Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
/*
 * Ethernet driver for Motorola MPC8xx.
 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
 *
 * I copied the basic skeleton from the lance driver, because I did not
 * know how to write the Linux driver, but I did know how the LANCE worked.
 * This version of the driver is specific to the MBX implementation,
 * since the board contains control registers external to the processor
 * for the control of the MC68160 SIA/transceiver.  The MPC860 manual
 * describes connections using the internal parallel port I/O.
 *
 * The MBX860 uses the CPM SCC1 serial port for the Ethernet interface.
 * Buffer descriptors are kept in the CPM dual port RAM, and the frame
 * buffers are in the host memory.
 *
 * Right now, I am very watseful with the buffers.  I allocate memory
 * pages and then divide them into 2K frame buffers.  This way I know I
 * have buffers large enough to hold one frame within one buffer descriptor.
 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
 * will be much more memory efficient and will easily handle lots of
 * small packets.
 *
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/malloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>

#include <asm/8xx_immap.h>
#include <asm/pgtable.h>
#include <asm/mbx.h>
#include <asm/bitops.h>
#include <asm/uaccess.h>
#include "commproc.h"

/*
 *				Theory of Operation
 *
 * The MPC8xx CPM performs the Ethernet processing on SCC1.  It can use
 * an aribtrary number of buffers on byte boundaries, but must have at
 * least two receive buffers to prevent constand overrun conditions.
 *
 * The buffer descriptors are allocated from the CPM dual port memory
 * with the data buffers allocated from host memory, just like all other
 * serial communication protocols.  The host memory buffers are allocated
 * from the free page pool, and then divided into smaller receive and
 * transmit buffers.  The size of the buffers should be a power of two,
 * since that nicely divides the page.  This creates a ring buffer
 * structure similar to the LANCE and other controllers.
 *
 * Like the LANCE driver:
 * The driver runs as two independent, single-threaded flows of control.  One
 * is the send-packet routine, which enforces single-threaded use by the
 * dev->tbusy flag.  The other thread is the interrupt handler, which is single
 * threaded by the hardware and other software.
 *
 * The send packet thread has partial control over the Tx ring and 'dev->tbusy'
 * flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
 * queue slot is empty, it clears the tbusy flag when finished otherwise it sets
 * the 'lp->tx_full' flag.
 *
 * The MBX has a control register external to the MPC8xx that has some
 * control of the Ethernet interface.  Control Register 1 has the
 * following format:
 *	bit 0 - Set to enable Ethernet transceiver
 *	bit 1 - Set to enable Ethernet internal loopback
 *	bit 2 - Set to auto select AUI or TP port
 *	bit 3 - if bit 2 is 0, set to select TP port
 *	bit 4 - Set to disable full duplex (loopback)
 *	bit 5 - Set to disable XCVR collision test
 *	bit 6, 7 - Used for RS-232 control.
 *
 * EPPC-Bug sets this register to 0x98 for normal Ethernet operation,
 * so we should not have to touch it.
 *
 * The following I/O is used by the MBX implementation of the MPC8xx to
 * the MC68160 transceiver.  It DOES NOT exactly follow the cookbook
 * example from the MPC860 manual.
 *	Port A, 15 - SCC1 Ethernet Rx
 *	Port A, 14 - SCC1 Ethernet Tx
 *	Port A, 6 (CLK2) - SCC1 Ethernet Tx Clk
 *	Port A, 4 (CLK4) - SCC1 Ethernet Rx Clk
 *	Port C, 15 - SCC1 Ethernet Tx Enable
 *	Port C, 11 - SCC1 Ethernet Collision
 *	Port C, 10 - SCC1 Ethernet Rx Enable
 */

/* The number of Tx and Rx buffers.  These are allocated from the page
 * pool.  The code may assume these are power of two, so it it best
 * to keep them that size.
 * We don't need to allocate pages for the transmitter.  We just use
 * the skbuffer directly.
 */
#define CPM_ENET_RX_PAGES	4
#define CPM_ENET_RX_FRSIZE	2048
#define CPM_ENET_RX_FRPPG	(PAGE_SIZE / CPM_ENET_RX_FRSIZE)
#define RX_RING_SIZE		(CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES)
#define TX_RING_SIZE		8	/* Must be power of two */
#define TX_RING_MOD_MASK	7	/*   for this to work */

/* The CPM stores dest/src/type, data, and checksum for receive packets.
 */
#define PKT_MAXBUF_SIZE		1518
#define PKT_MINBUF_SIZE		64
#define PKT_MAXBLR_SIZE		1520

/* The CPM buffer descriptors track the ring buffers.  The rx_bd_base and
 * tx_bd_base always point to the base of the buffer descriptors.  The
 * cur_rx and cur_tx point to the currently available buffer.
 * The dirty_tx tracks the current buffer that is being sent by the
 * controller.  The cur_tx and dirty_tx are equal under both completely
 * empty and completely full conditions.  The empty/ready indicator in
 * the buffer descriptor determines the actual condition.
 */
struct cpm_enet_private {
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	struct	sk_buff* tx_skbuff[TX_RING_SIZE];
	ushort	skb_cur;
	ushort	skb_dirty;

	/* CPM dual port RAM relative addresses.
	*/
	cbd_t	*rx_bd_base;		/* Address of Rx and Tx buffers. */
	cbd_t	*tx_bd_base;
	cbd_t	*cur_rx, *cur_tx;		/* The next free ring entry */
	cbd_t	*dirty_tx;	/* The ring entries to be free()ed. */
	scc_t	*sccp;
	struct	net_device_stats stats;
	char	tx_full;
	unsigned long lock;
};

static int cpm_enet_open(struct device *dev);
static int cpm_enet_start_xmit(struct sk_buff *skb, struct device *dev);
static int cpm_enet_rx(struct device *dev);
static void cpm_enet_interrupt(void *dev_id);
static int cpm_enet_close(struct device *dev);
static struct net_device_stats *cpm_enet_get_stats(struct device *dev);
static void set_multicast_list(struct device *dev);

/* GET THIS FROM THE VPD!!!!
*/
/*static	ushort	my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };*/

static int
cpm_enet_open(struct device *dev)
{

	/* I should reset the ring buffers here, but I don't yet know
	 * a simple way to do that.
	 */

	dev->tbusy = 0;
	dev->interrupt = 0;
	dev->start = 1;

	return 0;					/* Always succeed */
}

static int
cpm_enet_start_xmit(struct sk_buff *skb, struct device *dev)
{
	struct cpm_enet_private *cep = (struct cpm_enet_private *)dev->priv;
	volatile cbd_t	*bdp;
	unsigned long flags;

	/* Transmitter timeout, serious problems. */
	if (dev->tbusy) {
		int tickssofar = jiffies - dev->trans_start;
		if (tickssofar < 20)
			return 1;
		printk("%s: transmit timed out.\n", dev->name);
		cep->stats.tx_errors++;
#ifndef final_version
		{
			int	i;
			cbd_t	*bdp;
			printk(" Ring data dump: cur_tx %x%s cur_rx %x.\n",
				   cep->cur_tx, cep->tx_full ? " (full)" : "",
				   cep->cur_rx);
			bdp = cep->tx_bd_base;
			for (i = 0 ; i < TX_RING_SIZE; i++)
				printk("%04x %04x %08x\n",
					bdp->cbd_sc,
					bdp->cbd_datlen,
					bdp->cbd_bufaddr);
			bdp = cep->rx_bd_base;
			for (i = 0 ; i < RX_RING_SIZE; i++)
				printk("%04x %04x %08x\n",
					bdp->cbd_sc,
					bdp->cbd_datlen,
					bdp->cbd_bufaddr);
		}
#endif

		dev->tbusy=0;
		dev->trans_start = jiffies;

		return 0;
	}

	/* Block a timer-based transmit from overlapping.  This could better be
	   done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */
	if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) {
		printk("%s: Transmitter access conflict.\n", dev->name);
		return 1;
	}

	if (test_and_set_bit(0, (void*)&cep->lock) != 0) {
		printk("%s: tx queue lock!.\n", dev->name);
		/* don't clear dev->tbusy flag. */
		return 1;
	}

	/* Fill in a Tx ring entry */
	bdp = cep->cur_tx;

#ifndef final_version
	if (bdp->cbd_sc & BD_ENET_TX_READY) {
		/* Ooops.  All transmit buffers are full.  Bail out.
		 * This should not happen, since dev->tbusy should be set.
		 */
		printk("%s: tx queue full!.\n", dev->name);
		cep->lock = 0;
		return 1;
	}
#endif

	/* Clear all of the status flags.
	 */
	bdp->cbd_sc &= ~BD_ENET_TX_STATS;

	/* If the frame is short, tell CPM to pad it.
	*/
	if (skb->len <= ETH_ZLEN)
		bdp->cbd_sc |= BD_ENET_TX_PAD;
	else
		bdp->cbd_sc &= ~BD_ENET_TX_PAD;

	/* Set buffer length and buffer pointer.
	*/
	bdp->cbd_datlen = skb->len;
	bdp->cbd_bufaddr = __pa(skb->data);

	/* Save skb pointer.
	*/
	cep->tx_skbuff[cep->skb_cur] = skb;

	cep->stats.tx_bytes += skb->len;
	cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK;
	
	/* Push the data cache so the CPM does not get stale memory
	 * data.
	 */
	/*flush_dcache_range(skb->data, skb->data + skb->len);*/

	/* Send it on its way.  Tell CPM its ready, interrupt when done,
	 * its the last BD of the frame, and to put the CRC on the end.
	 */
	bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC);

	dev->trans_start = jiffies;

	/* If this was the last BD in the ring, start at the beginning again.
	*/
	if (bdp->cbd_sc & BD_ENET_TX_WRAP)
		bdp = cep->tx_bd_base;
	else
		bdp++;

	save_flags(flags);
	cli();
	cep->lock = 0;
	if (bdp->cbd_sc & BD_ENET_TX_READY)
		cep->tx_full = 1;
	else
		dev->tbusy=0;
	restore_flags(flags);

	cep->cur_tx = (cbd_t *)bdp;

	return 0;
}

/* The interrupt handler.
 * This is called from the CPM handler, not the MPC core interrupt.
 */
static void
cpm_enet_interrupt(void *dev_id)
{
	struct	device *dev = dev_id;
	struct	cpm_enet_private *cep;
	volatile cbd_t	*bdp;
	ushort	int_events;
	int	must_restart;

	cep = (struct cpm_enet_private *)dev->priv;
	if (dev->interrupt)
		printk("%s: Re-entering the interrupt handler.\n", dev->name);

	dev->interrupt = 1;

	/* Get the interrupt events that caused us to be here.
	*/
	int_events = cep->sccp->scc_scce;
	must_restart = 0;

	/* Handle receive event in its own function.
	*/
	if (int_events & SCCE_ENET_RXF)
		cpm_enet_rx(dev_id);

	/* Check for a transmit error.  The manual is a little unclear
	 * about this, so the debug code until I get it figured out.  It
	 * appears that if TXE is set, then TXB is not set.  However,
	 * if carrier sense is lost during frame transmission, the TXE
	 * bit is set, "and continues the buffer transmission normally."
	 * I don't know if "normally" implies TXB is set when the buffer
	 * descriptor is closed.....trial and error :-).
	 */
	if (int_events & SCCE_ENET_TXE) {

		/* Transmission errors.
		*/
		bdp = cep->dirty_tx;
#ifndef final_version
		printk("CPM ENET xmit error %x\n", bdp->cbd_sc);
		if (bdp->cbd_sc & BD_ENET_TX_READY)
			printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
		if (bdp->cbd_sc & BD_ENET_TX_HB)	/* No heartbeat */
			cep->stats.tx_heartbeat_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_LC)	/* Late collision */
			cep->stats.tx_window_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_RL)	/* Retrans limit */
			cep->stats.tx_aborted_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_UN)	/* Underrun */
			cep->stats.tx_fifo_errors++;
		if (bdp->cbd_sc & BD_ENET_TX_CSL)	/* Carrier lost */
			cep->stats.tx_carrier_errors++;

		cep->stats.tx_errors++;

		/* No heartbeat or Lost carrier are not really bad errors.
		 * The others require a restart transmit command.
		 */
		if (bdp->cbd_sc &
		    (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN))
			must_restart = 1;
	}

	/* Transmit OK, or non-fatal error.  Update the buffer descriptors.
	*/
	if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) {
		cep->stats.tx_packets++;
		bdp = cep->dirty_tx;
#ifndef final_version
		if (bdp->cbd_sc & BD_ENET_TX_READY)
			printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
		/* Deferred means some collisions occurred during transmit,
		 * but we eventually sent the packet OK.
		 */
		if (bdp->cbd_sc & BD_ENET_TX_DEF)
			cep->stats.collisions++;

		/* Free the sk buffer associated with this last transmit.
		*/
		dev_kfree_skb(cep->tx_skbuff[cep->skb_dirty]/*, FREE_WRITE*/);
		cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK;

		/* Update pointer to next buffer descriptor to be transmitted.
		*/
		if (bdp->cbd_sc & BD_ENET_TX_WRAP)
			bdp = cep->tx_bd_base;
		else
			bdp++;

		/* I don't know if we can be held off from processing these
		 * interrupts for more than one frame time.  I really hope
		 * not.  In such a case, we would now want to check the
		 * currently available BD (cur_tx) and determine if any
		 * buffers between the dirty_tx and cur_tx have also been
		 * sent.  We would want to process anything in between that
		 * does not have BD_ENET_TX_READY set.
		 */

		/* Since we have freed up a buffer, the ring is no longer
		 * full.
		 */
		if (cep->tx_full && dev->tbusy) {
			cep->tx_full = 0;
			dev->tbusy = 0;
			mark_bh(NET_BH);
		}

		cep->dirty_tx = (cbd_t *)bdp;
	}

	if (must_restart) {
		volatile cpm8xx_t *cp;

		/* Some transmit errors cause the transmitter to shut
		 * down.  We now issue a restart transmit.  Since the
		 * errors close the BD and update the pointers, the restart
		 * _should_ pick up without having to reset any of our
		 * pointers either.
		 */
		cp = cpmp;
		cp->cp_cpcr =
		    mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_RESTART_TX) | CPM_CR_FLG;
		while (cp->cp_cpcr & CPM_CR_FLG);
	}

	/* Check for receive busy, i.e. packets coming but no place to
	 * put them.  This "can't happen" because the receive interrupt
	 * is tossing previous frames.
	 */
	if (int_events & SCCE_ENET_BSY) {
		cep->stats.rx_dropped++;
		printk("CPM ENET: BSY can't happen.\n");
	}

	/* Write the SCC event register with the events we have handled
	 * to clear them.  Maybe we should do this sooner?
	 */
	cep->sccp->scc_scce = int_events;

	dev->interrupt = 0;

	return;
}

/* During a receive, the cur_rx points to the current incoming buffer.
 * When we update through the ring, if the next incoming buffer has
 * not been given to the system, we just set the empty indicator,
 * effectively tossing the packet.
 */
static int
cpm_enet_rx(struct device *dev)
{
	struct	cpm_enet_private *cep;
	volatile cbd_t	*bdp;
	struct	sk_buff *skb;
	ushort	pkt_len;

	cep = (struct cpm_enet_private *)dev->priv;

	/* First, grab all of the stats for the incoming packet.
	 * These get messed up if we get called due to a busy condition.
	 */
	bdp = cep->cur_rx;

for (;;) {
	if (bdp->cbd_sc & BD_ENET_RX_EMPTY)
		break;
		
#ifndef final_version
	/* Since we have allocated space to hold a complete frame, both
	 * the first and last indicators should be set.
	 */
	if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) !=
		(BD_ENET_RX_FIRST | BD_ENET_RX_LAST))
			printk("CPM ENET: rcv is not first+last\n");
#endif

	/* Frame too long or too short.
	*/
	if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
		cep->stats.rx_length_errors++;
	if (bdp->cbd_sc & BD_ENET_RX_NO)	/* Frame alignment */
		cep->stats.rx_frame_errors++;
	if (bdp->cbd_sc & BD_ENET_RX_CR)	/* CRC Error */
		cep->stats.rx_crc_errors++;
	if (bdp->cbd_sc & BD_ENET_RX_OV)	/* FIFO overrun */
		cep->stats.rx_crc_errors++;

	/* Report late collisions as a frame error.
	 * On this error, the BD is closed, but we don't know what we
	 * have in the buffer.  So, just drop this frame on the floor.
	 */
	if (bdp->cbd_sc & BD_ENET_RX_CL) {
		cep->stats.rx_frame_errors++;
	}
	else {

		/* Process the incoming frame.
		*/
		cep->stats.rx_packets++;
		pkt_len = bdp->cbd_datlen;
		cep->stats.rx_bytes += pkt_len;

		/* This does 16 byte alignment, much more than we need.
		*/
		skb = dev_alloc_skb(pkt_len);

		if (skb == NULL) {
			printk("%s: Memory squeeze, dropping packet.\n", dev->name);
			cep->stats.rx_dropped++;
		}
		else {
			skb->dev = dev;
			skb_put(skb,pkt_len);	/* Make room */
			eth_copy_and_sum(skb,
				(unsigned char *)__va(bdp->cbd_bufaddr),
				pkt_len, 0);
			skb->protocol=eth_type_trans(skb,dev);
			netif_rx(skb);
		}
	}

	/* Clear the status flags for this buffer.
	*/
	bdp->cbd_sc &= ~BD_ENET_RX_STATS;

	/* Mark the buffer empty.
	*/
	bdp->cbd_sc |= BD_ENET_RX_EMPTY;

	/* Update BD pointer to next entry.
	*/
	if (bdp->cbd_sc & BD_ENET_RX_WRAP)
		bdp = cep->rx_bd_base;
	else
		bdp++;

   }
	cep->cur_rx = (cbd_t *)bdp;

	return 0;
}

static int
cpm_enet_close(struct device *dev)
{
	/* Don't know what to do yet.
	*/

	return 0;
}

static struct net_device_stats *cpm_enet_get_stats(struct device *dev)
{
	struct cpm_enet_private *cep = (struct cpm_enet_private *)dev->priv;

	return &cep->stats;
}

/* Set or clear the multicast filter for this adaptor.
 * Skeleton taken from sunlance driver.
 * The CPM Ethernet implementation allows Multicast as well as individual
 * MAC address filtering.  Some of the drivers check to make sure it is
 * a group multicast address, and discard those that are not.  I guess I
 * will do the same for now, but just remove the test if you want
 * individual filtering as well (do the upper net layers want or support
 * this kind of feature?).
 */

static void set_multicast_list(struct device *dev)
{
	struct	cpm_enet_private *cep;
	struct	dev_mc_list *dmi;
	u_char	*mcptr, *tdptr;
	volatile scc_enet_t *ep;
	int	i, j;
	cep = (struct cpm_enet_private *)dev->priv;

	/* Get pointer to SCC1 area in parameter RAM.
	*/
	ep = (scc_enet_t *)dev->base_addr;

	if (dev->flags&IFF_PROMISC) {
	  
		/* Log any net taps. */
		printk("%s: Promiscuous mode enabled.\n", dev->name);
		cep->sccp->scc_pmsr |= SCC_PMSR_PRO;
	} else {

		cep->sccp->scc_pmsr &= ~SCC_PMSR_PRO;

		if (dev->flags & IFF_ALLMULTI) {
			/* Catch all multicast addresses, so set the
			 * filter to all 1's.
			 */
			ep->sen_gaddr1 = 0xffff;
			ep->sen_gaddr2 = 0xffff;
			ep->sen_gaddr3 = 0xffff;
			ep->sen_gaddr4 = 0xffff;
		}
		else {
			/* Clear filter and add the addresses in the list.
			*/
			ep->sen_gaddr1 = 0;
			ep->sen_gaddr2 = 0;
			ep->sen_gaddr3 = 0;
			ep->sen_gaddr4 = 0;

			dmi = dev->mc_list;

			for (i=0; i<dev->mc_count; i++) {
				
				/* Only support group multicast for now.
				*/
				if (!(dmi->dmi_addr[0] & 1))
					continue;

				/* The address in dmi_addr is LSB first,
				 * and taddr is MSB first.  We have to
				 * copy bytes MSB first from dmi_addr.
				 */
				mcptr = (u_char *)dmi->dmi_addr + 5;
				tdptr = (u_char *)&ep->sen_taddrh;
				for (j=0; j<6; j++)
					*tdptr++ = *mcptr--;

				/* Ask CPM to run CRC and set bit in
				 * filter mask.
				 */
				cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG;
				/* this delay is necessary here -- Cort */
				udelay(10);
				while (cpmp->cp_cpcr & CPM_CR_FLG);
			}
		}
	}
}

/* Initialize the CPM Ethernet on SCC1.  If EPPC-Bug loaded us, or performed
 * some other network I/O, a whole bunch of this has already been set up.
 * It is no big deal if we do it again, we just have to disable the
 * transmit and receive to make sure we don't catch the CPM with some
 * inconsistent control information.
 */
__initfunc(int cpm_enet_init(void))
{
	struct device *dev;
	struct cpm_enet_private *cep;
	int i, j;
	unsigned char	*eap;
	unsigned long	mem_addr;
	pte_t		*pte;
	volatile	cbd_t		*bdp;
	volatile	cpm8xx_t	*cp;
	volatile	scc_t		*sccp;
	volatile	scc_enet_t	*ep;
	volatile	immap_t		*immap;

	cp = cpmp;	/* Get pointer to Communication Processor */

	immap = (immap_t *)MBX_IMAP_ADDR;	/* and to internal registers */

	/* Allocate some private information.
	*/
	cep = (struct cpm_enet_private *)kmalloc(sizeof(*cep), GFP_KERNEL);
	/*memset(cep, 0, sizeof(*cep));*/
	__clear_user(cep,sizeof(*cep));

	/* Create an Ethernet device instance.
	*/
	dev = init_etherdev(0, 0);

	/* Get pointer to SCC1 area in parameter RAM.
	*/
	ep = (scc_enet_t *)(&cp->cp_dparam[PROFF_SCC1]);

	/* And another to the SCC register area.
	*/
	sccp = (volatile scc_t *)(&cp->cp_scc[0]);
	cep->sccp = (scc_t *)sccp;		/* Keep the pointer handy */

	/* Disable receive and transmit in case EPPC-Bug started it.
	*/
	sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT);

	/* Cookbook style from the MPC860 manual.....
	 * Not all of this is necessary if EPPC-Bug has initialized
	 * the network.
	 */

	/* Configure port A pins for Txd and Rxd.
	*/
	immap->im_ioport.iop_papar |= (PA_ENET_RXD | PA_ENET_TXD);
	immap->im_ioport.iop_padir &= ~(PA_ENET_RXD | PA_ENET_TXD);
	immap->im_ioport.iop_paodr &= ~PA_ENET_TXD;

	/* Configure port C pins to enable CLSN and RENA.
	*/
	immap->im_ioport.iop_pcpar &= ~(PC_ENET_CLSN | PC_ENET_RENA);
	immap->im_ioport.iop_pcdir &= ~(PC_ENET_CLSN | PC_ENET_RENA);
	immap->im_ioport.iop_pcso |= (PC_ENET_CLSN | PC_ENET_RENA);

	/* Configure port A for TCLK and RCLK.
	*/
	immap->im_ioport.iop_papar |= (PA_ENET_TCLK | PA_ENET_RCLK);
	immap->im_ioport.iop_padir &= ~(PA_ENET_TCLK | PA_ENET_RCLK);

	/* Configure Serial Interface clock routing.
	 * First, clear all SCC1 bits to zero, then set the ones we want.
	 */
	cp->cp_sicr &= ~SICR_ENET_MASK;
	cp->cp_sicr |= SICR_ENET_CLKRT;

	/* Manual says set SDDR, but I can't find anything with that
	 * name.  I think it is a misprint, and should be SDCR.  This
	 * has already been set by the communication processor initialization.
	 */

	/* Allocate space for the buffer descriptors in the DP ram.
	 * These are relative offsets in the DP ram address space.
	 * Initialize base addresses for the buffer descriptors.
	 */
	i = mbx_cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE);
	ep->sen_genscc.scc_rbase = i;
	cep->rx_bd_base = (cbd_t *)&cp->cp_dpmem[i];

	i = mbx_cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE);
	ep->sen_genscc.scc_tbase = i;
	cep->tx_bd_base = (cbd_t *)&cp->cp_dpmem[i];

	cep->dirty_tx = cep->cur_tx = cep->tx_bd_base;
	cep->cur_rx = cep->rx_bd_base;

	/* Issue init Rx BD command for SCC1.
	 * Manual says to perform an Init Rx parameters here.  We have
	 * to perform both Rx and Tx because the SCC may have been
	 * already running.
	 * In addition, we have to do it later because we don't yet have
	 * all of the BD control/status set properly.
	cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_INIT_RX) | CPM_CR_FLG;
	while (cp->cp_cpcr & CPM_CR_FLG);
	 */

	/* Initialize function code registers for big-endian.
	*/
	ep->sen_genscc.scc_rfcr = SCC_EB;
	ep->sen_genscc.scc_tfcr = SCC_EB;

	/* Set maximum bytes per receive buffer.
	 * This appears to be an Ethernet frame size, not the buffer
	 * fragment size.  It must be a multiple of four.
	 */
	ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE;

	/* Set CRC preset and mask.
	*/
	ep->sen_cpres = 0xffffffff;
	ep->sen_cmask = 0xdebb20e3;

	ep->sen_crcec = 0;	/* CRC Error counter */
	ep->sen_alec = 0;	/* alignment error counter */
	ep->sen_disfc = 0;	/* discard frame counter */

	ep->sen_pads = 0x8888;	/* Tx short frame pad character */
	ep->sen_retlim = 15;	/* Retry limit threshold */

	ep->sen_maxflr = PKT_MAXBUF_SIZE;   /* maximum frame length register */
	ep->sen_minflr = PKT_MINBUF_SIZE;  /* minimum frame length register */

	ep->sen_maxd1 = PKT_MAXBUF_SIZE;	/* maximum DMA1 length */
	ep->sen_maxd2 = PKT_MAXBUF_SIZE;	/* maximum DMA2 length */

	/* Clear hash tables.
	*/
	ep->sen_gaddr1 = 0;
	ep->sen_gaddr2 = 0;
	ep->sen_gaddr3 = 0;
	ep->sen_gaddr4 = 0;
	ep->sen_iaddr1 = 0;
	ep->sen_iaddr2 = 0;
	ep->sen_iaddr3 = 0;
	ep->sen_iaddr4 = 0;

	/* Set Ethernet station address.  This must come from the
	 * Vital Product Data (VPD) EEPROM.....as soon as I get the
	 * I2C interface working.....
	 *
	 * Since we performed a diskless boot, the Ethernet controller
	 * has been initialized and we copy the address out into our
	 * own structure.
	 */
#ifdef notdef
	ep->sen_paddrh = my_enet_addr[0];
	ep->sen_paddrm = my_enet_addr[1];
	ep->sen_paddrl = my_enet_addr[2];
#else
	eap = (unsigned char *)&(ep->sen_paddrh);
	for (i=5; i>=0; i--)
		dev->dev_addr[i] = *eap++;
#endif

	ep->sen_pper = 0;	/* 'cause the book says so */
	ep->sen_taddrl = 0;	/* temp address (LSB) */
	ep->sen_taddrm = 0;
	ep->sen_taddrh = 0;	/* temp address (MSB) */

	/* Now allocate the host memory pages and initialize the
	 * buffer descriptors.
	 */
	bdp = cep->tx_bd_base;
	for (i=0; i<TX_RING_SIZE; i++) {

		/* Initialize the BD for every fragment in the page.
		*/
		bdp->cbd_sc = 0;
		bdp->cbd_bufaddr = 0;
		bdp++;
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	bdp = cep->rx_bd_base;
	for (i=0; i<CPM_ENET_RX_PAGES; i++) {

		/* Allocate a page.
		*/
		mem_addr = __get_free_page(GFP_KERNEL);

		/* Make it uncached.
		*/
		pte = va_to_pte(&init_task, mem_addr);
		pte_val(*pte) |= _PAGE_NO_CACHE;
		flush_tlb_page(current->mm->mmap, mem_addr);

		/* Initialize the BD for every fragment in the page.
		*/
		for (j=0; j<CPM_ENET_RX_FRPPG; j++) {
			bdp->cbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR;
			bdp->cbd_bufaddr = __pa(mem_addr);
			mem_addr += CPM_ENET_RX_FRSIZE;
			bdp++;
		}
	}

	/* Set the last buffer to wrap.
	*/
	bdp--;
	bdp->cbd_sc |= BD_SC_WRAP;

	/* Let's re-initialize the channel now.  We have to do it later
	 * than the manual describes because we have just now finished
	 * the BD initialization.
	 */
	cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_INIT_TRX) | CPM_CR_FLG;
	while (cp->cp_cpcr & CPM_CR_FLG);

	cep->skb_cur = cep->skb_dirty = 0;

	sccp->scc_scce = 0xffff;	/* Clear any pending events */

	/* Enable interrupts for transmit error, complete frame
	 * received, and any transmit buffer we have also set the
	 * interrupt flag.
	 */
	sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB);

	/* Install our interrupt handler.
	*/
	cpm_install_handler(CPMVEC_SCC1, cpm_enet_interrupt, dev);

	/* Set GSMR_H to enable all normal operating modes.
	 * Set GSMR_L to enable Ethernet to MC68160.
	 */
	sccp->scc_gsmrh = 0;
	sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET);

	/* Set sync/delimiters.
	*/
	sccp->scc_dsr = 0xd555;

	/* Set processing mode.  Use Ethernet CRC, catch broadcast, and
	 * start frame search 22 bit times after RENA.
	 */
	sccp->scc_pmsr = (SCC_PMSR_ENCRC | SCC_PMSR_BRO | SCC_PMSR_NIB22);

	/* It is now OK to enable the Ethernet transmitter.
	*/
	immap->im_ioport.iop_pcpar |= PC_ENET_TENA;
	immap->im_ioport.iop_pcdir &= ~PC_ENET_TENA;

	dev->base_addr = (unsigned long)ep;
	dev->priv = cep;
	dev->name = "CPM_ENET";

	/* The CPM Ethernet specific entries in the device structure. */
	dev->open = cpm_enet_open;
	dev->hard_start_xmit = cpm_enet_start_xmit;
	dev->stop = cpm_enet_close;
	dev->get_stats = cpm_enet_get_stats;
	dev->set_multicast_list = set_multicast_list;

	/* And last, enable the transmit and receive processing.
	*/
	sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT);

	printk("CPM ENET Version 0.1, ");
	for (i=0; i<5; i++)
		printk("%02x:", dev->dev_addr[i]);
	printk("%02x\n", dev->dev_addr[5]);

	return 0;
}