Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
 * linux/fs/hfs/file.c
 *
 * Copyright (C) 1995, 1996  Paul H. Hargrove
 * This file may be distributed under the terms of the GNU Public License.
 *
 * This file contains the file-related functions which are independent of
 * which scheme is being used to represent forks.
 *
 * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
 *
 * "XXX" in a comment is a note to myself to consider changing something.
 *
 * In function preconditions the term "valid" applied to a pointer to
 * a structure means that the pointer is non-NULL and the structure it
 * points to has all fields initialized to consistent values.
 */

#include "hfs.h"
#include <linux/hfs_fs_sb.h>
#include <linux/hfs_fs_i.h>
#include <linux/hfs_fs.h>

/*================ Forward declarations ================*/

static hfs_rwret_t hfs_file_read(struct file *, char *, hfs_rwarg_t,
				 loff_t *);
static hfs_rwret_t hfs_file_write(struct file *, const char *, hfs_rwarg_t,
				  loff_t *);
static void hfs_file_truncate(struct inode *);
static int hfs_bmap(struct inode *, int);

/*================ Global variables ================*/

static struct file_operations hfs_file_operations = {
	NULL,			/* lseek - default */
	hfs_file_read,		/* read */
	hfs_file_write,		/* write */
	NULL,			/* readdir - bad */
	NULL,			/* select - default */
	NULL,			/* ioctl - default */
	generic_file_mmap,	/* mmap */
	NULL,			/* open */
	NULL,			/* flush */
	NULL,			/* release */
	file_fsync,		/* fsync - default */
        NULL,			/* fasync - default */
        NULL,			/* check_media_change - none */
        NULL,			/* revalidate - none */
        NULL			/* lock - none */
};

struct inode_operations hfs_file_inode_operations = {
	&hfs_file_operations,	/* default file operations */
	NULL,			/* create */
	NULL,			/* lookup */
	NULL,			/* link */
	NULL,			/* unlink */
	NULL,			/* symlink */
	NULL,			/* mkdir */
	NULL,			/* rmdir */
	NULL,			/* mknod */
	NULL,			/* rename */
	NULL,			/* readlink */
	NULL,			/* follow_link */
	generic_readpage,	/* readpage */
	NULL,			/* writepage */
	hfs_bmap,		/* bmap */
	hfs_file_truncate,	/* truncate */
	NULL,			/* permission */
	NULL,			/* smap */
	NULL,			/* updatepage */
	NULL			/* revalidate */
};

/*================ Variable-like macros ================*/

/* maximum number of blocks to try to read in at once */
#define NBUF 32

/*================ File-local functions ================*/

/*
 * hfs_getblk()
 *
 * Given an hfs_fork and a block number return the buffer_head for
 * that block from the fork.  If 'create' is non-zero then allocate
 * the necessary block(s) to the fork.
 */
struct buffer_head *hfs_getblk(struct hfs_fork *fork, int block, int create)
{
	int tmp;
	kdev_t dev = fork->entry->mdb->sys_mdb->s_dev;

	tmp = hfs_extent_map(fork, block, create);

	if (create) {
		/* If writing the block, then we have exclusive access
		   to the file until we return, so it can't have moved.
		*/
		if (tmp) {
			hfs_cat_mark_dirty(fork->entry);
			return getblk(dev, tmp, HFS_SECTOR_SIZE);
		}
		return NULL;
	} else {
		/* If reading the block, then retry since the
		   location on disk could have changed while
		   we waited on the I/O in getblk to complete.
		*/
		do {
			struct buffer_head *bh =
					getblk(dev, tmp, HFS_SECTOR_SIZE);
			int tmp2 = hfs_extent_map(fork, block, 0);

			if (tmp2 == tmp) {
				return bh;
			} else {
				/* The block moved or no longer exists. */
				brelse(bh);
				tmp = tmp2;
			}
		} while (tmp != 0);

		/* The block no longer exists. */
		return NULL;
	}
}

/*
 * hfs_bmap()
 *
 * This is the bmap() field in the inode_operations structure for
 * "regular" (non-header) files.  The purpose is to translate an inode
 * and a block number within the corresponding file into a physical
 * block number.  This function just calls hfs_extent_map() to do the
 * real work.
 */
static int hfs_bmap(struct inode * inode, int block)
{
	return hfs_extent_map(HFS_I(inode)->fork, block, 0);
}

/*
 * hfs_file_read()
 *
 * This is the read field in the inode_operations structure for
 * "regular" (non-header) files.  The purpose is to transfer up to
 * 'count' bytes from the file corresponding to 'inode', beginning at
 * 'filp->offset' bytes into the file.	The data is transfered to
 * user-space at the address 'buf'.  Returns the number of bytes
 * successfully transfered.  This function checks the arguments, does
 * some setup and then calls hfs_do_read() to do the actual transfer.
 */
static hfs_rwret_t hfs_file_read(struct file * filp, char * buf, 
				 hfs_rwarg_t count, loff_t *ppos)
{
        struct inode *inode = filp->f_dentry->d_inode;
	hfs_s32 read, left, pos, size;

	if (!S_ISREG(inode->i_mode)) {
		hfs_warn("hfs_file_read: mode = %07o\n",inode->i_mode);
		return -EINVAL;
	}
	pos = *ppos;
	if (pos >= HFS_FORK_MAX) {
		return 0;
	}
	size = inode->i_size;
	if (pos > size) {
		left = 0;
	} else {
		left = size - pos;
	}
	if (left > count) {
		left = count;
	}
	if (left <= 0) {
		return 0;
	}
	if ((read = hfs_do_read(inode, HFS_I(inode)->fork, pos,
				buf, left, filp->f_reada != 0)) > 0) {
	        *ppos += read;
		filp->f_reada = 1;
	}

	return read;
}

/*
 * hfs_file_write()
 *
 * This is the write() entry in the file_operations structure for
 * "regular" files.  The purpose is to transfer up to 'count' bytes
 * to the file corresponding to 'inode' beginning at offset
 * 'file->f_pos' from user-space at the address 'buf'.  The return
 * value is the number of bytes actually transferred.
 */
static hfs_rwret_t hfs_file_write(struct file * filp, const char * buf,
				  hfs_rwarg_t count, loff_t *ppos)
{
        struct inode    *inode = filp->f_dentry->d_inode;
	struct hfs_fork *fork = HFS_I(inode)->fork;
	hfs_s32 written, pos;

	if (!S_ISREG(inode->i_mode)) {
		hfs_warn("hfs_file_write: mode = %07o\n", inode->i_mode);
		return -EINVAL;
	}

	pos = (filp->f_flags & O_APPEND) ? inode->i_size : *ppos;

	if (pos >= HFS_FORK_MAX) {
		return 0;
	}
	if (count > HFS_FORK_MAX) {
		count = HFS_FORK_MAX;
	}
	if ((written = hfs_do_write(inode, fork, pos, buf, count)) > 0)
	        pos += written;

	*ppos = pos;
	if (*ppos > inode->i_size) {
	        inode->i_size = *ppos;
		mark_inode_dirty(inode);
	}

	return written;
}

/*
 * hfs_file_truncate()
 *
 * This is the truncate() entry in the file_operations structure for
 * "regular" files.  The purpose is to change the length of the file
 * corresponding to the given inode.  Changes can either lengthen or
 * shorten the file.
 */
static void hfs_file_truncate(struct inode * inode)
{
	struct hfs_fork *fork = HFS_I(inode)->fork;

	fork->lsize = inode->i_size;
	hfs_extent_adj(fork);
	hfs_cat_mark_dirty(HFS_I(inode)->entry);

	inode->i_size = fork->lsize;
	inode->i_blocks = fork->psize;
	mark_inode_dirty(inode);
}

/*
 * xlate_to_user()
 *
 * Like copy_to_user() while translating CR->NL.
 */
static inline void xlate_to_user(char *buf, const char *data, int count)
{
	char ch;

	while (count--) {
		ch = *(data++);
		put_user((ch == '\r') ? '\n' : ch, buf++);
	}
}

/*
 * xlate_from_user()
 *
 * Like copy_from_user() while translating NL->CR;
 */
static inline int xlate_from_user(char *data, const char *buf, int count)
{
	int i;

	i = copy_from_user(data, buf, count);
	count -= i;
	while (count--) {
		if (*data == '\n') {
			*data = '\r';
		}
		++data;
	}
	return i;
}

/*================ Global functions ================*/

/*
 * hfs_do_read()
 *
 * This function transfers actual data from disk to user-space memory,
 * returning the number of bytes successfully transfered.  'fork' tells
 * which file on the disk to read from.  'pos' gives the offset into
 * the Linux file at which to begin the transfer.  Note that this will
 * differ from 'filp->offset' in the case of an AppleDouble header file
 * due to the block of metadata at the beginning of the file, which has
 * no corresponding place in the HFS file.  'count' tells how many
 * bytes to transfer.  'buf' gives an address in user-space to transfer
 * the data to.
 * 
 * This is based on Linus's minix_file_read().
 * It has been changed to take into account that HFS files have no holes.
 */
hfs_s32 hfs_do_read(struct inode *inode, struct hfs_fork * fork, hfs_u32 pos,
		    char * buf, hfs_u32 count, int reada)
{
	kdev_t dev = inode->i_dev;
	hfs_s32 size, chars, offset, block, blocks, read = 0;
	int bhrequest, uptodate;
	int convert = HFS_I(inode)->convert;
	struct buffer_head ** bhb, ** bhe;
	struct buffer_head * bhreq[NBUF];
	struct buffer_head * buflist[NBUF];

	/* split 'pos' in to block and (byte) offset components */
	block = pos >> HFS_SECTOR_SIZE_BITS;
	offset = pos & (HFS_SECTOR_SIZE-1);

	/* compute the logical size of the fork in blocks */
	size = (fork->lsize + (HFS_SECTOR_SIZE-1)) >> HFS_SECTOR_SIZE_BITS;

	/* compute the number of physical blocks to be transferred */
	blocks = (count+offset+HFS_SECTOR_SIZE-1) >> HFS_SECTOR_SIZE_BITS;

	bhb = bhe = buflist;
	if (reada) {
		if (blocks < read_ahead[MAJOR(dev)] / (HFS_SECTOR_SIZE>>9)) {
			blocks = read_ahead[MAJOR(dev)] / (HFS_SECTOR_SIZE>>9);
		}
		if (block + blocks > size) {
			blocks = size - block;
		}
	}

	/* We do this in a two stage process.  We first try and
	   request as many blocks as we can, then we wait for the
	   first one to complete, and then we try and wrap up as many
	   as are actually done.
	   
	   This routine is optimized to make maximum use of the
	   various buffers and caches. */

	do {
		bhrequest = 0;
		uptodate = 1;
		while (blocks) {
			--blocks;
			*bhb = hfs_getblk(fork, block++, 0);

			if (!(*bhb)) {
				/* Since there are no holes in HFS files
				   we must have encountered an error.
				   So, stop adding blocks to the queue. */
				blocks = 0;
				break;
			}

			if (!buffer_uptodate(*bhb)) {
				uptodate = 0;
				bhreq[bhrequest++] = *bhb;
			}

			if (++bhb == &buflist[NBUF]) {
				bhb = buflist;
			}

			/* If the block we have on hand is uptodate,
			   go ahead and complete processing. */
			if (uptodate) {
				break;
			}
			if (bhb == bhe) {
				break;
			}
		}

		/* If the only block in the queue is bad then quit */
		if (!(*bhe)) {
			break;
		}

		/* Now request them all */
		if (bhrequest) {
			ll_rw_block(READ, bhrequest, bhreq);
		}

		do {  /* Finish off all I/O that has actually completed */
			char *p;

			wait_on_buffer(*bhe);

			if (!buffer_uptodate(*bhe)) {
				/* read error? */
				brelse(*bhe);
				if (++bhe == &buflist[NBUF]) {
					bhe = buflist;
				}
				count = 0;
				break;
			}

			if (count < HFS_SECTOR_SIZE - offset) {
				chars = count;
			} else {
				chars = HFS_SECTOR_SIZE - offset;
			}
			p = (*bhe)->b_data + offset;
			if (convert) {
				xlate_to_user(buf, p, chars);
			} else {
				chars -= copy_to_user(buf, p, chars);
				if (!chars) {
					brelse(*bhe);
					count = 0;
					if (!read)
						read = -EFAULT;
					break;
				}
			}
			brelse(*bhe);
			count -= chars;
			buf += chars;
			read += chars;
			offset = 0;
			if (++bhe == &buflist[NBUF]) {
				bhe = buflist;
			}
		} while (count && (bhe != bhb) && !buffer_locked(*bhe));
	} while (count);

	/* Release the read-ahead blocks */
	while (bhe != bhb) {
		brelse(*bhe);
		if (++bhe == &buflist[NBUF]) {
			bhe = buflist;
		}
	}
	if (!read) {
		return -EIO;
	}
	return read;
}
 
/*
 * hfs_do_write()
 *
 * This function transfers actual data from user-space memory to disk,
 * returning the number of bytes successfully transfered.  'fork' tells
 * which file on the disk to write to.  'pos' gives the offset into
 * the Linux file at which to begin the transfer.  Note that this will
 * differ from 'filp->offset' in the case of an AppleDouble header file
 * due to the block of metadata at the beginning of the file, which has
 * no corresponding place in the HFS file.  'count' tells how many
 * bytes to transfer.  'buf' gives an address in user-space to transfer
 * the data from.
 * 
 * This is just a minor edit of Linus's minix_file_write().
 */
hfs_s32 hfs_do_write(struct inode *inode, struct hfs_fork * fork, hfs_u32 pos,
		     const char * buf, hfs_u32 count)
{
	hfs_s32 written, c;
	struct buffer_head * bh;
	char * p;
	int convert = HFS_I(inode)->convert;

	written = 0;
	while (written < count) {
		bh = hfs_getblk(fork, pos/HFS_SECTOR_SIZE, 1);
		if (!bh) {
			if (!written) {
				written = -ENOSPC;
			}
			break;
		}
		c = HFS_SECTOR_SIZE - (pos % HFS_SECTOR_SIZE);
		if (c > count - written) {
			c = count - written;
		}
		if (c != HFS_SECTOR_SIZE && !buffer_uptodate(bh)) {
			ll_rw_block(READ, 1, &bh);
			wait_on_buffer(bh);
			if (!buffer_uptodate(bh)) {
				brelse(bh);
				if (!written) {
					written = -EIO;
				}
				break;
			}
		}
		p = (pos % HFS_SECTOR_SIZE) + bh->b_data;
		c -= convert ? xlate_from_user(p, buf, c) :
			copy_from_user(p, buf, c);
		if (!c) {
			brelse(bh);
			if (!written)
				written = -EFAULT;
			break;
		}
		update_vm_cache(inode,pos,p,c);
		pos += c;
		written += c;
		buf += c;
		mark_buffer_uptodate(bh, 1);
		mark_buffer_dirty(bh, 0);
		brelse(bh);
	}
	if (written > 0) {
		struct hfs_cat_entry *entry = fork->entry;

		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		if (pos > fork->lsize) {
			fork->lsize = pos;
		}
		entry->modify_date = hfs_u_to_mtime(CURRENT_TIME);
		hfs_cat_mark_dirty(entry);
	}
	return written;
}

/*
 * hfs_file_fix_mode()
 *
 * Fixes up the permissions on a file after changing the write-inhibit bit.
 */
void hfs_file_fix_mode(struct hfs_cat_entry *entry)
{
	struct dentry **de = entry->sys_entry;
	int i;

	if (entry->u.file.flags & HFS_FIL_LOCK) {
		for (i = 0; i < 4; ++i) {
			if (de[i]) {
				de[i]->d_inode->i_mode &= ~S_IWUGO;
			}
		}
	} else {
		for (i = 0; i < 4; ++i) {
			if (de[i]) {
			        struct inode *inode = de[i]->d_inode;
				inode->i_mode |= S_IWUGO;
				inode->i_mode &= 
				  ~HFS_SB(inode->i_sb)->s_umask;
			}
		}
	}
}