Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
/*
 *	linux/arch/alpha/kernel/irq.c
 *
 *	Copyright (C) 1995 Linus Torvalds
 *
 * This file contains the code used by various IRQ handling routines:
 * asking for different IRQ's should be done through these routines
 * instead of just grabbing them. Thus setups with different IRQ numbers
 * shouldn't result in any weird surprises, and installing new handlers
 * should be easier.
 */

#include <linux/config.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/malloc.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/delay.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/machvec.h>

#include "proto.h"
#include "irq.h"

#define vulp	volatile unsigned long *
#define vuip	volatile unsigned int *

unsigned int local_irq_count[NR_CPUS];
unsigned int local_bh_count[NR_CPUS];
unsigned long hardirq_no[NR_CPUS];

#define RTC_IRQ    8
#ifdef CONFIG_RTC
#define TIMER_IRQ  0        /* timer is the pit */
#else
#define TIMER_IRQ  RTC_IRQ  /* the timer is, in fact, the rtc */
#endif

#if NR_IRQS > 64
#  error Unable to handle more than 64 irq levels.
#endif

#ifdef CONFIG_ALPHA_GENERIC
#define ACTUAL_NR_IRQS	alpha_mv.nr_irqs
#else
#define ACTUAL_NR_IRQS	NR_IRQS
#endif

/* Reserved interrupts.  These must NEVER be requested by any driver!
   IRQ 2 used by hw cascade */
#define	IS_RESERVED_IRQ(irq)	((irq)==2)


/*
 * Shadow-copy of masked interrupts.
 */
unsigned long alpha_irq_mask = ~0UL;

/*
 * The ack_irq routine used by 80% of the systems.
 */

void
generic_ack_irq(unsigned long irq)
{
	if (irq < 16) {
		/* Ack the interrupt making it the lowest priority */
		/*  First the slave .. */
		if (irq > 7) {
			outb(0xE0 | (irq - 8), 0xa0);
			irq = 2;
		}
		/* .. then the master */
		outb(0xE0 | irq, 0x20);
	}
}



static void dummy_perf(unsigned long vector, struct pt_regs *regs)
{
        printk(KERN_CRIT "Performance counter interrupt!\n");
}

void (*perf_irq)(unsigned long, struct pt_regs *) = dummy_perf;

/*
 * Dispatch device interrupts.
 */

/* Handle ISA interrupt via the PICs. */

#if defined(CONFIG_ALPHA_GENERIC)
# define IACK_SC	alpha_mv.iack_sc
#elif defined(CONFIG_ALPHA_APECS)
# define IACK_SC	APECS_IACK_SC
#elif defined(CONFIG_ALPHA_LCA)
# define IACK_SC	LCA_IACK_SC
#elif defined(CONFIG_ALPHA_CIA)
# define IACK_SC	CIA_IACK_SC
#elif defined(CONFIG_ALPHA_PYXIS)
# define IACK_SC	PYXIS_IACK_SC
#elif defined(CONFIG_ALPHA_TSUNAMI)
# define IACK_SC	TSUNAMI_IACK_SC
#else
  /* This is bogus but necessary to get it to compile on all platforms. */
# define IACK_SC	1L
#endif

void
isa_device_interrupt(unsigned long vector, struct pt_regs * regs)
{
#if 1
	/*
	 * Generate a PCI interrupt acknowledge cycle.  The PIC will
	 * respond with the interrupt vector of the highest priority
	 * interrupt that is pending.  The PALcode sets up the
	 * interrupts vectors such that irq level L generates vector L.
	 */
	int j = *(vuip) IACK_SC;
	j &= 0xff;
	if (j == 7) {
		if (!(inb(0x20) & 0x80)) {
			/* It's only a passive release... */
			return;
		}
	}
	handle_irq(j, j, regs);
#else
	unsigned long pic;

	/*
	 * It seems to me that the probability of two or more *device*
	 * interrupts occurring at almost exactly the same time is
	 * pretty low.  So why pay the price of checking for
	 * additional interrupts here if the common case can be
	 * handled so much easier?
	 */
	/* 
	 *  The first read of gives you *all* interrupting lines.
	 *  Therefore, read the mask register and and out those lines
	 *  not enabled.  Note that some documentation has 21 and a1 
	 *  write only.  This is not true.
	 */
	pic = inb(0x20) | (inb(0xA0) << 8);	/* read isr */
	pic &= ~alpha_irq_mask;			/* apply mask */
	pic &= 0xFFFB;				/* mask out cascade & hibits */

	while (pic) {
		int j = ffz(~pic);
		pic &= pic - 1;
		handle_irq(j, j, regs);
	}
#endif
}

/* Handle interrupts from the SRM, assuming no additional weirdness.  */

void 
srm_device_interrupt(unsigned long vector, struct pt_regs * regs)
{
	int irq, ack;

	ack = irq = (vector - 0x800) >> 4;
	handle_irq(irq, ack, regs);
}


/*
 * Initial irq handlers.
 */

static struct irqaction timer_irq = { NULL, 0, 0, NULL, NULL, NULL};
static struct irqaction *irq_action[NR_IRQS];


static inline void
mask_irq(unsigned long irq)
{
	alpha_mv.update_irq_hw(irq, alpha_irq_mask |= 1UL << irq, 0);
}

static inline void
unmask_irq(unsigned long irq)
{
	alpha_mv.update_irq_hw(irq, alpha_irq_mask &= ~(1UL << irq), 1);
}

void
disable_irq(unsigned int irq_nr)
{
	unsigned long flags;

	save_and_cli(flags);
	mask_irq(irq_nr);
	restore_flags(flags);
}

void
enable_irq(unsigned int irq_nr)
{
	unsigned long flags;

	save_and_cli(flags);
	unmask_irq(irq_nr);
	restore_flags(flags);
}

int
check_irq(unsigned int irq)
{
	struct irqaction **p;

	p = irq_action + irq;
	if (*p == NULL)
		return 0;
	return -EBUSY;
}

int
request_irq(unsigned int irq, void (*handler)(int, void *, struct pt_regs *),
	    unsigned long irqflags, const char * devname, void *dev_id)
{
	int shared = 0;
	struct irqaction * action, **p;
	unsigned long flags;

	if (irq >= ACTUAL_NR_IRQS)
		return -EINVAL;
	if (IS_RESERVED_IRQ(irq))
		return -EINVAL;
	if (!handler)
		return -EINVAL;

	p = irq_action + irq;
	action = *p;
	if (action) {
		/* Can't share interrupts unless both agree to */
		if (!(action->flags & irqflags & SA_SHIRQ))
			return -EBUSY;

		/* Can't share interrupts unless both are same type */
		if ((action->flags ^ irqflags) & SA_INTERRUPT)
			return -EBUSY;

		/* Add new interrupt at end of irq queue */
		do {
			p = &action->next;
			action = *p;
		} while (action);
		shared = 1;
	}

	action = &timer_irq;
	if (irq != TIMER_IRQ) {
		action = (struct irqaction *)
			kmalloc(sizeof(struct irqaction), GFP_KERNEL);
	}
	if (!action)
		return -ENOMEM;

	if (irqflags & SA_SAMPLE_RANDOM)
		rand_initialize_irq(irq);

	action->handler = handler;
	action->flags = irqflags;
	action->mask = 0;
	action->name = devname;
	action->next = NULL;
	action->dev_id = dev_id;

	save_and_cli(flags);
	*p = action;

	if (!shared)
		unmask_irq(irq);

	restore_flags(flags);
	return 0;
}
		
void
free_irq(unsigned int irq, void *dev_id)
{
	struct irqaction * action, **p;
	unsigned long flags;

	if (irq >= ACTUAL_NR_IRQS) {
		printk("Trying to free IRQ%d\n",irq);
		return;
	}
	if (IS_RESERVED_IRQ(irq)) {
		printk("Trying to free reserved IRQ %d\n", irq);
		return;
	}
	for (p = irq + irq_action; (action = *p) != NULL; p = &action->next) {
		if (action->dev_id != dev_id)
			continue;

		/* Found it - now free it */
		save_and_cli(flags);
		*p = action->next;
		if (!irq[irq_action])
			mask_irq(irq);
		restore_flags(flags);
		kfree(action);
		return;
	}
	printk("Trying to free free IRQ%d\n",irq);
}

int get_irq_list(char *buf)
{
	int i, j;
	struct irqaction * action;
	char *p = buf;

#ifdef __SMP__
	p += sprintf(p, "           ");
	for (j = 0; j < smp_num_cpus; j++)
		p += sprintf(p, "CPU%d       ", j);
	*p++ = '\n';
#endif

	for (i = 0; i < NR_IRQS; i++) {
		action = irq_action[i];
		if (!action) 
			continue;
		p += sprintf(p, "%3d: ",i);
#ifndef __SMP__
		p += sprintf(p, "%10u ", kstat_irqs(i));
#else
		for (j = 0; j < smp_num_cpus; j++)
			p += sprintf(p, "%10u ",
				     kstat.irqs[cpu_logical_map(j)][i]);
#endif
		p += sprintf(p, "  %c%s",
			     (action->flags & SA_INTERRUPT)?'+':' ',
			     action->name);

		for (action=action->next; action; action = action->next) {
			p += sprintf(p, ", %c%s",
				     (action->flags & SA_INTERRUPT)?'+':' ',
				     action->name);
		}
		*p++ = '\n';
	}
	return p - buf;
}

#ifdef __SMP__
/* Who has global_irq_lock. */
int global_irq_holder = NO_PROC_ID;

/* This protects IRQ's. */
spinlock_t global_irq_lock = SPIN_LOCK_UNLOCKED;

/* Global IRQ locking depth. */
atomic_t global_irq_count = ATOMIC_INIT(0);

/* This protects BH software state (masks, things like that). */
atomic_t global_bh_lock = ATOMIC_INIT(0);
atomic_t global_bh_count = ATOMIC_INIT(0);

static void *previous_irqholder = NULL;

#define MAXCOUNT 100000000

static void show(char * str, void *where);

static inline void
wait_on_irq(int cpu, void *where)
{
	int count = MAXCOUNT;

	for (;;) {

		/*
		 * Wait until all interrupts are gone. Wait
		 * for bottom half handlers unless we're
		 * already executing in one..
		 */
		if (!atomic_read(&global_irq_count)) {
			if (local_bh_count[cpu] ||
			    !atomic_read(&global_bh_count))
				break;
		}

		/* Duh, we have to loop. Release the lock to avoid deadlocks */
		spin_unlock(&global_irq_lock);
		mb();

		for (;;) {
			if (!--count) {
				show("wait_on_irq", where);
				count = MAXCOUNT;
			}
			__sti();
#if 0
			SYNC_OTHER_CORES(cpu);
#else
			udelay(cpu+1);
#endif
			__cli();

			if (atomic_read(&global_irq_count))
				continue;
			if (global_irq_lock.lock)
				continue;
			if (!local_bh_count[cpu] &&
			    atomic_read(&global_bh_count))
				continue;
			if (spin_trylock(&global_irq_lock))
				break;
		}
	}
}

static inline void
get_irqlock(int cpu, void* where)
{
	if (!spin_trylock(&global_irq_lock)) {
		/* do we already hold the lock? */
		if (cpu == global_irq_holder) {
#if 0
			printk("get_irqlock: already held at %08lx\n",
			       previous_irqholder);
#endif
			return;
		}
		/* Uhhuh.. Somebody else got it. Wait.. */
		spin_lock(&global_irq_lock);
	}
	/*
	 * Ok, we got the lock bit.
	 * But that's actually just the easy part.. Now
	 * we need to make sure that nobody else is running
	 * in an interrupt context. 
	 */
	wait_on_irq(cpu, where);

	/*
	 * Finally.
	 */
#if DEBUG_SPINLOCK
	global_irq_lock.task = current;
	global_irq_lock.previous = where;
#endif
	global_irq_holder = cpu;
	previous_irqholder = where;
}

void
__global_cli(void)
{
	int cpu;
	void *where = __builtin_return_address(0);

	/*
	 * Maximize ipl.  If ipl was previously 0 and if this thread
	 * is not in an irq, then take global_irq_lock.
	 */
	if ((swpipl(7) == 0) && !local_irq_count[cpu = smp_processor_id()])
		get_irqlock(cpu, where);
}

void
__global_sti(void)
{
        int cpu = smp_processor_id();

        if (!local_irq_count[cpu]) {
		release_irqlock(cpu);
	}
	__sti();
}

/*
 * SMP flags value to restore to:
 * 0 - global cli
 * 1 - global sti
 * 2 - local cli
 * 3 - local sti
 */
unsigned long
__global_save_flags(void)
{
        int retval;
        int local_enabled;
        unsigned long flags;
	int cpu = smp_processor_id();

        __save_flags(flags);
        local_enabled = (!(flags & 7));
        /* default to local */
        retval = 2 + local_enabled;

        /* Check for global flags if we're not in an interrupt.  */
        if (!local_irq_count[cpu]) {
                if (local_enabled)
                        retval = 1;
                if (global_irq_holder == cpu)
                        retval = 0;
	}
	return retval;
}

void
__global_restore_flags(unsigned long flags)
{
        switch (flags) {
        case 0:
                __global_cli();
                break;
        case 1:
                __global_sti();
                break;
        case 2:
                __cli();
                break;
        case 3:
                __sti();
                break;
        default:
                printk("global_restore_flags: %08lx (%p)\n",
                        flags, __builtin_return_address(0));
        }
}

#undef INIT_STUCK
#define INIT_STUCK (1<<26)

#undef STUCK
#define STUCK							\
  if (!--stuck) {						\
    printk("irq_enter stuck (irq=%d, cpu=%d, global=%d)\n",	\
	   irq, cpu,global_irq_holder);				\
    stuck = INIT_STUCK;						\
  }

#undef VERBOSE_IRQLOCK_DEBUGGING

void
irq_enter(int cpu, int irq)
{
#ifdef VERBOSE_IRQLOCK_DEBUGGING
	extern void smp_show_backtrace_all_cpus(void);
#endif
	int stuck = INIT_STUCK;

	hardirq_enter(cpu, irq);
	barrier();
	while (global_irq_lock.lock) {
		if (cpu == global_irq_holder) {
			int globl_locked = global_irq_lock.lock;
			int globl_icount = atomic_read(&global_irq_count);
			int local_count = local_irq_count[cpu];

			/* It is very important that we load the state
			   variables before we do the first call to
			   printk() as printk() could end up changing
			   them...  */

			printk("CPU[%d]: where [%p] glocked[%d] gicnt[%d]"
			       " licnt[%d]\n",
			       cpu, previous_irqholder, globl_locked,
			       globl_icount, local_count);
#ifdef VERBOSE_IRQLOCK_DEBUGGING
			printk("Performing backtrace on all CPUs,"
			       " write this down!\n");
			smp_show_backtrace_all_cpus();
#endif
			break;
		}
		STUCK;
		barrier();
	}
}

void
irq_exit(int cpu, int irq)
{
	hardirq_exit(cpu, irq);
	release_irqlock(cpu);
}

static void
show(char * str, void *where)
{
#if 0
	int i;
        unsigned long *stack;
#endif
        int cpu = smp_processor_id();

	int global_count = atomic_read(&global_irq_count);
        int local_count0 = local_irq_count[0];
        int local_count1 = local_irq_count[1];
        long hardirq_no0 = hardirq_no[0];
        long hardirq_no1 = hardirq_no[1];

        printk("\n%s, CPU %d: %p\n", str, cpu, where);
        printk("irq:  %d [%d(0x%016lx) %d(0x%016lx)]\n", global_count,
               local_count0, hardirq_no0, local_count1, hardirq_no1);

        printk("bh:   %d [%d %d]\n",
	       atomic_read(&global_bh_count), local_bh_count[0],
	       local_bh_count[1]);
#if 0
        stack = (unsigned long *) &str;
        for (i = 40; i ; i--) {
		unsigned long x = *++stack;
                if (x > (unsigned long) &init_task_union &&
		    x < (unsigned long) &vsprintf) {
			printk("<[%08lx]> ", x);
                }
        }
#endif
}
        
static inline void
wait_on_bh(void)
{
	int count = MAXCOUNT;
        do {
		if (!--count) {
			show("wait_on_bh", 0);
                        count = ~0;
                }
                /* nothing .. wait for the other bh's to go away */
        } while (atomic_read(&global_bh_count) != 0);
}

/*
 * This is called when we want to synchronize with
 * bottom half handlers. We need to wait until
 * no other CPU is executing any bottom half handler.
 *
 * Don't wait if we're already running in an interrupt
 * context or are inside a bh handler.
 */
void
synchronize_bh(void)
{
	if (atomic_read(&global_bh_count)) {
		int cpu = smp_processor_id();
                if (!local_irq_count[cpu] && !local_bh_count[cpu]) {
			wait_on_bh();
		}
        }
}

/*
 * From its use, I infer that synchronize_irq() stalls a thread until
 * the effects of a command to an external device are known to have
 * taken hold.  Typically, the command is to stop sending interrupts.
 * The strategy here is wait until there is at most one processor
 * (this one) in an irq.  The memory barrier serializes the write to
 * the device and the subsequent accesses of global_irq_count.
 * --jmartin
 */
#define DEBUG_SYNCHRONIZE_IRQ 0

void
synchronize_irq(void)
{
	int cpu = smp_processor_id();
	int local_count;
	int global_count;
	int countdown = 1<<24;
	void *where = __builtin_return_address(0);

	mb();
	do {
		local_count = local_irq_count[cpu];
		global_count = atomic_read(&global_irq_count);
		if (DEBUG_SYNCHRONIZE_IRQ && (--countdown == 0)) {
			printk("%d:%d/%d\n", cpu, local_count, global_count);
			show("synchronize_irq", where);
			break;
		}
	} while (global_count != local_count);
}

#else /* !__SMP__ */

#define irq_enter(cpu, irq)	(++local_irq_count[cpu])
#define irq_exit(cpu, irq)	(--local_irq_count[cpu])

#endif /* __SMP__ */

static void
unexpected_irq(int irq, struct pt_regs * regs)
{
#if 0
#if 1
	printk("device_interrupt: unexpected interrupt %d\n", irq);
#else
	struct irqaction *action;
	int i;

	printk("IO device interrupt, irq = %d\n", irq);
	printk("PC = %016lx PS=%04lx\n", regs->pc, regs->ps);
	printk("Expecting: ");
	for (i = 0; i < ACTUAL_NR_IRQS; i++)
		if ((action = irq_action[i]))
			while (action->handler) {
				printk("[%s:%d] ", action->name, i);
				action = action->next;
			}
	printk("\n");
#endif
#endif

#if defined(CONFIG_ALPHA_JENSEN)
	/* ??? Is all this just debugging, or are the inb's and outb's
	   necessary to make things work?  */
	printk("64=%02x, 60=%02x, 3fa=%02x 2fa=%02x\n",
	       inb(0x64), inb(0x60), inb(0x3fa), inb(0x2fa));
	outb(0x0c, 0x3fc);
	outb(0x0c, 0x2fc);
	outb(0,0x61);
	outb(0,0x461);
#endif
}

void
handle_irq(int irq, int ack, struct pt_regs * regs)
{
	struct irqaction * action;
	int cpu = smp_processor_id();

	if ((unsigned) irq > ACTUAL_NR_IRQS) {
		printk("device_interrupt: illegal interrupt %d\n", irq);
		return;
	}

#if 0
	/* A useful bit of code to find out if an interrupt is going wild.  */
	{
	  static unsigned int last_msg, last_cc;
	  static int last_irq, count;
	  unsigned int cc;

	  __asm __volatile("rpcc %0" : "=r"(cc));
	  ++count;
	  if (cc - last_msg > 150000000 || irq != last_irq) {
		printk("handle_irq: irq %d count %d cc %u @ %p\n",
		       irq, count, cc-last_cc, regs->pc);
		count = 0;
		last_msg = cc;
		last_irq = irq;
	  }
	  last_cc = cc;
	}
#endif

	irq_enter(cpu, irq);
	kstat.irqs[cpu][irq] += 1;
	action = irq_action[irq];

	/*
	 * For normal interrupts, we mask it out, and then ACK it.
	 * This way another (more timing-critical) interrupt can
	 * come through while we're doing this one.
	 *
	 * Note! An irq without a handler gets masked and acked, but
	 * never unmasked. The autoirq stuff depends on this (it looks
	 * at the masks before and after doing the probing).
	 */
	if (ack >= 0) {
		mask_irq(ack);
		alpha_mv.ack_irq(ack);
	}
	if (action) {
		if (action->flags & SA_SAMPLE_RANDOM)
			add_interrupt_randomness(irq);
		do {
			action->handler(irq, action->dev_id, regs);
			action = action->next;
		} while (action);
		if (ack >= 0)
			unmask_irq(ack);
	} else {
		unexpected_irq(irq, regs);
	}
	irq_exit(cpu, irq);
}


/*
 * Start listening for interrupts..
 */

unsigned long
probe_irq_on(void)
{
	struct irqaction * action;
	unsigned long irqs = 0;
	unsigned long delay;
	unsigned int i;

	for (i = ACTUAL_NR_IRQS - 1; i > 0; i--) {
		if (!(PROBE_MASK & (1UL << i))) {
			continue;
		}
		action = irq_action[i];
		if (!action) {
			enable_irq(i);
			irqs |= (1UL << i);
		}
	}

	/*
	 * Wait about 100ms for spurious interrupts to mask themselves
	 * out again...
	 */
	for (delay = jiffies + HZ/10; delay > jiffies; )
		barrier();

	/* Now filter out any obviously spurious interrupts.  */
	return irqs & ~alpha_irq_mask;
}

/*
 * Get the result of the IRQ probe.. A negative result means that
 * we have several candidates (but we return the lowest-numbered
 * one).
 */

int
probe_irq_off(unsigned long irqs)
{
	int i;
	
        irqs &= alpha_irq_mask;
	if (!irqs)
		return 0;
	i = ffz(~irqs);
	if (irqs != (1UL << i))
		i = -i;
	return i;
}


/*
 * The main interrupt entry point.
 */

asmlinkage void 
do_entInt(unsigned long type, unsigned long vector, unsigned long la_ptr,
	  unsigned long a3, unsigned long a4, unsigned long a5,
	  struct pt_regs regs)
{
	unsigned long flags;

	switch (type) {
	case 0:
#ifdef __SMP__
		__save_and_cli(flags);
		handle_ipi(&regs);
		__restore_flags(flags);
		return;
#else
		printk("Interprocessor interrupt? You must be kidding\n");
#endif
		break;
	case 1:
		__save_and_cli(flags);
		handle_irq(RTC_IRQ, -1, &regs);
		__restore_flags(flags);
		return;
	case 2:
		alpha_mv.machine_check(vector, la_ptr, &regs);
		return;
	case 3:
		__save_and_cli(flags);
		alpha_mv.device_interrupt(vector, &regs);
		__restore_flags(flags);
		return;
	case 4:
		perf_irq(vector, &regs);
		return;
	default:
		printk("Hardware intr %ld %lx? Huh?\n", type, vector);
	}
	printk("PC = %016lx PS=%04lx\n", regs.pc, regs.ps);
}

void __init
init_IRQ(void)
{
	wrent(entInt, 0);
	alpha_mv.init_irq();
}