Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
/*
 *  linux/arch/m68k/mm/memory.c
 *
 *  Copyright (C) 1995  Hamish Macdonald
 */

#include <linux/config.h>
#include <linux/mm.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/malloc.h>

#include <asm/setup.h>
#include <asm/segment.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/traps.h>
#ifdef CONFIG_AMIGA
#include <asm/amigahw.h>
#endif

struct pgtable_cache_struct quicklists;

void __bad_pte(pmd_t *pmd)
{
	printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd));
	pmd_set(pmd, BAD_PAGETABLE);
}

void __bad_pmd(pgd_t *pgd)
{
	printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd));
	pgd_set(pgd, (pmd_t *)BAD_PAGETABLE);
}

pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset)
{
	pte_t *pte;

	pte = (pte_t *) __get_free_page(GFP_KERNEL);
	if (pmd_none(*pmd)) {
		if (pte) {
			clear_page((unsigned long)pte);
			flush_page_to_ram((unsigned long)pte);
			flush_tlb_kernel_page((unsigned long)pte);
			nocache_page((unsigned long)pte);
			pmd_set(pmd, pte);
			return pte + offset;
		}
		pmd_set(pmd, BAD_PAGETABLE);
		return NULL;
	}
	free_page((unsigned long)pte);
	if (pmd_bad(*pmd)) {
		__bad_pte(pmd);
		return NULL;
	}
	return (pte_t *) pmd_page(*pmd) + offset;
}

pmd_t *get_pmd_slow(pgd_t *pgd, unsigned long offset)
{
	pmd_t *pmd;

	pmd = get_pointer_table();
	if (pgd_none(*pgd)) {
		if (pmd) {
			pgd_set(pgd, pmd);
			return pmd + offset;
		}
		pgd_set(pgd, (pmd_t *)BAD_PAGETABLE);
		return NULL;
	}
	free_pointer_table(pmd);
	if (pgd_bad(*pgd)) {
		__bad_pmd(pgd);
		return NULL;
	}
	return (pmd_t *) pgd_page(*pgd) + offset;
}


/* ++andreas: {get,free}_pointer_table rewritten to use unused fields from
   struct page instead of separately kmalloced struct.  Stolen from
   arch/sparc/mm/srmmu.c ... */

typedef struct page ptable_desc;
static ptable_desc ptable_list = { &ptable_list, &ptable_list };

#define PD_MARKBITS(dp) (*(unsigned char *)&(dp)->offset)
#define PD_PAGE(dp) (PAGE_OFFSET + ((dp)->map_nr << PAGE_SHIFT))
#define PAGE_PD(page) ((ptable_desc *)&mem_map[MAP_NR(page)])

#define PTABLE_SIZE (PTRS_PER_PMD * sizeof(pmd_t))

pmd_t *get_pointer_table (void)
{
	ptable_desc *dp = ptable_list.next;
	unsigned char mask = PD_MARKBITS (dp);
	unsigned char tmp;
	unsigned int off;

	/*
	 * For a pointer table for a user process address space, a
	 * table is taken from a page allocated for the purpose.  Each
	 * page can hold 8 pointer tables.  The page is remapped in
	 * virtual address space to be noncacheable.
	 */
	if (mask == 0) {
		unsigned long page;
		ptable_desc *new;

		if (!(page = get_free_page (GFP_KERNEL)))
			return 0;

		flush_tlb_kernel_page(page);
		nocache_page (page);

		new = PAGE_PD(page);
		PD_MARKBITS(new) = 0xfe;
		(new->prev = dp->prev)->next = new;
		(new->next = dp)->prev = new;
		return (pmd_t *)page;
	}

	for (tmp = 1, off = 0; (mask & tmp) == 0; tmp <<= 1, off += PTABLE_SIZE);
	PD_MARKBITS(dp) = mask & ~tmp;
	if (!PD_MARKBITS(dp)) {
		ptable_desc *last, *next;

		/* move to end of list */
		next = dp->next;
		(next->prev = dp->prev)->next = next;

		last = ptable_list.prev;
		(dp->next = last->next)->prev = dp;
		(dp->prev = last)->next = dp;
	}
	return (pmd_t *) (PD_PAGE(dp) + off);
}

int free_pointer_table (pmd_t *ptable)
{
	ptable_desc *dp, *first;
	unsigned long page = (unsigned long)ptable & PAGE_MASK;
	unsigned char mask = 1 << (((unsigned long)ptable - page)/PTABLE_SIZE);

	dp = PAGE_PD(page);
	if (PD_MARKBITS (dp) & mask)
		panic ("table already free!");

	PD_MARKBITS (dp) |= mask;

	if (PD_MARKBITS(dp) == 0xff) {
		/* all tables in page are free, free page */
		ptable_desc *next = dp->next;
		(next->prev = dp->prev)->next = next;
		cache_page (page);
		free_page (page);
		return 1;
	} else if ((first = ptable_list.next) != dp) {
		/*
		 * move this descriptor to the front of the list, since
		 * it has one or more free tables.
		 */
		ptable_desc *next = dp->next;
		(next->prev = dp->prev)->next = next;

		(dp->prev = first->prev)->next = dp;
		(dp->next = first)->prev = dp;
	}
	return 0;
}

/* maximum pages used for kpointer tables */
#define KPTR_PAGES      4
/* # of reserved slots */
#define RESERVED_KPTR	4
extern pmd_tablepage kernel_pmd_table; /* reserved in head.S */

static struct kpointer_pages {
        pmd_tablepage *page[KPTR_PAGES];
        u_char alloced[KPTR_PAGES];
} kptr_pages;

void init_kpointer_table(void) {
	short i = KPTR_PAGES-1;

	/* first page is reserved in head.S */
	kptr_pages.page[i] = &kernel_pmd_table;
	kptr_pages.alloced[i] = ~(0xff>>RESERVED_KPTR);
	for (i--; i>=0; i--) {
		kptr_pages.page[i] = NULL;
		kptr_pages.alloced[i] = 0;
	}
}

pmd_t *get_kpointer_table (void)
{
	/* For pointer tables for the kernel virtual address space,
	 * use the page that is reserved in head.S that can hold up to
	 * 8 pointer tables. 3 of these tables are always reserved
	 * (kernel_pg_dir, swapper_pg_dir and kernel pointer table for
	 * the first 16 MB of RAM). In addition, the 4th pointer table
	 * in this page is reserved. On Amiga and Atari, it is used to
	 * map in the hardware registers. It may be used for other
	 * purposes on other 68k machines. This leaves 4 pointer tables
	 * available for use by the kernel. 1 of them are usually used
	 * for the vmalloc tables. This allows mapping of 3 * 32 = 96 MB
	 * of physical memory. But these pointer tables are also used
	 * for other purposes, like kernel_map(), so further pages can
	 * now be allocated.
	 */
	pmd_tablepage *page;
	pmd_table *table;
	long nr, offset = -8;
	short i;

	for (i=KPTR_PAGES-1; i>=0; i--) {
		asm volatile("bfffo %1{%2,#8},%0"
			: "=d" (nr)
			: "d" ((u_char)~kptr_pages.alloced[i]), "d" (offset));
		if (nr)
			break;
	}
	if (i < 0) {
		printk("No space for kernel pointer table!\n");
		return NULL;
	}
	if (!(page = kptr_pages.page[i])) {
		if (!(page = (pmd_tablepage *)get_free_page(GFP_KERNEL))) {
			printk("No space for kernel pointer table!\n");
			return NULL;
		}
		flush_tlb_kernel_page((unsigned long) page);
		nocache_page((u_long)(kptr_pages.page[i] = page));
	}
	asm volatile("bfset %0@{%1,#1}"
		: /* no output */
		: "a" (&kptr_pages.alloced[i]), "d" (nr-offset));
	table = &(*page)[nr-offset];
	memset(table, 0, sizeof(pmd_table));
	return ((pmd_t *)table);
}

void free_kpointer_table (pmd_t *pmdp)
{
	pmd_table *table = (pmd_table *)pmdp;
	pmd_tablepage *page = (pmd_tablepage *)((u_long)table & PAGE_MASK);
	long nr;
	short i;

	for (i=KPTR_PAGES-1; i>=0; i--) {
		if (kptr_pages.page[i] == page)
			break;
	}
	nr = ((u_long)table - (u_long)page) / sizeof(pmd_table);
	if (!table || i < 0 || (i == KPTR_PAGES-1 && nr < RESERVED_KPTR)) {
		printk("Attempt to free invalid kernel pointer table: %p\n", table);
		return;
	}
	asm volatile("bfclr %0@{%1,#1}"
		: /* no output */
		: "a" (&kptr_pages.alloced[i]), "d" (nr));
	if (!kptr_pages.alloced[i]) {
		kptr_pages.page[i] = 0;
		cache_page ((u_long)page);
		free_page ((u_long)page);
	}
}

static unsigned long transp_transl_matches( unsigned long regval,
					    unsigned long vaddr )
{
    unsigned long base, mask;

    /* enabled? */
    if (!(regval & 0x8000))
	return( 0 );

    if (CPU_IS_030) {
	/* function code match? */
	base = (regval >> 4) & 7;
	mask = ~(regval & 7);
	if ((SUPER_DATA & mask) != (base & mask))
	    return( 0 );
    }
    else {
	/* must not be user-only */
	if ((regval & 0x6000) == 0)
	    return( 0 );
    }

    /* address match? */
    base = regval & 0xff000000;
    mask = ~((regval << 8) & 0xff000000);
    return( (vaddr & mask) == (base & mask) );
}

static unsigned long mm_vtop_fallback (unsigned long);

/*
 * The following two routines map from a physical address to a kernel
 * virtual address and vice versa.
 */
unsigned long mm_vtop (unsigned long vaddr)
{
	int i=0;
	unsigned long voff = vaddr;
	unsigned long offset = 0;

	do{
		if (voff < offset + m68k_memory[i].size) {
#ifdef DEBUGPV
			printk ("VTOP(%lx)=%lx\n", vaddr,
				m68k_memory[i].addr + voff - offset);
#endif
			return m68k_memory[i].addr + voff - offset;
		} else
			offset += m68k_memory[i].size;
		i++;
	}while (i < m68k_num_memory);
	return mm_vtop_fallback(vaddr);
}

/* Separate function to make the common case faster (needs to save less
   registers) */
static unsigned long mm_vtop_fallback (unsigned long vaddr)
{
	/* not in one of the memory chunks; test for applying transparent
	 * translation */

	if (CPU_IS_030) {
	    unsigned long ttreg;
	    
	    asm volatile( ".chip 68030\n\t"
			  "pmove %/tt0,%0@\n\t"
			  ".chip 68k"
			  : : "a" (&ttreg) );
	    if (transp_transl_matches( ttreg, vaddr ))
		return vaddr;
	    asm volatile( ".chip 68030\n\t"
			  "pmove %/tt1,%0@\n\t"
			  ".chip 68k"
			  : : "a" (&ttreg) );
	    if (transp_transl_matches( ttreg, vaddr ))
		return vaddr;
	}
	else if (CPU_IS_040_OR_060) {
	    unsigned long ttreg;
	    
	    asm volatile( ".chip 68040\n\t"
			  "movec %%dtt0,%0\n\t"
			  ".chip 68k"
			  : "=d" (ttreg) );
	    if (transp_transl_matches( ttreg, vaddr ))
		return vaddr;
	    asm volatile( ".chip 68040\n\t"
			  "movec %%dtt1,%0\n\t"
			  ".chip 68k"
			  : "=d" (ttreg) );
	    if (transp_transl_matches( ttreg, vaddr ))
		return vaddr;
	}

	/* no match, too, so get the actual physical address from the MMU. */

	if (CPU_IS_060) {
	  mm_segment_t fs = get_fs();
	  unsigned long  paddr;

	  set_fs (MAKE_MM_SEG(SUPER_DATA));

	  /* The PLPAR instruction causes an access error if the translation
	   * is not possible. We don't catch that here, so a bad kernel trap
	   * will be reported in this case. */
	  asm volatile (".chip 68060\n\t"
			"plpar (%0)\n\t"
			".chip 68k"
			: "=a" (paddr)
			: "0" (vaddr));
	  set_fs (fs);

	  return paddr;

	} else if (CPU_IS_040) {
	  unsigned long mmusr;
	  mm_segment_t fs = get_fs();

	  set_fs (MAKE_MM_SEG(SUPER_DATA));

	  asm volatile (".chip 68040\n\t"
			"ptestr (%1)\n\t"
			"movec %%mmusr, %0\n\t"
			".chip 68k"
			: "=r" (mmusr)
			: "a" (vaddr));
	  set_fs (fs);

	  if (mmusr & MMU_T_040) {
	    return (vaddr);	/* Transparent translation */
	  }
	  if (mmusr & MMU_R_040)
	    return (mmusr & PAGE_MASK) | (vaddr & (PAGE_SIZE-1));

	  panic ("VTOP040: bad virtual address %08lx (%lx)", vaddr, mmusr);
	} else {
	  volatile unsigned short temp;
	  unsigned short mmusr;
	  unsigned long *descaddr;

	  asm volatile ("ptestr #5,%2@,#7,%0\n\t"
			"pmove %/psr,%1@"
			: "=a&" (descaddr)
			: "a" (&temp), "a" (vaddr));
	  mmusr = temp;

	  if (mmusr & (MMU_I|MMU_B|MMU_L))
	    panic ("VTOP030: bad virtual address %08lx (%x)", vaddr, mmusr);

	  descaddr = (unsigned long *)PTOV(descaddr);

	  switch (mmusr & MMU_NUM) {
	  case 1:
	    return (*descaddr & 0xfe000000) | (vaddr & 0x01ffffff);
	  case 2:
	    return (*descaddr & 0xfffc0000) | (vaddr & 0x0003ffff);
	  case 3:
	    return (*descaddr & PAGE_MASK) | (vaddr & (PAGE_SIZE-1));
	  default:
	    panic ("VTOP: bad levels (%u) for virtual address %08lx", 
		   mmusr & MMU_NUM, vaddr);
	  }
	}

	panic ("VTOP: bad virtual address %08lx", vaddr);
}

unsigned long mm_ptov (unsigned long paddr)
{
	int i = 0;
	unsigned long offset = 0;

	do{
		if (paddr >= m68k_memory[i].addr &&
		    paddr < (m68k_memory[i].addr
			     + m68k_memory[i].size)) {
#ifdef DEBUGPV
			printk ("PTOV(%lx)=%lx\n", paddr,
				(paddr - m68k_memory[i].addr) + offset);
#endif
			return (paddr - m68k_memory[i].addr) + offset;
		} else
			offset += m68k_memory[i].size;
		i++;
	}while (i < m68k_num_memory);

	/*
	 * assume that the kernel virtual address is the same as the
	 * physical address.
	 *
	 * This should be reasonable in most situations:
	 *  1) They shouldn't be dereferencing the virtual address
	 *     unless they are sure that it is valid from kernel space.
	 *  2) The only usage I see so far is converting a page table
	 *     reference to some non-FASTMEM address space when freeing
         *     mmaped "/dev/mem" pages.  These addresses are just passed
	 *     to "free_page", which ignores addresses that aren't in
	 *     the memory list anyway.
	 *
	 */

#ifdef CONFIG_AMIGA
	/*
	 * if on an amiga and address is in first 16M, move it 
	 * to the ZTWO_VADDR range
	 */
	if (MACH_IS_AMIGA && paddr < 16*1024*1024)
		return ZTWO_VADDR(paddr);
#endif
	return paddr;
}

/* invalidate page in both caches */
#define	clear040(paddr)					\
	__asm__ __volatile__ ("nop\n\t"			\
			      ".chip 68040\n\t"		\
			      "cinvp %%bc,(%0)\n\t"	\
			      ".chip 68k"		\
			      : : "a" (paddr))

/* invalidate page in i-cache */
#define	cleari040(paddr)				\
	__asm__ __volatile__ ("nop\n\t"			\
			      ".chip 68040\n\t"		\
			      "cinvp %%ic,(%0)\n\t"	\
			      ".chip 68k"		\
			      : : "a" (paddr))

/* push page in both caches */
#define	push040(paddr)					\
	__asm__ __volatile__ ("nop\n\t"			\
			      ".chip 68040\n\t"		\
			      "cpushp %%bc,(%0)\n\t"	\
			      ".chip 68k"		\
			      : : "a" (paddr))

/* push and invalidate page in both caches */
#define	pushcl040(paddr)			\
	do { push040(paddr);			\
	     if (CPU_IS_060) clear040(paddr);	\
	} while(0)

/* push page in both caches, invalidate in i-cache */
#define	pushcli040(paddr)			\
	do { push040(paddr);			\
	     if (CPU_IS_060) cleari040(paddr);	\
	} while(0)


/*
 * 040: Hit every page containing an address in the range paddr..paddr+len-1.
 * (Low order bits of the ea of a CINVP/CPUSHP are "don't care"s).
 * Hit every page until there is a page or less to go. Hit the next page,
 * and the one after that if the range hits it.
 */
/* ++roman: A little bit more care is required here: The CINVP instruction
 * invalidates cache entries WITHOUT WRITING DIRTY DATA BACK! So the beginning
 * and the end of the region must be treated differently if they are not
 * exactly at the beginning or end of a page boundary. Else, maybe too much
 * data becomes invalidated and thus lost forever. CPUSHP does what we need:
 * it invalidates the page after pushing dirty data to memory. (Thanks to Jes
 * for discovering the problem!)
 */
/* ... but on the '060, CPUSH doesn't invalidate (for us, since we have set
 * the DPI bit in the CACR; would it cause problems with temporarily changing
 * this?). So we have to push first and then additionally to invalidate.
 */

/*
 * cache_clear() semantics: Clear any cache entries for the area in question,
 * without writing back dirty entries first. This is useful if the data will
 * be overwritten anyway, e.g. by DMA to memory. The range is defined by a
 * _physical_ address.
 */

void cache_clear (unsigned long paddr, int len)
{
    if (CPU_IS_040_OR_060) {
	int tmp;

	/*
	 * We need special treatment for the first page, in case it
	 * is not page-aligned. Page align the addresses to work
	 * around bug I17 in the 68060.
	 */
	if ((tmp = -paddr & (PAGE_SIZE - 1))) {
	    pushcl040(paddr & PAGE_MASK);
	    if ((len -= tmp) <= 0)
		return;
	    paddr += tmp;
	}
	tmp = PAGE_SIZE;
	paddr &= PAGE_MASK;
	while ((len -= tmp) >= 0) {
	    clear040(paddr);
	    paddr += tmp;
	}
	if ((len += tmp))
	    /* a page boundary gets crossed at the end */
	    pushcl040(paddr);
    }
    else /* 68030 or 68020 */
	asm volatile ("movec %/cacr,%/d0\n\t"
		      "oriw %0,%/d0\n\t"
		      "movec %/d0,%/cacr"
		      : : "i" (FLUSH_I_AND_D)
		      : "d0");
}


/*
 * cache_push() semantics: Write back any dirty cache data in the given area,
 * and invalidate the range in the instruction cache. It needs not (but may)
 * invalidate those entries also in the data cache. The range is defined by a
 * _physical_ address.
 */

void cache_push (unsigned long paddr, int len)
{
    if (CPU_IS_040_OR_060) {
	int tmp = PAGE_SIZE;

	/*
         * on 68040 or 68060, push cache lines for pages in the range;
	 * on the '040 this also invalidates the pushed lines, but not on
	 * the '060!
	 */
	len += paddr & (PAGE_SIZE - 1);

	/*
	 * Work around bug I17 in the 68060 affecting some instruction
	 * lines not being invalidated properly.
	 */
	paddr &= PAGE_MASK;

	do {
	    pushcli040(paddr);
	    paddr += tmp;
	} while ((len -= tmp) > 0);
    }
    /*
     * 68030/68020 have no writeback cache. On the other hand,
     * cache_push is actually a superset of cache_clear (the lines
     * get written back and invalidated), so we should make sure
     * to perform the corresponding actions. After all, this is getting
     * called in places where we've just loaded code, or whatever, so
     * flushing the icache is appropriate; flushing the dcache shouldn't
     * be required.
     */
    else /* 68030 or 68020 */
	asm volatile ("movec %/cacr,%/d0\n\t"
		      "oriw %0,%/d0\n\t"
		      "movec %/d0,%/cacr"
		      : : "i" (FLUSH_I)
		      : "d0");
}


#undef clear040
#undef cleari040
#undef push040
#undef pushcl040
#undef pushcli040

int mm_end_of_chunk (unsigned long addr, int len)
{
	int i;

	for (i = 0; i < m68k_num_memory; i++)
		if (m68k_memory[i].addr + m68k_memory[i].size == addr + len)
			return 1;
	return 0;
}