Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
/* $Id: bitops.h,v 1.41 1996/12/28 18:14:25 davem Exp $
 * bitops.h: Bit string operations on the Sparc.
 *
 * Copyright 1995 David S. Miller (davem@caip.rutgers.edu)
 * Copyright 1996 Eddie C. Dost   (ecd@skynet.be)
 */

#ifndef _SPARC_BITOPS_H
#define _SPARC_BITOPS_H

#include <linux/kernel.h>

#ifndef __KERNEL__

/* User mode bitops, defined here for convenience. Note: these are not
 * atomic, so packages like nthreads should do some locking around these
 * themself.
 */

#define __SMPVOL

extern __inline__ unsigned long set_bit(unsigned long nr, void *addr)
{
	int mask;
	unsigned long *ADDR = (unsigned long *) addr;

	ADDR += nr >> 5;
	mask = 1 << (nr & 31);
	__asm__ __volatile__("
	ld	[%0], %%g3
	or	%%g3, %2, %%g2
	st	%%g2, [%0]
	and	%%g3, %2, %0
	"
	: "=&r" (ADDR)
	: "0" (ADDR), "r" (mask)
	: "g2", "g3");

	return (unsigned long) ADDR;
}

extern __inline__ unsigned long clear_bit(unsigned long nr, void *addr)
{
	int mask;
	unsigned long *ADDR = (unsigned long *) addr;

	ADDR += nr >> 5;
	mask = 1 << (nr & 31);
	__asm__ __volatile__("
	ld	[%0], %%g3
	andn	%%g3, %2, %%g2
	st	%%g2, [%0]
	and	%%g3, %2, %0
	"
	: "=&r" (ADDR)
	: "0" (ADDR), "r" (mask)
	: "g2", "g3");

	return (unsigned long) ADDR;
}

extern __inline__ unsigned long change_bit(unsigned long nr, void *addr)
{
	int mask;
	unsigned long *ADDR = (unsigned long *) addr;

	ADDR += nr >> 5;
	mask = 1 << (nr & 31);
	__asm__ __volatile__("
	ld	[%0], %%g3
	xor	%%g3, %2, %%g2
	st	%%g2, [%0]
	and	%%g3, %2, %0
	"
	: "=&r" (ADDR)
	: "0" (ADDR), "r" (mask)
	: "g2", "g3");

	return (unsigned long) ADDR;
}

#else /* __KERNEL__ */

#include <asm/system.h>

#ifdef __SMP__
#define __SMPVOL volatile
#else
#define __SMPVOL
#endif

/* Set bit 'nr' in 32-bit quantity at address 'addr' where bit '0'
 * is in the highest of the four bytes and bit '31' is the high bit
 * within the first byte. Sparc is BIG-Endian. Unless noted otherwise
 * all bit-ops return 0 if bit was previously clear and != 0 otherwise.
 */

extern __inline__ unsigned long set_bit(unsigned long nr, __SMPVOL void *addr)
{
	int mask;
	unsigned long *ADDR = (unsigned long *) addr;

	ADDR += nr >> 5;
	mask = 1 << (nr & 31);
	__asm__ __volatile__("
	rd	%%psr, %%g3
	andcc	%%g3, %3, %%g0
	bne	1f
	 nop
	wr	%%g3, %3, %%psr
	nop
	nop
	nop
1:
	ld	[%0], %%g4
	or	%%g4, %2, %%g2
	andcc	%%g3, %3, %%g0
	st	%%g2, [%0]
	bne	1f
	 nop
	wr	%%g3, 0x0, %%psr
	nop
	nop
	nop
1:
	and	%%g4, %2, %0
"	: "=&r" (ADDR)
	: "0" (ADDR), "r" (mask), "i" (PSR_PIL)
	: "g2", "g3", "g4");

	return (unsigned long) ADDR;
}

extern __inline__ unsigned long clear_bit(unsigned long nr, __SMPVOL void *addr)
{
	int mask;
	unsigned long *ADDR = (unsigned long *) addr;

	ADDR += nr >> 5;
	mask = 1 << (nr & 31);
	__asm__ __volatile__("
	rd	%%psr, %%g3
	andcc	%%g3, %3, %%g0
	bne	1f
	 nop
	wr	%%g3, %3, %%psr
	nop
	nop
	nop
1:
	ld	[%0], %%g4
	andn	%%g4, %2, %%g2
	andcc	%%g3, %3, %%g0
	st	%%g2, [%0]
	bne	1f
	 nop
	wr	%%g3, 0x0, %%psr
	nop
	nop
	nop
1:
	and	%%g4, %2, %0
"	: "=&r" (ADDR)
	: "0" (ADDR), "r" (mask), "i" (PSR_PIL)
	: "g2", "g3", "g4");

	return (unsigned long) ADDR;
}

extern __inline__ unsigned long change_bit(unsigned long nr, __SMPVOL void *addr)
{
	int mask;
	unsigned long *ADDR = (unsigned long *) addr;

	ADDR += nr >> 5;
	mask = 1 << (nr & 31);
	__asm__ __volatile__("
	rd	%%psr, %%g3
	andcc	%%g3, %3, %%g0
	bne	1f
	 nop
	wr	%%g3, %3, %%psr
	nop
	nop
	nop
1:
	ld	[%0], %%g4
	xor	%%g4, %2, %%g2
	andcc	%%g3, %3, %%g0
	st	%%g2, [%0]
	bne	1f
	 nop
	wr	%%g3, 0x0, %%psr
	nop
	nop
	nop
1:
	and	%%g4, %2, %0
"	: "=&r" (ADDR)
	: "0" (ADDR), "r" (mask), "i" (PSR_PIL)
	: "g2", "g3", "g4");

	return (unsigned long) ADDR;
}

#endif /* __KERNEL__ */

/* The following routine need not be atomic. */
extern __inline__ unsigned long test_bit(int nr, __const__ __SMPVOL void *addr)
{
	return 1UL & (((__const__ unsigned int *) addr)[nr >> 5] >> (nr & 31));
}

/* The easy/cheese version for now. */
extern __inline__ unsigned long ffz(unsigned long word)
{
	unsigned long result = 0;

	while(word & 1) {
		result++;
		word >>= 1;
	}
	return result;
}

/* find_next_zero_bit() finds the first zero bit in a bit string of length
 * 'size' bits, starting the search at bit 'offset'. This is largely based
 * on Linus's ALPHA routines, which are pretty portable BTW.
 */

extern __inline__ unsigned long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
{
	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if (offset) {
		tmp = *(p++);
		tmp |= ~0UL >> (32-offset);
		if (size < 32)
			goto found_first;
		if (~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while (size & ~31UL) {
		if (~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if (!size)
		return result;
	tmp = *p;

found_first:
	tmp |= ~0UL << size;
found_middle:
	return result + ffz(tmp);
}

/* Linus sez that gcc can optimize the following correctly, we'll see if this
 * holds on the Sparc as it does for the ALPHA.
 */

#define find_first_zero_bit(addr, size) \
        find_next_zero_bit((addr), (size), 0)

#ifndef __KERNEL__

extern __inline__ int set_le_bit(int nr, void *addr)
{
	int		mask;
	unsigned char	*ADDR = (unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	__asm__ __volatile__("
	ldub	[%0], %%g3
	or	%%g3, %2, %%g2
	stb	%%g2, [%0]
	and	%%g3, %2, %0
	"
	: "=&r" (ADDR)
	: "0" (ADDR), "r" (mask)
	: "g2", "g3");

	return (int) ADDR;
}

extern __inline__ int clear_le_bit(int nr, void *addr)
{
	int		mask;
	unsigned char	*ADDR = (unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	__asm__ __volatile__("
	ldub	[%0], %%g3
	andn	%%g3, %2, %%g2
	stb	%%g2, [%0]
	and	%%g3, %2, %0
	"
	: "=&r" (ADDR)
	: "0" (ADDR), "r" (mask)
	: "g2", "g3");

	return (int) ADDR;
}

#else /* __KERNEL__ */

/* Now for the ext2 filesystem bit operations and helper routines. */

extern __inline__ int set_le_bit(int nr,void * addr)
{
	int		mask;
	unsigned char	*ADDR = (unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	__asm__ __volatile__("
	rd	%%psr, %%g3
	andcc	%%g3, %3, %%g0
	bne	1f
	 nop
	wr	%%g3, %3, %%psr
	nop
	nop
	nop
1:
	ldub	[%0], %%g4
	or	%%g4, %2, %%g2
	andcc	%%g3, %3, %%g0
	stb	%%g2, [%0]
	bne	1f
	 nop
	wr	%%g3, 0x0, %%psr
	nop
	nop
	nop
1:
	and	%%g4, %2, %0
"	: "=&r" (ADDR)
	: "0" (ADDR), "r" (mask), "i" (PSR_PIL)
	: "g2", "g3", "g4");

	return (int) ADDR;
}

extern __inline__ int clear_le_bit(int nr, void * addr)
{
	int		mask;
	unsigned char	*ADDR = (unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	__asm__ __volatile__("
	rd	%%psr, %%g3
	andcc	%%g3, %3, %%g0
	bne	1f
	 nop
	wr	%%g3, %3, %%psr
	nop
	nop
	nop
1:
	ldub	[%0], %%g4
	andn	%%g4, %2, %%g2
	andcc	%%g3, %3, %%g0
	stb	%%g2, [%0]
	bne	1f
	 nop
	wr	%%g3, 0x0, %%psr
	nop
	nop
	nop
1:
	and	%%g4, %2, %0
"	: "=&r" (ADDR)
	: "0" (ADDR), "r" (mask), "i" (PSR_PIL)
	: "g2", "g3", "g4");

	return (int) ADDR;
}

#endif /* __KERNEL__ */

extern __inline__ int test_le_bit(int nr, __const__ void * addr)
{
	int			mask;
	__const__ unsigned char	*ADDR = (__const__ unsigned char *) addr;

	ADDR += nr >> 3;
	mask = 1 << (nr & 0x07);
	return ((mask & *ADDR) != 0);
}

#ifdef __KERNEL__

#define ext2_set_bit   set_le_bit
#define ext2_clear_bit clear_le_bit
#define ext2_test_bit  test_le_bit

#endif /* __KERNEL__ */

#define find_first_zero_le_bit(addr, size) \
        find_next_zero_le_bit((addr), (size), 0)

extern __inline__ unsigned long __swab32(unsigned long value)
{
	return((value>>24) | ((value>>8)&0xff00) |
	       ((value<<8)&0xff0000) | (value<<24));
}     

extern __inline__ unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset)
{
	unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
	unsigned long result = offset & ~31UL;
	unsigned long tmp;

	if (offset >= size)
		return size;
	size -= result;
	offset &= 31UL;
	if(offset) {
		tmp = *(p++);
		tmp |= __swab32(~0UL >> (32-offset));
		if(size < 32)
			goto found_first;
		if(~tmp)
			goto found_middle;
		size -= 32;
		result += 32;
	}
	while(size & ~31UL) {
		if(~(tmp = *(p++)))
			goto found_middle;
		result += 32;
		size -= 32;
	}
	if(!size)
		return result;
	tmp = *p;

found_first:
	return result + ffz(__swab32(tmp) | (~0UL << size));
found_middle:
	return result + ffz(__swab32(tmp));
}

#ifdef __KERNEL__

#define ext2_find_first_zero_bit     find_first_zero_le_bit
#define ext2_find_next_zero_bit      find_next_zero_le_bit

/* Bitmap functions for the minix filesystem.  */
#define minix_set_bit(nr,addr) set_bit(nr,addr)
#define minix_clear_bit(nr,addr) clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)

#endif /* __KERNEL__ */

#endif /* defined(_SPARC_BITOPS_H) */