Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 | | | slogn.sa 3.1 12/10/90 | | slogn computes the natural logarithm of an | input value. slognd does the same except the input value is a | denormalized number. slognp1 computes log(1+X), and slognp1d | computes log(1+X) for denormalized X. | | Input: Double-extended value in memory location pointed to by address | register a0. | | Output: log(X) or log(1+X) returned in floating-point register Fp0. | | Accuracy and Monotonicity: The returned result is within 2 ulps in | 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the | result is subsequently rounded to double precision. The | result is provably monotonic in double precision. | | Speed: The program slogn takes approximately 190 cycles for input | argument X such that |X-1| >= 1/16, which is the the usual | situation. For those arguments, slognp1 takes approximately | 210 cycles. For the less common arguments, the program will | run no worse than 10% slower. | | Algorithm: | LOGN: | Step 1. If |X-1| < 1/16, approximate log(X) by an odd polynomial in | u, where u = 2(X-1)/(X+1). Otherwise, move on to Step 2. | | Step 2. X = 2**k * Y where 1 <= Y < 2. Define F to be the first seven | significant bits of Y plus 2**(-7), i.e. F = 1.xxxxxx1 in base | 2 where the six "x" match those of Y. Note that |Y-F| <= 2**(-7). | | Step 3. Define u = (Y-F)/F. Approximate log(1+u) by a polynomial in u, | log(1+u) = poly. | | Step 4. Reconstruct log(X) = log( 2**k * Y ) = k*log(2) + log(F) + log(1+u) | by k*log(2) + (log(F) + poly). The values of log(F) are calculated | beforehand and stored in the program. | | lognp1: | Step 1: If |X| < 1/16, approximate log(1+X) by an odd polynomial in | u where u = 2X/(2+X). Otherwise, move on to Step 2. | | Step 2: Let 1+X = 2**k * Y, where 1 <= Y < 2. Define F as done in Step 2 | of the algorithm for LOGN and compute log(1+X) as | k*log(2) + log(F) + poly where poly approximates log(1+u), | u = (Y-F)/F. | | Implementation Notes: | Note 1. There are 64 different possible values for F, thus 64 log(F)'s | need to be tabulated. Moreover, the values of 1/F are also | tabulated so that the division in (Y-F)/F can be performed by a | multiplication. | | Note 2. In Step 2 of lognp1, in order to preserved accuracy, the value | Y-F has to be calculated carefully when 1/2 <= X < 3/2. | | Note 3. To fully exploit the pipeline, polynomials are usually separated | into two parts evaluated independently before being added up. | | Copyright (C) Motorola, Inc. 1990 | All Rights Reserved | | THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA | The copyright notice above does not evidence any | actual or intended publication of such source code. |slogn idnt 2,1 | Motorola 040 Floating Point Software Package |section 8 .include "fpsp.h" BOUNDS1: .long 0x3FFEF07D,0x3FFF8841 BOUNDS2: .long 0x3FFE8000,0x3FFFC000 LOGOF2: .long 0x3FFE0000,0xB17217F7,0xD1CF79AC,0x00000000 one: .long 0x3F800000 zero: .long 0x00000000 infty: .long 0x7F800000 negone: .long 0xBF800000 LOGA6: .long 0x3FC2499A,0xB5E4040B LOGA5: .long 0xBFC555B5,0x848CB7DB LOGA4: .long 0x3FC99999,0x987D8730 LOGA3: .long 0xBFCFFFFF,0xFF6F7E97 LOGA2: .long 0x3FD55555,0x555555a4 LOGA1: .long 0xBFE00000,0x00000008 LOGB5: .long 0x3F175496,0xADD7DAD6 LOGB4: .long 0x3F3C71C2,0xFE80C7E0 LOGB3: .long 0x3F624924,0x928BCCFF LOGB2: .long 0x3F899999,0x999995EC LOGB1: .long 0x3FB55555,0x55555555 TWO: .long 0x40000000,0x00000000 LTHOLD: .long 0x3f990000,0x80000000,0x00000000,0x00000000 LOGTBL: .long 0x3FFE0000,0xFE03F80F,0xE03F80FE,0x00000000 .long 0x3FF70000,0xFF015358,0x833C47E2,0x00000000 .long 0x3FFE0000,0xFA232CF2,0x52138AC0,0x00000000 .long 0x3FF90000,0xBDC8D83E,0xAD88D549,0x00000000 .long 0x3FFE0000,0xF6603D98,0x0F6603DA,0x00000000 .long 0x3FFA0000,0x9CF43DCF,0xF5EAFD48,0x00000000 .long 0x3FFE0000,0xF2B9D648,0x0F2B9D65,0x00000000 .long 0x3FFA0000,0xDA16EB88,0xCB8DF614,0x00000000 .long 0x3FFE0000,0xEF2EB71F,0xC4345238,0x00000000 .long 0x3FFB0000,0x8B29B775,0x1BD70743,0x00000000 .long 0x3FFE0000,0xEBBDB2A5,0xC1619C8C,0x00000000 .long 0x3FFB0000,0xA8D839F8,0x30C1FB49,0x00000000 .long 0x3FFE0000,0xE865AC7B,0x7603A197,0x00000000 .long 0x3FFB0000,0xC61A2EB1,0x8CD907AD,0x00000000 .long 0x3FFE0000,0xE525982A,0xF70C880E,0x00000000 .long 0x3FFB0000,0xE2F2A47A,0xDE3A18AF,0x00000000 .long 0x3FFE0000,0xE1FC780E,0x1FC780E2,0x00000000 .long 0x3FFB0000,0xFF64898E,0xDF55D551,0x00000000 .long 0x3FFE0000,0xDEE95C4C,0xA037BA57,0x00000000 .long 0x3FFC0000,0x8DB956A9,0x7B3D0148,0x00000000 .long 0x3FFE0000,0xDBEB61EE,0xD19C5958,0x00000000 .long 0x3FFC0000,0x9B8FE100,0xF47BA1DE,0x00000000 .long 0x3FFE0000,0xD901B203,0x6406C80E,0x00000000 .long 0x3FFC0000,0xA9372F1D,0x0DA1BD17,0x00000000 .long 0x3FFE0000,0xD62B80D6,0x2B80D62C,0x00000000 .long 0x3FFC0000,0xB6B07F38,0xCE90E46B,0x00000000 .long 0x3FFE0000,0xD3680D36,0x80D3680D,0x00000000 .long 0x3FFC0000,0xC3FD0329,0x06488481,0x00000000 .long 0x3FFE0000,0xD0B69FCB,0xD2580D0B,0x00000000 .long 0x3FFC0000,0xD11DE0FF,0x15AB18CA,0x00000000 .long 0x3FFE0000,0xCE168A77,0x25080CE1,0x00000000 .long 0x3FFC0000,0xDE1433A1,0x6C66B150,0x00000000 .long 0x3FFE0000,0xCB8727C0,0x65C393E0,0x00000000 .long 0x3FFC0000,0xEAE10B5A,0x7DDC8ADD,0x00000000 .long 0x3FFE0000,0xC907DA4E,0x871146AD,0x00000000 .long 0x3FFC0000,0xF7856E5E,0xE2C9B291,0x00000000 .long 0x3FFE0000,0xC6980C69,0x80C6980C,0x00000000 .long 0x3FFD0000,0x82012CA5,0xA68206D7,0x00000000 .long 0x3FFE0000,0xC4372F85,0x5D824CA6,0x00000000 .long 0x3FFD0000,0x882C5FCD,0x7256A8C5,0x00000000 .long 0x3FFE0000,0xC1E4BBD5,0x95F6E947,0x00000000 .long 0x3FFD0000,0x8E44C60B,0x4CCFD7DE,0x00000000 .long 0x3FFE0000,0xBFA02FE8,0x0BFA02FF,0x00000000 .long 0x3FFD0000,0x944AD09E,0xF4351AF6,0x00000000 .long 0x3FFE0000,0xBD691047,0x07661AA3,0x00000000 .long 0x3FFD0000,0x9A3EECD4,0xC3EAA6B2,0x00000000 .long 0x3FFE0000,0xBB3EE721,0xA54D880C,0x00000000 .long 0x3FFD0000,0xA0218434,0x353F1DE8,0x00000000 .long 0x3FFE0000,0xB92143FA,0x36F5E02E,0x00000000 .long 0x3FFD0000,0xA5F2FCAB,0xBBC506DA,0x00000000 .long 0x3FFE0000,0xB70FBB5A,0x19BE3659,0x00000000 .long 0x3FFD0000,0xABB3B8BA,0x2AD362A5,0x00000000 .long 0x3FFE0000,0xB509E68A,0x9B94821F,0x00000000 .long 0x3FFD0000,0xB1641795,0xCE3CA97B,0x00000000 .long 0x3FFE0000,0xB30F6352,0x8917C80B,0x00000000 .long 0x3FFD0000,0xB7047551,0x5D0F1C61,0x00000000 .long 0x3FFE0000,0xB11FD3B8,0x0B11FD3C,0x00000000 .long 0x3FFD0000,0xBC952AFE,0xEA3D13E1,0x00000000 .long 0x3FFE0000,0xAF3ADDC6,0x80AF3ADE,0x00000000 .long 0x3FFD0000,0xC2168ED0,0xF458BA4A,0x00000000 .long 0x3FFE0000,0xAD602B58,0x0AD602B6,0x00000000 .long 0x3FFD0000,0xC788F439,0xB3163BF1,0x00000000 .long 0x3FFE0000,0xAB8F69E2,0x8359CD11,0x00000000 .long 0x3FFD0000,0xCCECAC08,0xBF04565D,0x00000000 .long 0x3FFE0000,0xA9C84A47,0xA07F5638,0x00000000 .long 0x3FFD0000,0xD2420487,0x2DD85160,0x00000000 .long 0x3FFE0000,0xA80A80A8,0x0A80A80B,0x00000000 .long 0x3FFD0000,0xD7894992,0x3BC3588A,0x00000000 .long 0x3FFE0000,0xA655C439,0x2D7B73A8,0x00000000 .long 0x3FFD0000,0xDCC2C4B4,0x9887DACC,0x00000000 .long 0x3FFE0000,0xA4A9CF1D,0x96833751,0x00000000 .long 0x3FFD0000,0xE1EEBD3E,0x6D6A6B9E,0x00000000 .long 0x3FFE0000,0xA3065E3F,0xAE7CD0E0,0x00000000 .long 0x3FFD0000,0xE70D785C,0x2F9F5BDC,0x00000000 .long 0x3FFE0000,0xA16B312E,0xA8FC377D,0x00000000 .long 0x3FFD0000,0xEC1F392C,0x5179F283,0x00000000 .long 0x3FFE0000,0x9FD809FD,0x809FD80A,0x00000000 .long 0x3FFD0000,0xF12440D3,0xE36130E6,0x00000000 .long 0x3FFE0000,0x9E4CAD23,0xDD5F3A20,0x00000000 .long 0x3FFD0000,0xF61CCE92,0x346600BB,0x00000000 .long 0x3FFE0000,0x9CC8E160,0xC3FB19B9,0x00000000 .long 0x3FFD0000,0xFB091FD3,0x8145630A,0x00000000 .long 0x3FFE0000,0x9B4C6F9E,0xF03A3CAA,0x00000000 .long 0x3FFD0000,0xFFE97042,0xBFA4C2AD,0x00000000 .long 0x3FFE0000,0x99D722DA,0xBDE58F06,0x00000000 .long 0x3FFE0000,0x825EFCED,0x49369330,0x00000000 .long 0x3FFE0000,0x9868C809,0x868C8098,0x00000000 .long 0x3FFE0000,0x84C37A7A,0xB9A905C9,0x00000000 .long 0x3FFE0000,0x97012E02,0x5C04B809,0x00000000 .long 0x3FFE0000,0x87224C2E,0x8E645FB7,0x00000000 .long 0x3FFE0000,0x95A02568,0x095A0257,0x00000000 .long 0x3FFE0000,0x897B8CAC,0x9F7DE298,0x00000000 .long 0x3FFE0000,0x94458094,0x45809446,0x00000000 .long 0x3FFE0000,0x8BCF55DE,0xC4CD05FE,0x00000000 .long 0x3FFE0000,0x92F11384,0x0497889C,0x00000000 .long 0x3FFE0000,0x8E1DC0FB,0x89E125E5,0x00000000 .long 0x3FFE0000,0x91A2B3C4,0xD5E6F809,0x00000000 .long 0x3FFE0000,0x9066E68C,0x955B6C9B,0x00000000 .long 0x3FFE0000,0x905A3863,0x3E06C43B,0x00000000 .long 0x3FFE0000,0x92AADE74,0xC7BE59E0,0x00000000 .long 0x3FFE0000,0x8F1779D9,0xFDC3A219,0x00000000 .long 0x3FFE0000,0x94E9BFF6,0x15845643,0x00000000 .long 0x3FFE0000,0x8DDA5202,0x37694809,0x00000000 .long 0x3FFE0000,0x9723A1B7,0x20134203,0x00000000 .long 0x3FFE0000,0x8CA29C04,0x6514E023,0x00000000 .long 0x3FFE0000,0x995899C8,0x90EB8990,0x00000000 .long 0x3FFE0000,0x8B70344A,0x139BC75A,0x00000000 .long 0x3FFE0000,0x9B88BDAA,0x3A3DAE2F,0x00000000 .long 0x3FFE0000,0x8A42F870,0x5669DB46,0x00000000 .long 0x3FFE0000,0x9DB4224F,0xFFE1157C,0x00000000 .long 0x3FFE0000,0x891AC73A,0xE9819B50,0x00000000 .long 0x3FFE0000,0x9FDADC26,0x8B7A12DA,0x00000000 .long 0x3FFE0000,0x87F78087,0xF78087F8,0x00000000 .long 0x3FFE0000,0xA1FCFF17,0xCE733BD4,0x00000000 .long 0x3FFE0000,0x86D90544,0x7A34ACC6,0x00000000 .long 0x3FFE0000,0xA41A9E8F,0x5446FB9F,0x00000000 .long 0x3FFE0000,0x85BF3761,0x2CEE3C9B,0x00000000 .long 0x3FFE0000,0xA633CD7E,0x6771CD8B,0x00000000 .long 0x3FFE0000,0x84A9F9C8,0x084A9F9D,0x00000000 .long 0x3FFE0000,0xA8489E60,0x0B435A5E,0x00000000 .long 0x3FFE0000,0x83993052,0x3FBE3368,0x00000000 .long 0x3FFE0000,0xAA59233C,0xCCA4BD49,0x00000000 .long 0x3FFE0000,0x828CBFBE,0xB9A020A3,0x00000000 .long 0x3FFE0000,0xAC656DAE,0x6BCC4985,0x00000000 .long 0x3FFE0000,0x81848DA8,0xFAF0D277,0x00000000 .long 0x3FFE0000,0xAE6D8EE3,0x60BB2468,0x00000000 .long 0x3FFE0000,0x80808080,0x80808081,0x00000000 .long 0x3FFE0000,0xB07197A2,0x3C46C654,0x00000000 .set ADJK,L_SCR1 .set X,FP_SCR1 .set XDCARE,X+2 .set XFRAC,X+4 .set F,FP_SCR2 .set FFRAC,F+4 .set KLOG2,FP_SCR3 .set SAVEU,FP_SCR4 | xref t_frcinx |xref t_extdnrm |xref t_operr |xref t_dz .global slognd slognd: |--ENTRY POINT FOR LOG(X) FOR DENORMALIZED INPUT movel #-100,ADJK(%a6) | ...INPUT = 2^(ADJK) * FP0 |----normalize the input value by left shifting k bits (k to be determined |----below), adjusting exponent and storing -k to ADJK |----the value TWOTO100 is no longer needed. |----Note that this code assumes the denormalized input is NON-ZERO. moveml %d2-%d7,-(%a7) | ...save some registers movel #0x00000000,%d3 | ...D3 is exponent of smallest norm. # movel 4(%a0),%d4 movel 8(%a0),%d5 | ...(D4,D5) is (Hi_X,Lo_X) clrl %d2 | ...D2 used for holding K tstl %d4 bnes HiX_not0 HiX_0: movel %d5,%d4 clrl %d5 movel #32,%d2 clrl %d6 bfffo %d4{#0:#32},%d6 lsll %d6,%d4 addl %d6,%d2 | ...(D3,D4,D5) is normalized movel %d3,X(%a6) movel %d4,XFRAC(%a6) movel %d5,XFRAC+4(%a6) negl %d2 movel %d2,ADJK(%a6) fmovex X(%a6),%fp0 moveml (%a7)+,%d2-%d7 | ...restore registers lea X(%a6),%a0 bras LOGBGN | ...begin regular log(X) HiX_not0: clrl %d6 bfffo %d4{#0:#32},%d6 | ...find first 1 movel %d6,%d2 | ...get k lsll %d6,%d4 movel %d5,%d7 | ...a copy of D5 lsll %d6,%d5 negl %d6 addil #32,%d6 lsrl %d6,%d7 orl %d7,%d4 | ...(D3,D4,D5) normalized movel %d3,X(%a6) movel %d4,XFRAC(%a6) movel %d5,XFRAC+4(%a6) negl %d2 movel %d2,ADJK(%a6) fmovex X(%a6),%fp0 moveml (%a7)+,%d2-%d7 | ...restore registers lea X(%a6),%a0 bras LOGBGN | ...begin regular log(X) .global slogn slogn: |--ENTRY POINT FOR LOG(X) FOR X FINITE, NON-ZERO, NOT NAN'S fmovex (%a0),%fp0 | ...LOAD INPUT movel #0x00000000,ADJK(%a6) LOGBGN: |--FPCR SAVED AND CLEARED, INPUT IS 2^(ADJK)*FP0, FP0 CONTAINS |--A FINITE, NON-ZERO, NORMALIZED NUMBER. movel (%a0),%d0 movew 4(%a0),%d0 movel (%a0),X(%a6) movel 4(%a0),X+4(%a6) movel 8(%a0),X+8(%a6) cmpil #0,%d0 | ...CHECK IF X IS NEGATIVE blt LOGNEG | ...LOG OF NEGATIVE ARGUMENT IS INVALID cmp2l BOUNDS1,%d0 | ...X IS POSITIVE, CHECK IF X IS NEAR 1 bcc LOGNEAR1 | ...BOUNDS IS ROUGHLY [15/16, 17/16] LOGMAIN: |--THIS SHOULD BE THE USUAL CASE, X NOT VERY CLOSE TO 1 |--X = 2^(K) * Y, 1 <= Y < 2. THUS, Y = 1.XXXXXXXX....XX IN BINARY. |--WE DEFINE F = 1.XXXXXX1, I.E. FIRST 7 BITS OF Y AND ATTACH A 1. |--THE IDEA IS THAT LOG(X) = K*LOG2 + LOG(Y) |-- = K*LOG2 + LOG(F) + LOG(1 + (Y-F)/F). |--NOTE THAT U = (Y-F)/F IS VERY SMALL AND THUS APPROXIMATING |--LOG(1+U) CAN BE VERY EFFICIENT. |--ALSO NOTE THAT THE VALUE 1/F IS STORED IN A TABLE SO THAT NO |--DIVISION IS NEEDED TO CALCULATE (Y-F)/F. |--GET K, Y, F, AND ADDRESS OF 1/F. asrl #8,%d0 asrl #8,%d0 | ...SHIFTED 16 BITS, BIASED EXPO. OF X subil #0x3FFF,%d0 | ...THIS IS K addl ADJK(%a6),%d0 | ...ADJUST K, ORIGINAL INPUT MAY BE DENORM. lea LOGTBL,%a0 | ...BASE ADDRESS OF 1/F AND LOG(F) fmovel %d0,%fp1 | ...CONVERT K TO FLOATING-POINT FORMAT |--WHILE THE CONVERSION IS GOING ON, WE GET F AND ADDRESS OF 1/F movel #0x3FFF0000,X(%a6) | ...X IS NOW Y, I.E. 2^(-K)*X movel XFRAC(%a6),FFRAC(%a6) andil #0xFE000000,FFRAC(%a6) | ...FIRST 7 BITS OF Y oril #0x01000000,FFRAC(%a6) | ...GET F: ATTACH A 1 AT THE EIGHTH BIT movel FFRAC(%a6),%d0 | ...READY TO GET ADDRESS OF 1/F andil #0x7E000000,%d0 asrl #8,%d0 asrl #8,%d0 asrl #4,%d0 | ...SHIFTED 20, D0 IS THE DISPLACEMENT addal %d0,%a0 | ...A0 IS THE ADDRESS FOR 1/F fmovex X(%a6),%fp0 movel #0x3fff0000,F(%a6) clrl F+8(%a6) fsubx F(%a6),%fp0 | ...Y-F fmovemx %fp2-%fp2/%fp3,-(%sp) | ...SAVE FP2 WHILE FP0 IS NOT READY |--SUMMARY: FP0 IS Y-F, A0 IS ADDRESS OF 1/F, FP1 IS K |--REGISTERS SAVED: FPCR, FP1, FP2 LP1CONT1: |--AN RE-ENTRY POINT FOR LOGNP1 fmulx (%a0),%fp0 | ...FP0 IS U = (Y-F)/F fmulx LOGOF2,%fp1 | ...GET K*LOG2 WHILE FP0 IS NOT READY fmovex %fp0,%fp2 fmulx %fp2,%fp2 | ...FP2 IS V=U*U fmovex %fp1,KLOG2(%a6) | ...PUT K*LOG2 IN MEMORY, FREE FP1 |--LOG(1+U) IS APPROXIMATED BY |--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS |--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))] fmovex %fp2,%fp3 fmovex %fp2,%fp1 fmuld LOGA6,%fp1 | ...V*A6 fmuld LOGA5,%fp2 | ...V*A5 faddd LOGA4,%fp1 | ...A4+V*A6 faddd LOGA3,%fp2 | ...A3+V*A5 fmulx %fp3,%fp1 | ...V*(A4+V*A6) fmulx %fp3,%fp2 | ...V*(A3+V*A5) faddd LOGA2,%fp1 | ...A2+V*(A4+V*A6) faddd LOGA1,%fp2 | ...A1+V*(A3+V*A5) fmulx %fp3,%fp1 | ...V*(A2+V*(A4+V*A6)) addal #16,%a0 | ...ADDRESS OF LOG(F) fmulx %fp3,%fp2 | ...V*(A1+V*(A3+V*A5)), FP3 RELEASED fmulx %fp0,%fp1 | ...U*V*(A2+V*(A4+V*A6)) faddx %fp2,%fp0 | ...U+V*(A1+V*(A3+V*A5)), FP2 RELEASED faddx (%a0),%fp1 | ...LOG(F)+U*V*(A2+V*(A4+V*A6)) fmovemx (%sp)+,%fp2-%fp2/%fp3 | ...RESTORE FP2 faddx %fp1,%fp0 | ...FP0 IS LOG(F) + LOG(1+U) fmovel %d1,%fpcr faddx KLOG2(%a6),%fp0 | ...FINAL ADD bra t_frcinx LOGNEAR1: |--REGISTERS SAVED: FPCR, FP1. FP0 CONTAINS THE INPUT. fmovex %fp0,%fp1 fsubs one,%fp1 | ...FP1 IS X-1 fadds one,%fp0 | ...FP0 IS X+1 faddx %fp1,%fp1 | ...FP1 IS 2(X-1) |--LOG(X) = LOG(1+U/2)-LOG(1-U/2) WHICH IS AN ODD POLYNOMIAL |--IN U, U = 2(X-1)/(X+1) = FP1/FP0 LP1CONT2: |--THIS IS AN RE-ENTRY POINT FOR LOGNP1 fdivx %fp0,%fp1 | ...FP1 IS U fmovemx %fp2-%fp2/%fp3,-(%sp) | ...SAVE FP2 |--REGISTERS SAVED ARE NOW FPCR,FP1,FP2,FP3 |--LET V=U*U, W=V*V, CALCULATE |--U + U*V*(B1 + V*(B2 + V*(B3 + V*(B4 + V*B5)))) BY |--U + U*V*( [B1 + W*(B3 + W*B5)] + [V*(B2 + W*B4)] ) fmovex %fp1,%fp0 fmulx %fp0,%fp0 | ...FP0 IS V fmovex %fp1,SAVEU(%a6) | ...STORE U IN MEMORY, FREE FP1 fmovex %fp0,%fp1 fmulx %fp1,%fp1 | ...FP1 IS W fmoved LOGB5,%fp3 fmoved LOGB4,%fp2 fmulx %fp1,%fp3 | ...W*B5 fmulx %fp1,%fp2 | ...W*B4 faddd LOGB3,%fp3 | ...B3+W*B5 faddd LOGB2,%fp2 | ...B2+W*B4 fmulx %fp3,%fp1 | ...W*(B3+W*B5), FP3 RELEASED fmulx %fp0,%fp2 | ...V*(B2+W*B4) faddd LOGB1,%fp1 | ...B1+W*(B3+W*B5) fmulx SAVEU(%a6),%fp0 | ...FP0 IS U*V faddx %fp2,%fp1 | ...B1+W*(B3+W*B5) + V*(B2+W*B4), FP2 RELEASED fmovemx (%sp)+,%fp2-%fp2/%fp3 | ...FP2 RESTORED fmulx %fp1,%fp0 | ...U*V*( [B1+W*(B3+W*B5)] + [V*(B2+W*B4)] ) fmovel %d1,%fpcr faddx SAVEU(%a6),%fp0 bra t_frcinx rts LOGNEG: |--REGISTERS SAVED FPCR. LOG(-VE) IS INVALID bra t_operr .global slognp1d slognp1d: |--ENTRY POINT FOR LOG(1+Z) FOR DENORMALIZED INPUT | Simply return the denorm bra t_extdnrm .global slognp1 slognp1: |--ENTRY POINT FOR LOG(1+X) FOR X FINITE, NON-ZERO, NOT NAN'S fmovex (%a0),%fp0 | ...LOAD INPUT fabsx %fp0 |test magnitude fcmpx LTHOLD,%fp0 |compare with min threshold fbgt LP1REAL |if greater, continue fmovel #0,%fpsr |clr N flag from compare fmovel %d1,%fpcr fmovex (%a0),%fp0 |return signed argument bra t_frcinx LP1REAL: fmovex (%a0),%fp0 | ...LOAD INPUT movel #0x00000000,ADJK(%a6) fmovex %fp0,%fp1 | ...FP1 IS INPUT Z fadds one,%fp0 | ...X := ROUND(1+Z) fmovex %fp0,X(%a6) movew XFRAC(%a6),XDCARE(%a6) movel X(%a6),%d0 cmpil #0,%d0 ble LP1NEG0 | ...LOG OF ZERO OR -VE cmp2l BOUNDS2,%d0 bcs LOGMAIN | ...BOUNDS2 IS [1/2,3/2] |--IF 1+Z > 3/2 OR 1+Z < 1/2, THEN X, WHICH IS ROUNDING 1+Z, |--CONTAINS AT LEAST 63 BITS OF INFORMATION OF Z. IN THAT CASE, |--SIMPLY INVOKE LOG(X) FOR LOG(1+Z). LP1NEAR1: |--NEXT SEE IF EXP(-1/16) < X < EXP(1/16) cmp2l BOUNDS1,%d0 bcss LP1CARE LP1ONE16: |--EXP(-1/16) < X < EXP(1/16). LOG(1+Z) = LOG(1+U/2) - LOG(1-U/2) |--WHERE U = 2Z/(2+Z) = 2Z/(1+X). faddx %fp1,%fp1 | ...FP1 IS 2Z fadds one,%fp0 | ...FP0 IS 1+X |--U = FP1/FP0 bra LP1CONT2 LP1CARE: |--HERE WE USE THE USUAL TABLE DRIVEN APPROACH. CARE HAS TO BE |--TAKEN BECAUSE 1+Z CAN HAVE 67 BITS OF INFORMATION AND WE MUST |--PRESERVE ALL THE INFORMATION. BECAUSE 1+Z IS IN [1/2,3/2], |--THERE ARE ONLY TWO CASES. |--CASE 1: 1+Z < 1, THEN K = -1 AND Y-F = (2-F) + 2Z |--CASE 2: 1+Z > 1, THEN K = 0 AND Y-F = (1-F) + Z |--ON RETURNING TO LP1CONT1, WE MUST HAVE K IN FP1, ADDRESS OF |--(1/F) IN A0, Y-F IN FP0, AND FP2 SAVED. movel XFRAC(%a6),FFRAC(%a6) andil #0xFE000000,FFRAC(%a6) oril #0x01000000,FFRAC(%a6) | ...F OBTAINED cmpil #0x3FFF8000,%d0 | ...SEE IF 1+Z > 1 bges KISZERO KISNEG1: fmoves TWO,%fp0 movel #0x3fff0000,F(%a6) clrl F+8(%a6) fsubx F(%a6),%fp0 | ...2-F movel FFRAC(%a6),%d0 andil #0x7E000000,%d0 asrl #8,%d0 asrl #8,%d0 asrl #4,%d0 | ...D0 CONTAINS DISPLACEMENT FOR 1/F faddx %fp1,%fp1 | ...GET 2Z fmovemx %fp2-%fp2/%fp3,-(%sp) | ...SAVE FP2 faddx %fp1,%fp0 | ...FP0 IS Y-F = (2-F)+2Z lea LOGTBL,%a0 | ...A0 IS ADDRESS OF 1/F addal %d0,%a0 fmoves negone,%fp1 | ...FP1 IS K = -1 bra LP1CONT1 KISZERO: fmoves one,%fp0 movel #0x3fff0000,F(%a6) clrl F+8(%a6) fsubx F(%a6),%fp0 | ...1-F movel FFRAC(%a6),%d0 andil #0x7E000000,%d0 asrl #8,%d0 asrl #8,%d0 asrl #4,%d0 faddx %fp1,%fp0 | ...FP0 IS Y-F fmovemx %fp2-%fp2/%fp3,-(%sp) | ...FP2 SAVED lea LOGTBL,%a0 addal %d0,%a0 | ...A0 IS ADDRESS OF 1/F fmoves zero,%fp1 | ...FP1 IS K = 0 bra LP1CONT1 LP1NEG0: |--FPCR SAVED. D0 IS X IN COMPACT FORM. cmpil #0,%d0 blts LP1NEG LP1ZERO: fmoves negone,%fp0 fmovel %d1,%fpcr bra t_dz LP1NEG: fmoves zero,%fp0 fmovel %d1,%fpcr bra t_operr |end |