Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | /* * linux/arch/alpha/mm/init.c * * Copyright (C) 1995 Linus Torvalds */ #include <linux/config.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/head.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/ptrace.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/swap.h> #include <asm/system.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/hwrpb.h> #include <asm/dma.h> extern void die_if_kernel(char *,struct pt_regs *,long); extern void show_net_buffers(void); /* * BAD_PAGE is the page that is used for page faults when linux * is out-of-memory. Older versions of linux just did a * do_exit(), but using this instead means there is less risk * for a process dying in kernel mode, possibly leaving an inode * unused etc.. * * BAD_PAGETABLE is the accompanying page-table: it is initialized * to point to BAD_PAGE entries. * * ZERO_PAGE is a special page that is used for zero-initialized * data and COW. */ pmd_t * __bad_pagetable(void) { memset((void *) EMPTY_PGT, 0, PAGE_SIZE); return (pmd_t *) EMPTY_PGT; } pte_t __bad_page(void) { memset((void *) EMPTY_PGE, 0, PAGE_SIZE); return pte_mkdirty(mk_pte((unsigned long) EMPTY_PGE, PAGE_SHARED)); } void show_mem(void) { int i,free = 0,total = 0,reserved = 0; int shared = 0; printk("\nMem-info:\n"); show_free_areas(); printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10)); i = max_mapnr; while (i-- > 0) { total++; if (PageReserved(mem_map+i)) reserved++; else if (!mem_map[i].count) free++; else shared += mem_map[i].count-1; } printk("%d pages of RAM\n",total); printk("%d free pages\n",free); printk("%d reserved pages\n",reserved); printk("%d pages shared\n",shared); show_buffers(); #ifdef CONFIG_NET show_net_buffers(); #endif } extern unsigned long free_area_init(unsigned long, unsigned long); static void load_PCB(struct thread_struct * pcb) { __asm__ __volatile__( "stq $30,0(%0)\n\t" "bis %0,%0,$16\n\t" "call_pal %1" : /* no outputs */ : "r" (pcb), "i" (PAL_swpctx) : "$0", "$1", "$16", "$22", "$23", "$24", "$25"); } /* * paging_init() sets up the page tables: in the alpha version this actually * unmaps the bootup page table (as we're now in KSEG, so we don't need it). */ unsigned long paging_init(unsigned long start_mem, unsigned long end_mem) { int i; unsigned long newptbr; struct memclust_struct * cluster; struct memdesc_struct * memdesc; /* initialize mem_map[] */ start_mem = free_area_init(start_mem, end_mem); /* find free clusters, update mem_map[] accordingly */ memdesc = (struct memdesc_struct *) (INIT_HWRPB->mddt_offset + (unsigned long) INIT_HWRPB); cluster = memdesc->cluster; for (i = memdesc->numclusters ; i > 0; i--, cluster++) { unsigned long pfn, nr; if (cluster->usage & 1) continue; pfn = cluster->start_pfn; nr = cluster->numpages; /* non-volatile memory. We might want to mark this for later */ if (cluster->usage & 2) continue; while (nr--) clear_bit(PG_reserved, &mem_map[pfn++].flags); } /* unmap the console stuff: we don't need it, and we don't want it */ /* Also set up the real kernel PCB while we're at it.. */ memset((void *) ZERO_PAGE, 0, PAGE_SIZE); memset(swapper_pg_dir, 0, PAGE_SIZE); newptbr = ((unsigned long) swapper_pg_dir - PAGE_OFFSET) >> PAGE_SHIFT; pgd_val(swapper_pg_dir[1023]) = (newptbr << 32) | pgprot_val(PAGE_KERNEL); init_task.tss.ptbr = newptbr; init_task.tss.pal_flags = 1; /* set FEN, clear everything else */ init_task.tss.flags = 0; init_task.kernel_stack_page = INIT_STACK; load_PCB(&init_task.tss); flush_tlb_all(); return start_mem; } void mem_init(unsigned long start_mem, unsigned long end_mem) { unsigned long tmp; end_mem &= PAGE_MASK; max_mapnr = num_physpages = MAP_NR(end_mem); high_memory = (void *) end_mem; start_mem = PAGE_ALIGN(start_mem); /* * Mark the pages used by the kernel as reserved.. */ tmp = KERNEL_START; while (tmp < start_mem) { set_bit(PG_reserved, &mem_map[MAP_NR(tmp)].flags); tmp += PAGE_SIZE; } for (tmp = PAGE_OFFSET ; tmp < end_mem ; tmp += PAGE_SIZE) { if (tmp >= MAX_DMA_ADDRESS) clear_bit(PG_DMA, &mem_map[MAP_NR(tmp)].flags); if (PageReserved(mem_map+MAP_NR(tmp))) continue; mem_map[MAP_NR(tmp)].count = 1; free_page(tmp); } tmp = nr_free_pages << PAGE_SHIFT; printk("Memory: %luk available\n", tmp >> 10); return; } void free_initmem(void) { /* To be written */ } void si_meminfo(struct sysinfo *val) { int i; i = max_mapnr; val->totalram = 0; val->sharedram = 0; val->freeram = nr_free_pages << PAGE_SHIFT; val->bufferram = buffermem; while (i-- > 0) { if (PageReserved(mem_map+i)) continue; val->totalram++; if (!mem_map[i].count) continue; val->sharedram += mem_map[i].count-1; } val->totalram <<= PAGE_SHIFT; val->sharedram <<= PAGE_SHIFT; return; } |