
extern unsigned long iopa(unsigned long addr);
extern unsigned long mm_ptov(unsigned long addr) __attribute__ ((const));

/* Values for nocacheflag and cmode */
/* These are not used by the APUS kernel_map, but prevents
   compilation errors. */
#define	KERNELMAP_FULL_CACHING		0
#define	KERNELMAP_NOCACHE_SER		1
#define	KERNELMAP_NOCACHE_NONSER	2
#define	KERNELMAP_NO_COPYBACK		3

/*
 * Map some physical address range into the kernel address space.
 */
extern unsigned long kernel_map(unsigned long paddr, unsigned long size,
				int nocacheflag, unsigned long *memavailp );

/*
 * Set cache mode of (kernel space) address range. 
 */
extern void kernel_set_cachemode (unsigned long address, unsigned long size,
                                 unsigned int cmode);

/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page)		(0)
#define kern_addr_valid(addr)	(1)

#endif __ASSEMBLY__
#endif /* _PPC_PGTABLE_H */