Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | /* * linux/fs/hfs/btree.c * * Copyright (C) 1995-1997 Paul H. Hargrove * This file may be distributed under the terms of the GNU Public License. * * This file contains the code to manipulate the B-tree structure. * The catalog and extents files are both B-trees. * * "XXX" in a comment is a note to myself to consider changing something. * * In function preconditions the term "valid" applied to a pointer to * a structure means that the pointer is non-NULL and the structure it * points to has all fields initialized to consistent values. * * The code in this file initializes some structures which contain * pointers by calling memset(&foo, 0, sizeof(foo)). * This produces the desired behavior only due to the non-ANSI * assumption that the machine representation of NULL is all zeros. */ #include "hfs_btree.h" /*================ File-local functions ================*/ /* * hfs_bnode_ditch() * * Description: * This function deletes an entire linked list of bnodes, so it * does not need to keep the linked list consistent as * hfs_bnode_delete() does. * Called by hfs_btree_init() for error cleanup and by hfs_btree_free(). * Input Variable(s): * struct hfs_bnode *bn: pointer to the first (struct hfs_bnode) in * the linked list to be deleted. * Output Variable(s): * NONE * Returns: * void * Preconditions: * 'bn' is NULL or points to a "valid" (struct hfs_bnode) with a 'prev' * field of NULL. * Postconditions: * 'bn' and all (struct hfs_bnode)s in the chain of 'next' pointers * are deleted, freeing the associated memory and hfs_buffer_put()ing * the associated buffer. */ static void hfs_bnode_ditch(struct hfs_bnode *bn) { struct hfs_bnode *tmp; #if defined(DEBUG_BNODES) || defined(DEBUG_ALL) extern int bnode_count; #endif while (bn != NULL) { tmp = bn->next; #if defined(DEBUG_BNODES) || defined(DEBUG_ALL) hfs_warn("deleting node %d from tree %d with count %d\n", bn->node, (int)ntohl(bn->tree->entry.cnid), bn->count); --bnode_count; #endif hfs_buffer_put(bn->buf); /* safe: checks for NULL argument */ /* free all but the header */ if (bn->node) { HFS_DELETE(bn); } bn = tmp; } } /*================ Global functions ================*/ /* * hfs_btree_free() * * Description: * This function frees a (struct hfs_btree) obtained from hfs_btree_init(). * Called by hfs_put_super(). * Input Variable(s): * struct hfs_btree *bt: pointer to the (struct hfs_btree) to free * Output Variable(s): * NONE * Returns: * void * Preconditions: * 'bt' is NULL or points to a "valid" (struct hfs_btree) * Postconditions: * If 'bt' points to a "valid" (struct hfs_btree) then all (struct * hfs_bnode)s associated with 'bt' are freed by calling * hfs_bnode_ditch() and the memory associated with the (struct * hfs_btree) is freed. * If 'bt' is NULL or not "valid" an error is printed and nothing * is changed. */ void hfs_btree_free(struct hfs_btree *bt) { int lcv; if (bt && (bt->magic == HFS_BTREE_MAGIC)) { hfs_extent_free(&bt->entry.u.file.data_fork); for (lcv=0; lcv<HFS_CACHELEN; ++lcv) { #if defined(DEBUG_BNODES) || defined(DEBUG_ALL) hfs_warn("deleting nodes from bucket %d:\n", lcv); #endif hfs_bnode_ditch(bt->cache[lcv]); } #if defined(DEBUG_BNODES) || defined(DEBUG_ALL) hfs_warn("deleting header and bitmap nodes\n"); #endif hfs_bnode_ditch(&bt->head); #if defined(DEBUG_BNODES) || defined(DEBUG_ALL) hfs_warn("deleting root node\n"); #endif hfs_bnode_ditch(bt->root); HFS_DELETE(bt); } else if (bt) { hfs_warn("hfs_btree_free: corrupted hfs_btree.\n"); } } /* * hfs_btree_init() * * Description: * Given some vital information from the MDB (HFS superblock), * initializes the fields of a (struct hfs_btree). * Input Variable(s): * struct hfs_mdb *mdb: pointer to the MDB * ino_t cnid: the CNID (HFS_CAT_CNID or HFS_EXT_CNID) of the B-tree * hfs_u32 tsize: the size, in bytes, of the B-tree * hfs_u32 csize: the size, in bytes, of the clump size for the B-tree * Output Variable(s): * NONE * Returns: * (struct hfs_btree *): pointer to the initialized hfs_btree on success, * or NULL on failure * Preconditions: * 'mdb' points to a "valid" (struct hfs_mdb) * Postconditions: * Assuming the inputs are what they claim to be, no errors occur * reading from disk, and no inconsistencies are noticed in the data * read from disk, the return value is a pointer to a "valid" * (struct hfs_btree). If there are errors reading from disk or * inconsistencies are noticed in the data read from disk, then and * all resources that were allocated are released and NULL is * returned. If the inputs are not what they claim to be or if they * are unnoticed inconsistencies in the data read from disk then the * returned hfs_btree is probably going to lead to errors when it is * used in a non-trivial way. */ struct hfs_btree * hfs_btree_init(struct hfs_mdb *mdb, ino_t cnid, hfs_byte_t ext[12], hfs_u32 tsize, hfs_u32 csize) { struct hfs_btree * bt; struct BTHdrRec * th; struct hfs_bnode * tmp; unsigned int next; #if defined(DEBUG_HEADER) || defined(DEBUG_ALL) unsigned char *p, *q; #endif if (!mdb || !ext || !HFS_NEW(bt)) { goto bail3; } bt->magic = HFS_BTREE_MAGIC; bt->sys_mdb = mdb->sys_mdb; bt->reserved = 0; bt->lock = 0; bt->wait = NULL; bt->dirt = 0; memset(bt->cache, 0, sizeof(bt->cache)); bt->entry.mdb = mdb; bt->entry.cnid = cnid; bt->entry.type = HFS_CDR_FIL; bt->entry.u.file.magic = HFS_FILE_MAGIC; bt->entry.u.file.clumpablks = (csize / mdb->alloc_blksz) >> HFS_SECTOR_SIZE_BITS; bt->entry.u.file.data_fork.entry = &bt->entry; bt->entry.u.file.data_fork.lsize = tsize; bt->entry.u.file.data_fork.psize = tsize >> HFS_SECTOR_SIZE_BITS; bt->entry.u.file.data_fork.fork = HFS_FK_DATA; hfs_extent_in(&bt->entry.u.file.data_fork, ext); hfs_bnode_read(&bt->head, bt, 0, HFS_STICKY); if (!hfs_buffer_ok(bt->head.buf)) { goto bail2; } th = (struct BTHdrRec *)((char *)hfs_buffer_data(bt->head.buf) + sizeof(struct NodeDescriptor)); /* read in the bitmap nodes (if any) */ tmp = &bt->head; while ((next = tmp->ndFLink)) { if (!HFS_NEW(tmp->next)) { goto bail2; } hfs_bnode_read(tmp->next, bt, next, HFS_STICKY); if (!hfs_buffer_ok(tmp->next->buf)) { goto bail2; } tmp->next->prev = tmp; tmp = tmp->next; } if (hfs_get_ns(th->bthNodeSize) != htons(HFS_SECTOR_SIZE)) { hfs_warn("hfs_btree_init: bthNodeSize!=512 not supported\n"); goto bail2; } if (cnid == htonl(HFS_CAT_CNID)) { bt->compare = (hfs_cmpfn)hfs_cat_compare; } else if (cnid == htonl(HFS_EXT_CNID)) { bt->compare = (hfs_cmpfn)hfs_ext_compare; } else { goto bail2; } bt->bthDepth = hfs_get_hs(th->bthDepth); bt->bthRoot = hfs_get_hl(th->bthRoot); bt->bthNRecs = hfs_get_hl(th->bthNRecs); bt->bthFNode = hfs_get_hl(th->bthFNode); bt->bthLNode = hfs_get_hl(th->bthLNode); bt->bthNNodes = hfs_get_hl(th->bthNNodes); bt->bthFree = hfs_get_hl(th->bthFree); bt->bthKeyLen = hfs_get_hs(th->bthKeyLen); #if defined(DEBUG_HEADER) || defined(DEBUG_ALL) hfs_warn("bthDepth %d\n", bt->bthDepth); hfs_warn("bthRoot %d\n", bt->bthRoot); hfs_warn("bthNRecs %d\n", bt->bthNRecs); hfs_warn("bthFNode %d\n", bt->bthFNode); hfs_warn("bthLNode %d\n", bt->bthLNode); hfs_warn("bthKeyLen %d\n", bt->bthKeyLen); hfs_warn("bthNNodes %d\n", bt->bthNNodes); hfs_warn("bthFree %d\n", bt->bthFree); p = (unsigned char *)hfs_buffer_data(bt->head.buf); q = p + HFS_SECTOR_SIZE; while (p < q) { hfs_warn("%02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x\n", *p++, *p++, *p++, *p++, *p++, *p++, *p++, *p++, *p++, *p++, *p++, *p++, *p++, *p++, *p++, *p++); } #endif /* Read in the root if it exists. The header always exists, but the root exists only if the tree is non-empty */ if (bt->bthDepth && bt->bthRoot) { if (!HFS_NEW(bt->root)) { goto bail2; } hfs_bnode_read(bt->root, bt, bt->bthRoot, HFS_STICKY); if (!hfs_buffer_ok(bt->root->buf)) { goto bail1; } } else { bt->root = NULL; } return bt; bail1: hfs_bnode_ditch(bt->root); bail2: hfs_bnode_ditch(&bt->head); HFS_DELETE(bt); bail3: return NULL; } /* * hfs_btree_commit() * * Called to write a possibly dirty btree back to disk. */ void hfs_btree_commit(struct hfs_btree *bt, hfs_byte_t ext[12], hfs_lword_t size) { if (bt->dirt) { struct BTHdrRec *th; th = (struct BTHdrRec *)((char *)hfs_buffer_data(bt->head.buf) + sizeof(struct NodeDescriptor)); hfs_put_hs(bt->bthDepth, th->bthDepth); hfs_put_hl(bt->bthRoot, th->bthRoot); hfs_put_hl(bt->bthNRecs, th->bthNRecs); hfs_put_hl(bt->bthFNode, th->bthFNode); hfs_put_hl(bt->bthLNode, th->bthLNode); hfs_put_hl(bt->bthNNodes, th->bthNNodes); hfs_put_hl(bt->bthFree, th->bthFree); hfs_buffer_dirty(bt->head.buf); /* * Commit the bnodes which are not cached. * The map nodes don't need to be committed here because * they are committed every time they are changed. */ hfs_bnode_commit(&bt->head); if (bt->root) { hfs_bnode_commit(bt->root); } hfs_put_hl(bt->bthNNodes << HFS_SECTOR_SIZE_BITS, size); hfs_extent_out(&bt->entry.u.file.data_fork, ext); /* hfs_buffer_dirty(mdb->buf); (Done by caller) */ bt->dirt = 0; } } |