Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/*
 * Procedures for interfacing to the Open Firmware PROM on
 * Power Macintosh computers.
 *
 * In particular, we are interested in the device tree
 * and in using some of its services (exit, write to stdout).
 *
 * Paul Mackerras	August 1996.
 * Copyright (C) 1996 Paul Mackerras.
 */
#include <stdarg.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <asm/prom.h>
#include <asm/page.h>
#include <asm/processor.h>

/*
 * Properties whose value is longer than this get excluded from our
 * copy of the device tree.  This way we don't waste space storing
 * things like "driver,AAPL,MacOS,PowerPC" properties.
 */
#define MAX_PROPERTY_LENGTH	1024

struct prom_args {
	const char *service;
	int nargs;
	int nret;
	void *args[10];
};

struct pci_address {
	unsigned a_hi;
	unsigned a_mid;
	unsigned a_lo;
};

struct pci_reg_property {
	struct pci_address addr;
	unsigned size_hi;
	unsigned size_lo;
};

struct pci_range {
	struct pci_address addr;
	unsigned phys;
	unsigned size_hi;
	unsigned size_lo;
};

char *prom_display_paths[FB_MAX] __initdata = { 0, };
unsigned int prom_num_displays = 0;

prom_entry prom = 0;
ihandle prom_chosen = 0, prom_stdout = 0;

extern char *klimit;
char *bootpath = 0;
char *bootdevice = 0;

unsigned int rtas_data = 0;
unsigned int rtas_entry = 0;

static struct device_node *allnodes = 0;

static void *call_prom(const char *service, int nargs, int nret, ...);
static void prom_print(const char *msg);
static void prom_exit(void);
static unsigned long copy_device_tree(unsigned long, unsigned long);
static unsigned long inspect_node(phandle, struct device_node *, unsigned long,
				  unsigned long, struct device_node ***);
static unsigned long finish_node(struct device_node *, unsigned long,
				 unsigned long);
static unsigned long check_display(unsigned long);
static int prom_next_node(phandle *);

extern void enter_rtas(void *);
extern unsigned long reloc_offset(void);

/*
 * prom_init() is called very early on, before the kernel text
 * and data have been mapped to KERNELBASE.  At this point the code
 * is running at whatever address it has been loaded at, so
 * references to extern and static variables must be relocated
 * explicitly.  The procedure reloc_offset() returns the the address
 * we're currently running at minus the address we were linked at.
 * (Note that strings count as static variables.)
 *
 * Because OF may have mapped I/O devices into the area starting at
 * KERNELBASE, particularly on CHRP machines, we can't safely call
 * OF once the kernel has been mapped to KERNELBASE.  Therefore all
 * OF calls should be done within prom_init(), and prom_init()
 * and all routines called within it must be careful to relocate
 * references as necessary.
 *
 * Note that the bss is cleared *after* prom_init runs, so we have
 * to make sure that any static or extern variables it accesses
 * are put in the data segment.
 */
#define PTRRELOC(x)	((typeof(x))((unsigned long)(x) + offset))
#define PTRUNRELOC(x)	((typeof(x))((unsigned long)(x) - offset))
#define RELOC(x)	(*PTRRELOC(&(x)))

#define ALIGN(x) (((x) + sizeof(unsigned long)-1) & -sizeof(unsigned long))

static void
prom_exit()
{
	struct prom_args args;
	unsigned long offset = reloc_offset();

	args.service = "exit";
	args.nargs = 0;
	args.nret = 0;
	RELOC(prom)(&args);
	for (;;)			/* should never get here */
		;
}

static void *
call_prom(const char *service, int nargs, int nret, ...)
{
	va_list list;
	int i;
	unsigned long offset = reloc_offset();
	struct prom_args prom_args;

	prom_args.service = service;
	prom_args.nargs = nargs;
	prom_args.nret = nret;
	va_start(list, nret);
	for (i = 0; i < nargs; ++i)
		prom_args.args[i] = va_arg(list, void *);
	va_end(list);
	for (i = 0; i < nret; ++i)
		prom_args.args[i + nargs] = 0;
	RELOC(prom)(&prom_args);
	return prom_args.args[nargs];
}

static void
prom_print(const char *msg)
{
	const char *p, *q;
	unsigned long offset = reloc_offset();

	for (p = msg; *p != 0; p = q) {
		for (q = p; *q != 0 && *q != '\n'; ++q)
			;
		if (q > p)
			call_prom(RELOC("write"), 3, 1, RELOC(prom_stdout),
				  p, q - p);
		if (*q != 0) {
			++q;
			call_prom(RELOC("write"), 3, 1, RELOC(prom_stdout),
				  RELOC("\r\n"), 2);
		}
	}
}

/*
 * We enter here early on, when the Open Firmware prom is still
 * handling exceptions and the MMU hash table for us.
 */
void
prom_init(int r3, int r4, prom_entry pp)
{
	unsigned long mem;
	ihandle prom_rtas;
	unsigned int rtas_size;
	unsigned long offset = reloc_offset();
	int l;
	char *p, *d;

	/* First get a handle for the stdout device */
	RELOC(prom) = pp;
	RELOC(prom_chosen) = call_prom(RELOC("finddevice"), 1, 1,
				       RELOC("/chosen"));
	if (RELOC(prom_chosen) == (void *)-1)
		prom_exit();
	if ((int) call_prom(RELOC("getprop"), 4, 1, RELOC(prom_chosen),
			    RELOC("stdout"), &RELOC(prom_stdout),
			    sizeof(prom_stdout)) <= 0)
		prom_exit();

	/* Get the boot device and translate it to a full OF pathname. */
	mem = (unsigned long) RELOC(klimit) + offset;
	p = (char *) mem;
	l = (int) call_prom(RELOC("getprop"), 4, 1, RELOC(prom_chosen),
			    RELOC("bootpath"), p, 1<<20);
	if (l > 0) {
		p[l] = 0;	/* should already be null-terminated */
		RELOC(bootpath) = PTRUNRELOC(p);
		mem += l + 1;
		d = (char *) mem;
		*d = 0;
		call_prom(RELOC("canon"), 3, 1, p, d, 1<<20);
		RELOC(bootdevice) = PTRUNRELOC(d);
		mem = ALIGN(mem + strlen(d) + 1);
	}

	mem = check_display(mem);

	prom_print(RELOC("copying OF device tree..."));
	mem = copy_device_tree(mem, mem + (1<<20));
	prom_print(RELOC("done\n"));

	prom_rtas = call_prom(RELOC("finddevice"), 1, 1, RELOC("/rtas"));
	if (prom_rtas != (void *) -1) {
		rtas_size = 0;
		call_prom(RELOC("getprop"), 4, 1, prom_rtas,
			  RELOC("rtas-size"), &rtas_size, sizeof(rtas_size));
		prom_print(RELOC("instantiating rtas..."));
		if (rtas_size == 0) {
			RELOC(rtas_data) = 0;
		} else {
			mem = (mem + 4095) & -4096; /* round to page bdry */
			RELOC(rtas_data) = mem - KERNELBASE;
			mem += rtas_size;
		}
		RELOC(rtas_entry) = (unsigned int)
			call_prom(RELOC("instantiate-rtas"), 1, 1,
				  RELOC(rtas_data));
		if (RELOC(rtas_entry) == -1)
			prom_print(RELOC(" failed\n"));
		else
			prom_print(RELOC(" done\n"));
	}

	RELOC(klimit) = (char *) (mem - offset);
}

/*
 * If we have a display that we don't know how to drive,
 * we will want to try to execute OF's open method for it
 * later.  However, OF will probably fall over if we do that
 * we've taken over the MMU.
 * So we check whether we will need to open the display,
 * and if so, open it now.
 */
static unsigned long
check_display(unsigned long mem)
{
	phandle node;
	ihandle ih;
	unsigned long offset = reloc_offset();
	char type[16], *path;

	for (node = 0; prom_next_node(&node); ) {
		type[0] = 0;
		call_prom(RELOC("getprop"), 4, 1, node, RELOC("device_type"),
			  type, sizeof(type));
		if (strcmp(type, RELOC("display")) != 0)
			continue;
		/* It seems OF doesn't null-terminate the path :-( */
		path = (char *) mem;
		memset(path, 0, 256);
		if ((int) call_prom(RELOC("package-to-path"), 3, 1,
				    node, path, 255) < 0)
			continue;
		prom_print(RELOC("opening display "));
		prom_print(path);
		ih = call_prom(RELOC("open"), 1, 1, path);
		if (ih == 0 || ih == (ihandle) -1) {
			prom_print(RELOC("... failed\n"));
			continue;
		}
		prom_print(RELOC("... ok\n"));
		mem += strlen(path) + 1;
		RELOC(prom_display_paths[RELOC(prom_num_displays)++])
			= PTRUNRELOC(path);
		if (RELOC(prom_num_displays) >= FB_MAX)
			break;
	}
	return ALIGN(mem);
}

static int
prom_next_node(phandle *nodep)
{
	phandle node;
	unsigned long offset = reloc_offset();

	if ((node = *nodep) != 0
	    && (*nodep = call_prom(RELOC("child"), 1, 1, node)) != 0)
		return 1;
	if ((*nodep = call_prom(RELOC("peer"), 1, 1, node)) != 0)
		return 1;
	for (;;) {
		if ((node = call_prom(RELOC("parent"), 1, 1, node)) == 0)
			return 0;
		if ((*nodep = call_prom(RELOC("peer"), 1, 1, node)) != 0)
			return 1;
	}
}

/*
 * Make a copy of the device tree from the PROM.
 */
static unsigned long
copy_device_tree(unsigned long mem_start, unsigned long mem_end)
{
	phandle root;
	unsigned long new_start;
	struct device_node **allnextp;
	unsigned long offset = reloc_offset();

	root = call_prom(RELOC("peer"), 1, 1, (phandle)0);
	if (root == (phandle)0) {
		prom_print(RELOC("couldn't get device tree root\n"));
		prom_exit();
	}
	allnextp = &RELOC(allnodes);
	mem_start = ALIGN(mem_start);
	new_start = inspect_node(root, 0, mem_start, mem_end, &allnextp);
	*allnextp = 0;
	return new_start;
}

static unsigned long
inspect_node(phandle node, struct device_node *dad,
	     unsigned long mem_start, unsigned long mem_end,
	     struct device_node ***allnextpp)
{
	int l;
	phandle child;
	struct device_node *np;
	struct property *pp, **prev_propp;
	char *prev_name, *namep;
	unsigned char *valp;
	unsigned long offset = reloc_offset();

	np = (struct device_node *) mem_start;
	mem_start += sizeof(struct device_node);
	memset(np, 0, sizeof(*np));
	np->node = node;
	**allnextpp = PTRUNRELOC(np);
	*allnextpp = &np->allnext;
	if (dad != 0) {
		np->parent = PTRUNRELOC(dad);
		/* we temporarily use the `next' field as `last_child'. */
		if (dad->next == 0)
			dad->child = PTRUNRELOC(np);
		else
			dad->next->sibling = PTRUNRELOC(np);
		dad->next = np;
	}

	/* get and store all properties */
	prev_propp = &np->properties;
	prev_name = RELOC("");
	for (;;) {
		pp = (struct property *) mem_start;
		namep = (char *) (pp + 1);
		pp->name = PTRUNRELOC(namep);
		if ((int) call_prom(RELOC("nextprop"), 3, 1, node, prev_name,
				    namep) <= 0)
			break;
		mem_start = ALIGN((unsigned long)namep + strlen(namep) + 1);
		prev_name = namep;
		valp = (unsigned char *) mem_start;
		pp->value = PTRUNRELOC(valp);
		pp->length = (int)
			call_prom(RELOC("getprop"), 4, 1, node, namep,
				  valp, mem_end - mem_start);
		if (pp->length < 0)
			continue;
#ifdef MAX_PROPERTY_LENGTH
		if (pp->length > MAX_PROPERTY_LENGTH)
			continue; /* ignore this property */
#endif
		mem_start = ALIGN(mem_start + pp->length);
		*prev_propp = PTRUNRELOC(pp);
		prev_propp = &pp->next;
	}
	*prev_propp = 0;

	/* get the node's full name */
	l = (int) call_prom(RELOC("package-to-path"), 3, 1, node,
			    (char *) mem_start, mem_end - mem_start);
	if (l >= 0) {
		np->full_name = PTRUNRELOC((char *) mem_start);
		*(char *)(mem_start + l) = 0;
		mem_start = ALIGN(mem_start + l + 1);
	}

	/* do all our children */
	child = call_prom(RELOC("child"), 1, 1, node);
	while (child != (void *)0) {
		mem_start = inspect_node(child, np, mem_start, mem_end,
					 allnextpp);
		child = call_prom(RELOC("peer"), 1, 1, child);
	}

	return mem_start;
}

void
finish_device_tree(void)
{
	unsigned long mem = (unsigned long) klimit;

	mem = finish_node(allnodes, mem, 0UL);
	printk(KERN_INFO "device tree used %lu bytes\n",
	       mem - (unsigned long) allnodes);
	klimit = (char *) mem;
}

static unsigned long
finish_node(struct device_node *np, unsigned long mem_start,
	    unsigned long base_address)
{
	struct reg_property *rp;
	struct pci_reg_property *pci_addrs;
	struct address_range *adr;
	struct device_node *child;
	int i, l;

	np->name = get_property(np, "name", 0);
	np->type = get_property(np, "device_type", 0);

	/* get all the device addresses and interrupts */
	adr = (struct address_range *) mem_start;
	pci_addrs = (struct pci_reg_property *)
		get_property(np, "assigned-addresses", &l);
	i = 0;
	if (pci_addrs != 0) {
		while ((l -= sizeof(struct pci_reg_property)) >= 0) {
			/* XXX assumes PCI addresses mapped 1-1 to physical */
			adr[i].space = pci_addrs[i].addr.a_hi;
			adr[i].address = pci_addrs[i].addr.a_lo;
			adr[i].size = pci_addrs[i].size_lo;
			++i;
		}
	} else {
		rp = (struct reg_property *) get_property(np, "reg", &l);
		if (rp != 0) {
			while ((l -= sizeof(struct reg_property)) >= 0) {
				adr[i].space = 0;
				adr[i].address = rp[i].address + base_address;
				adr[i].size = rp[i].size;
				++i;
			}
		}
	}
	if (i > 0) {
		np->addrs = adr;
		np->n_addrs = i;
		mem_start += i * sizeof(struct address_range);
	}

	np->intrs = (int *) get_property(np, "AAPL,interrupts", &l);
	if (np->intrs == 0)
		np->intrs = (int *) get_property(np, "interrupts", &l);
	if (np->intrs != 0)
		np->n_intrs = l / sizeof(int);

	if (np->type != 0 && np->n_addrs > 0
	    && (strcmp(np->type, "dbdma") == 0
		|| strcmp(np->type, "mac-io") == 0))
		base_address = np->addrs[0].address;

	for (child = np->child; child != NULL; child = child->sibling)
		mem_start = finish_node(child, mem_start, base_address);

	return mem_start;
}

/*
 * Construct and return a list of the device_nodes with a given name.
 */
struct device_node *
find_devices(const char *name)
{
	struct device_node *head, **prevp, *np;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
			*prevp = np;
			prevp = &np->next;
		}
	}
	*prevp = 0;
	return head;
}

/*
 * Construct and return a list of the device_nodes with a given type.
 */
struct device_node *
find_type_devices(const char *type)
{
	struct device_node *head, **prevp, *np;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
			*prevp = np;
			prevp = &np->next;
		}
	}
	*prevp = 0;
	return head;
}

/*
 * Construct and return a list of the device_nodes with a given type
 * and compatible property.
 */
struct device_node *
find_compatible_devices(const char *type, const char *compat)
{
	struct device_node *head, **prevp, *np;
	const char *cp;

	prevp = &head;
	for (np = allnodes; np != 0; np = np->allnext) {
		if (type != NULL
		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
			continue;
		cp = (char *) get_property(np, "compatible", NULL);
		if (cp != NULL && strcasecmp(cp, compat) == 0) {
			*prevp = np;
			prevp = &np->next;
		}
	}
	*prevp = 0;
	return head;
}

/*
 * Find the device_node with a given full_name.
 */
struct device_node *
find_path_device(const char *path)
{
	struct device_node *np;

	for (np = allnodes; np != 0; np = np->allnext)
		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
			return np;
	return NULL;
}

/*
 * Find the device_node with a given phandle.
 */
struct device_node *
find_phandle(phandle ph)
{
	struct device_node *np;

	for (np = allnodes; np != 0; np = np->allnext)
		if (np->node == ph)
			return np;
	return NULL;
}

/*
 * Find a property with a given name for a given node
 * and return the value.
 */
unsigned char *
get_property(struct device_node *np, const char *name, int *lenp)
{
	struct property *pp;

	for (pp = np->properties; pp != 0; pp = pp->next)
		if (strcmp(pp->name, name) == 0) {
			if (lenp != 0)
				*lenp = pp->length;
			return pp->value;
		}
	return 0;
}

void
print_properties(struct device_node *np)
{
	struct property *pp;
	char *cp;
	int i, n;

	for (pp = np->properties; pp != 0; pp = pp->next) {
		printk(KERN_INFO "%s", pp->name);
		for (i = strlen(pp->name); i < 16; ++i)
			printk(" ");
		cp = (char *) pp->value;
		for (i = pp->length; i > 0; --i, ++cp)
			if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
			    || (i == 1 && *cp != 0))
				break;
		if (i == 0 && pp->length > 1) {
			/* looks like a string */
			printk(" %s\n", (char *) pp->value);
		} else {
			/* dump it in hex */
			n = pp->length;
			if (n > 64)
				n = 64;
			if (pp->length % 4 == 0) {
				unsigned int *p = (unsigned int *) pp->value;

				n /= 4;
				for (i = 0; i < n; ++i) {
					if (i != 0 && (i % 4) == 0)
						printk("\n                ");
					printk(" %08x", *p++);
				}
			} else {
				unsigned char *bp = pp->value;

				for (i = 0; i < n; ++i) {
					if (i != 0 && (i % 16) == 0)
						printk("\n                ");
					printk(" %02x", *bp++);
				}
			}
			printk("\n");
			if (pp->length > 64)
				printk("                 ... (length = %d)\n",
				       pp->length);
		}
	}
}

int
call_rtas(const char *service, int nargs, int nret,
	  unsigned long *outputs, ...)
{
	va_list list;
	int i;
	struct device_node *rtas;
	int *tokp;
	union {
		unsigned long words[16];
		double align;
	} u;

	rtas = find_devices("rtas");
	if (rtas == NULL)
		return -1;
	tokp = (int *) get_property(rtas, service, NULL);
	if (tokp == NULL) {
		printk(KERN_ERR "No RTAS service called %s\n", service);
		return -1;
	}
	u.words[0] = *tokp;
	u.words[1] = nargs;
	u.words[2] = nret;
	va_start(list, outputs);
	for (i = 0; i < nargs; ++i)
		u.words[i+3] = va_arg(list, unsigned long);
	va_end(list);
	enter_rtas(&u);
	if (nret > 1 && outputs != NULL)
		for (i = 0; i < nret-1; ++i)
			outputs[i] = u.words[i+nargs+4];
	return u.words[nargs+3];
}

void
abort()
{
#ifdef CONFIG_XMON
	extern void xmon(void *);
	xmon(0);
#endif
	prom_exit();
}