Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/*
 *  linux/arch/m68k/mm/init.c
 *
 *  Copyright (C) 1995  Hamish Macdonald
 */

#include <linux/config.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/init.h>
#ifdef CONFIG_BLK_DEV_RAM
#include <linux/blk.h>
#endif

#include <asm/setup.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/machdep.h>
#ifdef CONFIG_ATARI
#include <asm/atari_stram.h>
#endif

extern void die_if_kernel(char *,struct pt_regs *,long);
extern void init_kpointer_table(void);
extern void show_net_buffers(void);

/*
 * BAD_PAGE is the page that is used for page faults when linux
 * is out-of-memory. Older versions of linux just did a
 * do_exit(), but using this instead means there is less risk
 * for a process dying in kernel mode, possibly leaving an inode
 * unused etc..
 *
 * BAD_PAGETABLE is the accompanying page-table: it is initialized
 * to point to BAD_PAGE entries.
 *
 * ZERO_PAGE is a special page that is used for zero-initialized
 * data and COW.
 */
static unsigned long empty_bad_page_table;

pte_t *__bad_pagetable(void)
{
    memset((void *)empty_bad_page_table, 0, PAGE_SIZE);
    return (pte_t *)empty_bad_page_table;
}

static unsigned long empty_bad_page;

pte_t __bad_page(void)
{
    memset ((void *)empty_bad_page, 0, PAGE_SIZE);
    return pte_mkdirty(mk_pte(empty_bad_page, PAGE_SHARED));
}

unsigned long empty_zero_page;

void show_mem(void)
{
    unsigned long i;
    int free = 0, total = 0, reserved = 0, nonshared = 0, shared = 0;
    int cached = 0;

    printk("\nMem-info:\n");
    show_free_areas();
    printk("Free swap:       %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
    i = max_mapnr;
    while (i-- > 0) {
	total++;
	if (PageReserved(mem_map+i))
	    reserved++;
	if (PageSwapCache(mem_map+i))
	    cached++;
	else if (!atomic_read(&mem_map[i].count))
	    free++;
	else if (atomic_read(&mem_map[i].count) == 1)
	    nonshared++;
	else
	    shared += atomic_read(&mem_map[i].count) - 1;
    }
    printk("%d pages of RAM\n",total);
    printk("%d free pages\n",free);
    printk("%d reserved pages\n",reserved);
    printk("%d pages nonshared\n",nonshared);
    printk("%d pages shared\n",shared);
    printk("%d pages swap cached\n",cached);
    show_buffers();
#ifdef CONFIG_NET
    show_net_buffers();
#endif
}

#ifndef mm_cachebits
/*
 * Bits to add to page descriptors for "normal" caching mode.
 * For 68020/030 this is 0.
 * For 68040, this is _PAGE_CACHE040 (cachable, copyback)
 */
unsigned long mm_cachebits = 0;
#endif

pte_t *kernel_page_table (unsigned long *memavailp)
{
	pte_t *ptablep;

	if (memavailp) {
		ptablep = (pte_t *)*memavailp;
		*memavailp += PAGE_SIZE;
	}
	else
		ptablep = (pte_t *)__get_free_page(GFP_KERNEL);

	flush_page_to_ram((unsigned long) ptablep);
	flush_tlb_kernel_page((unsigned long) ptablep);
	nocache_page ((unsigned long)ptablep);

	return ptablep;
}

__initfunc(static unsigned long
map_chunk (unsigned long addr, unsigned long size, unsigned long *memavailp))
{
#define ONEMEG	(1024*1024)
#define L3TREESIZE (256*1024)

	static unsigned long mem_mapped = 0;
	static unsigned long virtaddr = 0;
	static pte_t *ktablep = NULL;
	unsigned long *kpointerp;
	unsigned long physaddr;
	extern pte_t *kpt;
	int pindex;   /* index into pointer table */
	pgd_t *page_dir = pgd_offset_k (virtaddr);

	if (!pgd_present (*page_dir)) {
		/* we need a new pointer table */
		kpointerp = (unsigned long *) get_kpointer_table ();
		pgd_set (page_dir, (pmd_t *) kpointerp);
		memset (kpointerp, 0, PTRS_PER_PMD * sizeof (pmd_t));
	}
	else
		kpointerp = (unsigned long *) pgd_page (*page_dir);

	/*
	 * pindex is the offset into the pointer table for the
	 * descriptors for the current virtual address being mapped.
	 */
	pindex = (virtaddr >> 18) & 0x7f;

#ifdef DEBUG
	printk ("mm=%ld, kernel_pg_dir=%p, kpointerp=%p, pindex=%d\n",
		mem_mapped, kernel_pg_dir, kpointerp, pindex);
#endif

	/*
	 * if this is running on an '040, we already allocated a page
	 * table for the first 4M.  The address is stored in kpt by
	 * arch/head.S
	 *
	 */
	if (CPU_IS_040_OR_060 && mem_mapped == 0)
		ktablep = kpt;

	for (physaddr = addr;
	     physaddr < addr + size;
	     mem_mapped += L3TREESIZE, virtaddr += L3TREESIZE) {

#ifdef DEBUG
		printk ("pa=%#lx va=%#lx ", physaddr, virtaddr);
#endif

		if (pindex > 127 && mem_mapped >= 32*ONEMEG) {
			/* we need a new pointer table every 32M */
#ifdef DEBUG
			printk ("[new pointer]");
#endif

			kpointerp = (unsigned long *)get_kpointer_table ();
			pgd_set(pgd_offset_k(virtaddr), (pmd_t *)kpointerp);
			pindex = 0;
		}

		if (CPU_IS_040_OR_060) {
			int i;
			unsigned long ktable;

			/* Don't map the first 4 MB again. The pagetables
			 * for this range have already been initialized
			 * in boot/head.S. Otherwise the pages used for
			 * tables would be reinitialized to copyback mode.
			 */

			if (mem_mapped < 4 * ONEMEG)
			{
#ifdef DEBUG
				printk ("Already initialized\n");
#endif
				physaddr += L3TREESIZE;
				pindex++;
				continue;
			}
#ifdef DEBUG
			printk ("[setup table]");
#endif

			/*
			 * 68040, use page tables pointed to by the
			 * kernel pointer table.
			 */

			if ((pindex & 15) == 0) {
				/* Need new page table every 4M on the '040 */
#ifdef DEBUG
				printk ("[new table]");
#endif
				ktablep = kernel_page_table (memavailp);
			}

			ktable = VTOP(ktablep);

			/*
			 * initialize section of the page table mapping
			 * this 256K portion.
			 */
			for (i = 0; i < 64; i++) {
				pte_val(ktablep[i]) = physaddr | _PAGE_PRESENT
					| _PAGE_CACHE040 | _PAGE_GLOBAL040
					| _PAGE_ACCESSED;
				physaddr += PAGE_SIZE;
			}
			ktablep += 64;

			/*
			 * make the kernel pointer table point to the
			 * kernel page table.  Each entries point to a
			 * 64 entry section of the page table.
			 */

			kpointerp[pindex++] = ktable | _PAGE_TABLE | _PAGE_ACCESSED;
		} else {
			/*
			 * 68030, use early termination page descriptors.
			 * Each one points to 64 pages (256K).
			 */
#ifdef DEBUG
			printk ("[early term] ");
#endif
			if (virtaddr == 0UL) {
				/* map the first 256K using a 64 entry
				 * 3rd level page table.
				 * UNMAP the first entry to trap
				 * zero page (NULL pointer) references
				 */
				int i;
				unsigned long *tbl;
				
				tbl = (unsigned long *)get_kpointer_table();

				kpointerp[pindex++] = VTOP(tbl) | _PAGE_TABLE |_PAGE_ACCESSED;

				for (i = 0; i < 64; i++, physaddr += PAGE_SIZE)
					tbl[i] = physaddr | _PAGE_PRESENT | _PAGE_ACCESSED;
				
				/* unmap the zero page */
				tbl[0] = 0;
			} else {
				/* not the first 256K */
				kpointerp[pindex++] = physaddr | _PAGE_PRESENT | _PAGE_ACCESSED;
#ifdef DEBUG
				printk ("%lx=%lx ", VTOP(&kpointerp[pindex-1]),
					kpointerp[pindex-1]);
#endif
				physaddr += 64 * PAGE_SIZE;
			}
		}
#ifdef DEBUG
		printk ("\n");
#endif
	}

	return mem_mapped;
}

extern unsigned long free_area_init(unsigned long, unsigned long);

/* References to section boundaries */

extern char _text, _etext, _edata, __bss_start, _end;
extern char __init_begin, __init_end;

extern pgd_t swapper_pg_dir[PTRS_PER_PGD];

/*
 * paging_init() continues the virtual memory environment setup which
 * was begun by the code in arch/head.S.
 */
__initfunc(unsigned long paging_init(unsigned long start_mem,
				     unsigned long end_mem))
{
	int chunk;
	unsigned long mem_avail = 0;

#ifdef DEBUG
	{
		extern pte_t *kpt;
		printk ("start of paging_init (%p, %p, %lx, %lx, %lx)\n",
			kernel_pg_dir, kpt, availmem, start_mem, end_mem);
	}
#endif

	init_kpointer_table();

	/* Fix the cache mode in the page descriptors for the 680[46]0.  */
	if (CPU_IS_040_OR_060) {
		int i;
#ifndef mm_cachebits
		mm_cachebits = _PAGE_CACHE040;
#endif
		for (i = 0; i < 16; i++)
			pgprot_val(protection_map[i]) |= _PAGE_CACHE040;
	}
	/* Fix the PAGE_NONE value. */
	if (CPU_IS_040_OR_060) {
		/* On the 680[46]0 we can use the _PAGE_SUPER bit.  */
		pgprot_val(protection_map[0]) |= _PAGE_SUPER;
		pgprot_val(protection_map[VM_SHARED]) |= _PAGE_SUPER;
	} else {
		/* Otherwise we must fake it. */
		pgprot_val(protection_map[0]) &= ~_PAGE_PRESENT;
		pgprot_val(protection_map[0]) |= _PAGE_FAKE_SUPER;
		pgprot_val(protection_map[VM_SHARED]) &= ~_PAGE_PRESENT;
		pgprot_val(protection_map[VM_SHARED]) |= _PAGE_FAKE_SUPER;
	}

	/*
	 * Map the physical memory available into the kernel virtual
	 * address space.  It may allocate some memory for page
	 * tables and thus modify availmem.
	 */

	for (chunk = 0; chunk < m68k_num_memory; chunk++) {
		mem_avail = map_chunk (m68k_memory[chunk].addr,
				       m68k_memory[chunk].size, &start_mem);

	}
	flush_tlb_all();
#ifdef DEBUG
	printk ("memory available is %ldKB\n", mem_avail >> 10);
	printk ("start_mem is %#lx\nvirtual_end is %#lx\n",
		start_mem, end_mem);
#endif

	/*
	 * initialize the bad page table and bad page to point
	 * to a couple of allocated pages
	 */
	empty_bad_page_table = start_mem;
	start_mem += PAGE_SIZE;
	empty_bad_page = start_mem;
	start_mem += PAGE_SIZE;
	empty_zero_page = start_mem;
	start_mem += PAGE_SIZE;
	memset((void *)empty_zero_page, 0, PAGE_SIZE);

#if 0
	/* 
	 * allocate the "swapper" page directory and
	 * record in task 0 (swapper) tss 
	 */
	swapper_pg_dir = (pgd_t *)get_kpointer_table();

	init_mm.pgd = swapper_pg_dir;
#endif

	memset (swapper_pg_dir, 0, sizeof(pgd_t)*PTRS_PER_PGD);

	/* setup CPU root pointer for swapper task */
	task[0]->tss.crp[0] = 0x80000000 | _PAGE_TABLE;
	task[0]->tss.crp[1] = VTOP (swapper_pg_dir);

#ifdef DEBUG
	printk ("task 0 pagedir at %p virt, %#lx phys\n",
		swapper_pg_dir, task[0]->tss.crp[1]);
#endif

	if (CPU_IS_040_OR_060)
		asm __volatile__ (".chip 68040\n\t"
				  "movec %0,%%urp\n\t"
				  ".chip 68k"
				  : /* no outputs */
				  : "r" (task[0]->tss.crp[1]));
	else
		asm __volatile__ (".chip 68030\n\t"
				  "pmove %0,%%crp\n\t"
				  ".chip 68k"
				  : /* no outputs */
				  : "m" (task[0]->tss.crp[0]));
#ifdef DEBUG
	printk ("set crp\n");
#endif

	/*
	 * Set up SFC/DFC registers (user data space)
	 */
	set_fs (USER_DS);

#ifdef DEBUG
	printk ("before free_area_init\n");
#endif

	return PAGE_ALIGN(free_area_init (start_mem, end_mem));
}

__initfunc(void mem_init(unsigned long start_mem, unsigned long end_mem))
{
	int codepages = 0;
	int datapages = 0;
	int initpages = 0;
	unsigned long tmp;

	end_mem &= PAGE_MASK;
	high_memory = (void *) end_mem;
	max_mapnr = num_physpages = MAP_NR(end_mem);

	tmp = start_mem = PAGE_ALIGN(start_mem);
	while (tmp < end_mem) {
		clear_bit(PG_reserved, &mem_map[MAP_NR(tmp)].flags);
		tmp += PAGE_SIZE;
	}

#ifdef CONFIG_ATARI
	if (MACH_IS_ATARI)
		atari_stram_reserve_pages( start_mem );
#endif

	for (tmp = 0 ; tmp < end_mem ; tmp += PAGE_SIZE) {
		if (VTOP (tmp) >= mach_max_dma_address)
			clear_bit(PG_DMA, &mem_map[MAP_NR(tmp)].flags);
		if (PageReserved(mem_map+MAP_NR(tmp))) {
			if (tmp >= (unsigned long)&_text
			    && tmp < (unsigned long)&_edata) {
				if (tmp < (unsigned long) &_etext)
					codepages++;
				else
					datapages++;
			} else if (tmp >= (unsigned long) &__init_begin
				   && tmp < (unsigned long) &__init_end)
				initpages++;
			else
				datapages++;
			continue;
		}
		atomic_set(&mem_map[MAP_NR(tmp)].count, 1);
#ifdef CONFIG_BLK_DEV_INITRD
		if (!initrd_start ||
		    (tmp < (initrd_start & PAGE_MASK) || tmp >= initrd_end))
#endif
			free_page(tmp);
	}
	printk("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init)\n",
	       (unsigned long) nr_free_pages << (PAGE_SHIFT-10),
	       max_mapnr << (PAGE_SHIFT-10),
	       codepages << (PAGE_SHIFT-10),
	       datapages << (PAGE_SHIFT-10),
	       initpages << (PAGE_SHIFT-10));
}

void free_initmem(void)
{
	unsigned long addr;

	addr = (unsigned long)&__init_begin;
	for (; addr < (unsigned long)&__init_end; addr += PAGE_SIZE) {
		mem_map[MAP_NR(addr)].flags &= ~(1 << PG_reserved);
		atomic_set(&mem_map[MAP_NR(addr)].count, 1);
		free_page(addr);
	}
}

void si_meminfo(struct sysinfo *val)
{
    unsigned long i;

    i = max_mapnr;
    val->totalram = 0;
    val->sharedram = 0;
    val->freeram = nr_free_pages << PAGE_SHIFT;
    val->bufferram = buffermem;
    while (i-- > 0) {
	if (PageReserved(mem_map+i))
	    continue;
	val->totalram++;
	if (!atomic_read(&mem_map[i].count))
	    continue;
	val->sharedram += atomic_read(&mem_map[i].count) - 1;
    }
    val->totalram <<= PAGE_SHIFT;
    val->sharedram <<= PAGE_SHIFT;
    return;
}