Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 | /* * linux/arch/m68k/mm/memory.c * * Copyright (C) 1995 Hamish Macdonald */ #include <linux/config.h> #include <linux/mm.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/types.h> #include <linux/malloc.h> #include <asm/setup.h> #include <asm/segment.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/system.h> #include <asm/traps.h> #ifdef CONFIG_AMIGA #include <asm/amigahw.h> #endif struct pgtable_cache_struct quicklists; void __bad_pte(pmd_t *pmd) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_set(pmd, BAD_PAGETABLE); } void __bad_pmd(pgd_t *pgd) { printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd)); pgd_set(pgd, (pmd_t *)BAD_PAGETABLE); } pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset) { pte_t *pte; pte = (pte_t *) __get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (pte) { clear_page((unsigned long)pte); flush_page_to_ram((unsigned long)pte); flush_tlb_kernel_page((unsigned long)pte); nocache_page((unsigned long)pte); pmd_set(pmd, pte); return pte + offset; } pmd_set(pmd, BAD_PAGETABLE); return NULL; } free_page((unsigned long)pte); if (pmd_bad(*pmd)) { __bad_pte(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + offset; } pmd_t *get_pmd_slow(pgd_t *pgd, unsigned long offset) { pmd_t *pmd; pmd = get_pointer_table(); if (pgd_none(*pgd)) { if (pmd) { pgd_set(pgd, pmd); return pmd + offset; } pgd_set(pgd, (pmd_t *)BAD_PAGETABLE); return NULL; } free_pointer_table(pmd); if (pgd_bad(*pgd)) { __bad_pmd(pgd); return NULL; } return (pmd_t *) pgd_page(*pgd) + offset; } /* ++andreas: {get,free}_pointer_table rewritten to use unused fields from struct page instead of separately kmalloced struct. Stolen from arch/sparc/mm/srmmu.c ... */ typedef struct page ptable_desc; static ptable_desc ptable_list = { &ptable_list, &ptable_list }; #define PD_MARKBITS(dp) (*(unsigned char *)&(dp)->offset) #define PD_PAGE(dp) (PAGE_OFFSET + ((dp)->map_nr << PAGE_SHIFT)) #define PAGE_PD(page) ((ptable_desc *)&mem_map[MAP_NR(page)]) #define PTABLE_SIZE (PTRS_PER_PMD * sizeof(pmd_t)) pmd_t *get_pointer_table (void) { ptable_desc *dp = ptable_list.next; unsigned char mask = PD_MARKBITS (dp); unsigned char tmp; unsigned int off; /* * For a pointer table for a user process address space, a * table is taken from a page allocated for the purpose. Each * page can hold 8 pointer tables. The page is remapped in * virtual address space to be noncacheable. */ if (mask == 0) { unsigned long page; ptable_desc *new; if (!(page = get_free_page (GFP_KERNEL))) return 0; flush_tlb_kernel_page(page); nocache_page (page); new = PAGE_PD(page); PD_MARKBITS(new) = 0xfe; (new->prev = dp->prev)->next = new; (new->next = dp)->prev = new; return (pmd_t *)page; } for (tmp = 1, off = 0; (mask & tmp) == 0; tmp <<= 1, off += PTABLE_SIZE); PD_MARKBITS(dp) = mask & ~tmp; if (!PD_MARKBITS(dp)) { ptable_desc *last, *next; /* move to end of list */ next = dp->next; (next->prev = dp->prev)->next = next; last = ptable_list.prev; (dp->next = last->next)->prev = dp; (dp->prev = last)->next = dp; } return (pmd_t *) (PD_PAGE(dp) + off); } int free_pointer_table (pmd_t *ptable) { ptable_desc *dp, *first; unsigned long page = (unsigned long)ptable & PAGE_MASK; unsigned char mask = 1 << (((unsigned long)ptable - page)/PTABLE_SIZE); dp = PAGE_PD(page); if (PD_MARKBITS (dp) & mask) panic ("table already free!"); PD_MARKBITS (dp) |= mask; if (PD_MARKBITS(dp) == 0xff) { /* all tables in page are free, free page */ ptable_desc *next = dp->next; (next->prev = dp->prev)->next = next; cache_page (page); free_page (page); return 1; } else if ((first = ptable_list.next) != dp) { /* * move this descriptor to the front of the list, since * it has one or more free tables. */ ptable_desc *next = dp->next; (next->prev = dp->prev)->next = next; (dp->prev = first->prev)->next = dp; (dp->next = first)->prev = dp; } return 0; } /* maximum pages used for kpointer tables */ #define KPTR_PAGES 4 /* # of reserved slots */ #define RESERVED_KPTR 4 extern pmd_tablepage kernel_pmd_table; /* reserved in head.S */ static struct kpointer_pages { pmd_tablepage *page[KPTR_PAGES]; u_char alloced[KPTR_PAGES]; } kptr_pages; void init_kpointer_table(void) { short i = KPTR_PAGES-1; /* first page is reserved in head.S */ kptr_pages.page[i] = &kernel_pmd_table; kptr_pages.alloced[i] = ~(0xff>>RESERVED_KPTR); for (i--; i>=0; i--) { kptr_pages.page[i] = NULL; kptr_pages.alloced[i] = 0; } } pmd_t *get_kpointer_table (void) { /* For pointer tables for the kernel virtual address space, * use the page that is reserved in head.S that can hold up to * 8 pointer tables. 3 of these tables are always reserved * (kernel_pg_dir, swapper_pg_dir and kernel pointer table for * the first 16 MB of RAM). In addition, the 4th pointer table * in this page is reserved. On Amiga and Atari, it is used to * map in the hardware registers. It may be used for other * purposes on other 68k machines. This leaves 4 pointer tables * available for use by the kernel. 1 of them are usually used * for the vmalloc tables. This allows mapping of 3 * 32 = 96 MB * of physical memory. But these pointer tables are also used * for other purposes, like kernel_map(), so further pages can * now be allocated. */ pmd_tablepage *page; pmd_table *table; long nr, offset = -8; short i; for (i=KPTR_PAGES-1; i>=0; i--) { asm volatile("bfffo %1{%2,#8},%0" : "=d" (nr) : "d" ((u_char)~kptr_pages.alloced[i]), "d" (offset)); if (nr) break; } if (i < 0) { printk("No space for kernel pointer table!\n"); return NULL; } if (!(page = kptr_pages.page[i])) { if (!(page = (pmd_tablepage *)get_free_page(GFP_KERNEL))) { printk("No space for kernel pointer table!\n"); return NULL; } flush_tlb_kernel_page((unsigned long) page); nocache_page((u_long)(kptr_pages.page[i] = page)); } asm volatile("bfset %0@{%1,#1}" : /* no output */ : "a" (&kptr_pages.alloced[i]), "d" (nr-offset)); table = &(*page)[nr-offset]; memset(table, 0, sizeof(pmd_table)); return ((pmd_t *)table); } void free_kpointer_table (pmd_t *pmdp) { pmd_table *table = (pmd_table *)pmdp; pmd_tablepage *page = (pmd_tablepage *)((u_long)table & PAGE_MASK); long nr; short i; for (i=KPTR_PAGES-1; i>=0; i--) { if (kptr_pages.page[i] == page) break; } nr = ((u_long)table - (u_long)page) / sizeof(pmd_table); if (!table || i < 0 || (i == KPTR_PAGES-1 && nr < RESERVED_KPTR)) { printk("Attempt to free invalid kernel pointer table: %p\n", table); return; } asm volatile("bfclr %0@{%1,#1}" : /* no output */ : "a" (&kptr_pages.alloced[i]), "d" (nr)); if (!kptr_pages.alloced[i]) { kptr_pages.page[i] = 0; cache_page ((u_long)page); free_page ((u_long)page); } } static unsigned long transp_transl_matches( unsigned long regval, unsigned long vaddr ) { unsigned long base, mask; /* enabled? */ if (!(regval & 0x8000)) return( 0 ); if (CPU_IS_030) { /* function code match? */ base = (regval >> 4) & 7; mask = ~(regval & 7); if ((SUPER_DATA & mask) != (base & mask)) return( 0 ); } else { /* must not be user-only */ if ((regval & 0x6000) == 0) return( 0 ); } /* address match? */ base = regval & 0xff000000; mask = ~((regval << 8) & 0xff000000); return( (vaddr & mask) == (base & mask) ); } static unsigned long mm_vtop_fallback (unsigned long); /* * The following two routines map from a physical address to a kernel * virtual address and vice versa. */ unsigned long mm_vtop (unsigned long vaddr) { int i=0; unsigned long voff = vaddr; unsigned long offset = 0; do{ if (voff < offset + m68k_memory[i].size) { #ifdef DEBUGPV printk ("VTOP(%lx)=%lx\n", vaddr, m68k_memory[i].addr + voff - offset); #endif return m68k_memory[i].addr + voff - offset; } else offset += m68k_memory[i].size; i++; }while (i < m68k_num_memory); return mm_vtop_fallback(vaddr); } /* Separate function to make the common case faster (needs to save less registers) */ static unsigned long mm_vtop_fallback (unsigned long vaddr) { /* not in one of the memory chunks; test for applying transparent * translation */ if (CPU_IS_030) { unsigned long ttreg; asm volatile( ".chip 68030\n\t" "pmove %/tt0,%0@\n\t" ".chip 68k" : : "a" (&ttreg) ); if (transp_transl_matches( ttreg, vaddr )) return vaddr; asm volatile( ".chip 68030\n\t" "pmove %/tt1,%0@\n\t" ".chip 68k" : : "a" (&ttreg) ); if (transp_transl_matches( ttreg, vaddr )) return vaddr; } else if (CPU_IS_040_OR_060) { unsigned long ttreg; asm volatile( ".chip 68040\n\t" "movec %%dtt0,%0\n\t" ".chip 68k" : "=d" (ttreg) ); if (transp_transl_matches( ttreg, vaddr )) return vaddr; asm volatile( ".chip 68040\n\t" "movec %%dtt1,%0\n\t" ".chip 68k" : "=d" (ttreg) ); if (transp_transl_matches( ttreg, vaddr )) return vaddr; } /* no match, too, so get the actual physical address from the MMU. */ if (CPU_IS_060) { mm_segment_t fs = get_fs(); unsigned long paddr; set_fs (MAKE_MM_SEG(SUPER_DATA)); /* The PLPAR instruction causes an access error if the translation * is not possible. We don't catch that here, so a bad kernel trap * will be reported in this case. */ asm volatile (".chip 68060\n\t" "plpar (%0)\n\t" ".chip 68k" : "=a" (paddr) : "0" (vaddr)); set_fs (fs); return paddr; } else if (CPU_IS_040) { unsigned long mmusr; mm_segment_t fs = get_fs(); set_fs (MAKE_MM_SEG(SUPER_DATA)); asm volatile (".chip 68040\n\t" "ptestr (%1)\n\t" "movec %%mmusr, %0\n\t" ".chip 68k" : "=r" (mmusr) : "a" (vaddr)); set_fs (fs); if (mmusr & MMU_T_040) { return (vaddr); /* Transparent translation */ } if (mmusr & MMU_R_040) return (mmusr & PAGE_MASK) | (vaddr & (PAGE_SIZE-1)); panic ("VTOP040: bad virtual address %08lx (%lx)", vaddr, mmusr); } else { volatile unsigned short temp; unsigned short mmusr; unsigned long *descaddr; asm volatile ("ptestr #5,%2@,#7,%0\n\t" "pmove %/psr,%1@" : "=a&" (descaddr) : "a" (&temp), "a" (vaddr)); mmusr = temp; if (mmusr & (MMU_I|MMU_B|MMU_L)) panic ("VTOP030: bad virtual address %08lx (%x)", vaddr, mmusr); descaddr = (unsigned long *)PTOV(descaddr); switch (mmusr & MMU_NUM) { case 1: return (*descaddr & 0xfe000000) | (vaddr & 0x01ffffff); case 2: return (*descaddr & 0xfffc0000) | (vaddr & 0x0003ffff); case 3: return (*descaddr & PAGE_MASK) | (vaddr & (PAGE_SIZE-1)); default: panic ("VTOP: bad levels (%u) for virtual address %08lx", mmusr & MMU_NUM, vaddr); } } panic ("VTOP: bad virtual address %08lx", vaddr); } unsigned long mm_ptov (unsigned long paddr) { int i = 0; unsigned long offset = 0; do{ if (paddr >= m68k_memory[i].addr && paddr < (m68k_memory[i].addr + m68k_memory[i].size)) { #ifdef DEBUGPV printk ("PTOV(%lx)=%lx\n", paddr, (paddr - m68k_memory[i].addr) + offset); #endif return (paddr - m68k_memory[i].addr) + offset; } else offset += m68k_memory[i].size; i++; }while (i < m68k_num_memory); /* * assume that the kernel virtual address is the same as the * physical address. * * This should be reasonable in most situations: * 1) They shouldn't be dereferencing the virtual address * unless they are sure that it is valid from kernel space. * 2) The only usage I see so far is converting a page table * reference to some non-FASTMEM address space when freeing * mmaped "/dev/mem" pages. These addresses are just passed * to "free_page", which ignores addresses that aren't in * the memory list anyway. * */ #ifdef CONFIG_AMIGA /* * if on an amiga and address is in first 16M, move it * to the ZTWO_VADDR range */ if (MACH_IS_AMIGA && paddr < 16*1024*1024) return ZTWO_VADDR(paddr); #endif return paddr; } /* invalidate page in both caches */ #define clear040(paddr) \ __asm__ __volatile__ ("nop\n\t" \ ".chip 68040\n\t" \ "cinvp %%bc,(%0)\n\t" \ ".chip 68k" \ : : "a" (paddr)) /* invalidate page in i-cache */ #define cleari040(paddr) \ __asm__ __volatile__ ("nop\n\t" \ ".chip 68040\n\t" \ "cinvp %%ic,(%0)\n\t" \ ".chip 68k" \ : : "a" (paddr)) /* push page in both caches */ #define push040(paddr) \ __asm__ __volatile__ ("nop\n\t" \ ".chip 68040\n\t" \ "cpushp %%bc,(%0)\n\t" \ ".chip 68k" \ : : "a" (paddr)) /* push and invalidate page in both caches */ #define pushcl040(paddr) \ do { push040(paddr); \ if (CPU_IS_060) clear040(paddr); \ } while(0) /* push page in both caches, invalidate in i-cache */ #define pushcli040(paddr) \ do { push040(paddr); \ if (CPU_IS_060) cleari040(paddr); \ } while(0) /* * 040: Hit every page containing an address in the range paddr..paddr+len-1. * (Low order bits of the ea of a CINVP/CPUSHP are "don't care"s). * Hit every page until there is a page or less to go. Hit the next page, * and the one after that if the range hits it. */ /* ++roman: A little bit more care is required here: The CINVP instruction * invalidates cache entries WITHOUT WRITING DIRTY DATA BACK! So the beginning * and the end of the region must be treated differently if they are not * exactly at the beginning or end of a page boundary. Else, maybe too much * data becomes invalidated and thus lost forever. CPUSHP does what we need: * it invalidates the page after pushing dirty data to memory. (Thanks to Jes * for discovering the problem!) */ /* ... but on the '060, CPUSH doesn't invalidate (for us, since we have set * the DPI bit in the CACR; would it cause problems with temporarily changing * this?). So we have to push first and then additionally to invalidate. */ /* * cache_clear() semantics: Clear any cache entries for the area in question, * without writing back dirty entries first. This is useful if the data will * be overwritten anyway, e.g. by DMA to memory. The range is defined by a * _physical_ address. */ void cache_clear (unsigned long paddr, int len) { if (CPU_IS_040_OR_060) { int tmp; /* * We need special treatment for the first page, in case it * is not page-aligned. Page align the addresses to work * around bug I17 in the 68060. */ if ((tmp = -paddr & (PAGE_SIZE - 1))) { pushcl040(paddr & PAGE_MASK); if ((len -= tmp) <= 0) return; paddr += tmp; } tmp = PAGE_SIZE; paddr &= PAGE_MASK; while ((len -= tmp) >= 0) { clear040(paddr); paddr += tmp; } if ((len += tmp)) /* a page boundary gets crossed at the end */ pushcl040(paddr); } else /* 68030 or 68020 */ asm volatile ("movec %/cacr,%/d0\n\t" "oriw %0,%/d0\n\t" "movec %/d0,%/cacr" : : "i" (FLUSH_I_AND_D) : "d0"); } /* * cache_push() semantics: Write back any dirty cache data in the given area, * and invalidate the range in the instruction cache. It needs not (but may) * invalidate those entries also in the data cache. The range is defined by a * _physical_ address. */ void cache_push (unsigned long paddr, int len) { if (CPU_IS_040_OR_060) { int tmp = PAGE_SIZE; /* * on 68040 or 68060, push cache lines for pages in the range; * on the '040 this also invalidates the pushed lines, but not on * the '060! */ len += paddr & (PAGE_SIZE - 1); /* * Work around bug I17 in the 68060 affecting some instruction * lines not being invalidated properly. */ paddr &= PAGE_MASK; do { pushcli040(paddr); paddr += tmp; } while ((len -= tmp) > 0); } /* * 68030/68020 have no writeback cache. On the other hand, * cache_push is actually a superset of cache_clear (the lines * get written back and invalidated), so we should make sure * to perform the corresponding actions. After all, this is getting * called in places where we've just loaded code, or whatever, so * flushing the icache is appropriate; flushing the dcache shouldn't * be required. */ else /* 68030 or 68020 */ asm volatile ("movec %/cacr,%/d0\n\t" "oriw %0,%/d0\n\t" "movec %/d0,%/cacr" : : "i" (FLUSH_I) : "d0"); } #undef clear040 #undef cleari040 #undef push040 #undef pushcl040 #undef pushcli040 int mm_end_of_chunk (unsigned long addr, int len) { int i; for (i = 0; i < m68k_num_memory; i++) if (m68k_memory[i].addr + m68k_memory[i].size == addr + len) return 1; return 0; } |