Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | /* * linux/drivers/block/ide-dma.c Version 4.08 December 31, 1997 * * Copyright (c) 1995-1998 Mark Lord * May be copied or modified under the terms of the GNU General Public License */ /* * This module provides support for the bus-master IDE DMA functions * of various PCI chipsets, including the Intel PIIX (i82371FB for * the 430 FX chipset), the PIIX3 (i82371SB for the 430 HX/VX and * 440 chipsets), and the PIIX4 (i82371AB for the 430 TX chipset) * ("PIIX" stands for "PCI ISA IDE Xcellerator"). * * Pretty much the same code works for other IDE PCI bus-mastering chipsets. * * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies). * * By default, DMA support is prepared for use, but is currently enabled only * for drives which already have DMA enabled (UltraDMA or mode 2 multi/single), * or which are recognized as "good" (see table below). Drives with only mode0 * or mode1 (multi/single) DMA should also work with this chipset/driver * (eg. MC2112A) but are not enabled by default. * * Use "hdparm -i" to view modes supported by a given drive. * * The hdparm-2.4 (or later) utility can be used for manually enabling/disabling * DMA support, but must be (re-)compiled against this kernel version or later. * * To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting. * If problems arise, ide.c will disable DMA operation after a few retries. * This error recovery mechanism works and has been extremely well exercised. * * IDE drives, depending on their vintage, may support several different modes * of DMA operation. The boot-time modes are indicated with a "*" in * the "hdparm -i" listing, and can be changed with *knowledgeable* use of * the "hdparm -X" feature. There is seldom a need to do this, as drives * normally power-up with their "best" PIO/DMA modes enabled. * * Testing has been done with a rather extensive number of drives, * with Quantum & Western Digital models generally outperforming the pack, * and Fujitsu & Conner (and some Seagate which are really Conner) drives * showing more lackluster throughput. * * Keep an eye on /var/adm/messages for "DMA disabled" messages. * * Some people have reported trouble with Intel Zappa motherboards. * This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0, * available from ftp://ftp.intel.com/pub/bios/10004bs0.exe * (thanks to Glen Morrell <glen@spin.Stanford.edu> for researching this). * * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for * fixing the problem with the BIOS on some Acer motherboards. * * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing * "TX" chipset compatibility and for providing patches for the "TX" chipset. * * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack * at generic DMA -- his patches were referred to when preparing this code. * * Most importantly, thanks to Robert Bringman <rob@mars.trion.com> * for supplying a Promise UDMA board & WD UDMA drive for this work! * * And, yes, Intel Zappa boards really *do* use both PIIX IDE ports. */ #include <linux/config.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/init.h> #include <asm/io.h> #include <asm/irq.h> #include "ide.h" /* * good_dma_drives() lists the model names (from "hdparm -i") * of drives which do not support mode2 DMA but which are * known to work fine with this interface under Linux. */ const char *good_dma_drives[] = {"Micropolis 2112A", "CONNER CTMA 4000", "ST34342A", /* for Sun Ultra */ NULL}; /* * Our Physical Region Descriptor (PRD) table should be large enough * to handle the biggest I/O request we are likely to see. Since requests * can have no more than 256 sectors, and since the typical blocksize is * two or more sectors, we could get by with a limit of 128 entries here for * the usual worst case. Most requests seem to include some contiguous blocks, * further reducing the number of table entries required. * * The driver reverts to PIO mode for individual requests that exceed * this limit (possible with 512 byte blocksizes, eg. MSDOS f/s), so handling * 100% of all crazy scenarios here is not necessary. * * As it turns out though, we must allocate a full 4KB page for this, * so the two PRD tables (ide0 & ide1) will each get half of that, * allowing each to have about 256 entries (8 bytes each) from this. */ #define PRD_BYTES 8 #define PRD_ENTRIES (PAGE_SIZE / (2 * PRD_BYTES)) /* * dma_intr() is the handler for disk read/write DMA interrupts */ void ide_dma_intr (ide_drive_t *drive) { int i; byte stat, dma_stat; dma_stat = HWIF(drive)->dmaproc(ide_dma_end, drive); stat = GET_STAT(); /* get drive status */ if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) { if (!dma_stat) { struct request *rq = HWGROUP(drive)->rq; rq = HWGROUP(drive)->rq; for (i = rq->nr_sectors; i > 0;) { i -= rq->current_nr_sectors; ide_end_request(1, HWGROUP(drive)); } return; } printk("%s: dma_intr: bad DMA status\n", drive->name); } ide__sti(); /* local CPU only */ ide_error(drive, "dma_intr", stat); } /* * ide_build_dmatable() prepares a dma request. * Returns 0 if all went okay, returns 1 otherwise. * May also be invoked from trm290.c */ int ide_build_dmatable (ide_drive_t *drive) { struct request *rq = HWGROUP(drive)->rq; struct buffer_head *bh = rq->bh; unsigned int size, addr, *table = (unsigned int *)HWIF(drive)->dmatable; #ifdef CONFIG_BLK_DEV_TRM290 unsigned int is_trm290_chipset = (HWIF(drive)->chipset == ide_trm290); #else const int is_trm290_chipset = 0; #endif unsigned int count = 0; do { /* * Determine addr and size of next buffer area. We assume that * individual virtual buffers are always composed linearly in * physical memory. For example, we assume that any 8kB buffer * is always composed of two adjacent physical 4kB pages rather * than two possibly non-adjacent physical 4kB pages. */ if (bh == NULL) { /* paging requests have (rq->bh == NULL) */ addr = virt_to_bus (rq->buffer); size = rq->nr_sectors << 9; } else { /* group sequential buffers into one large buffer */ addr = virt_to_bus (bh->b_data); size = bh->b_size; while ((bh = bh->b_reqnext) != NULL) { if ((addr + size) != virt_to_bus (bh->b_data)) break; size += bh->b_size; } } /* * Fill in the dma table, without crossing any 64kB boundaries. * Most hardware requires 16-bit alignment of all blocks, * but the trm290 requires 32-bit alignment. */ if ((addr & 3)) { printk("%s: misaligned DMA buffer\n", drive->name); return 0; } while (size) { if (++count >= PRD_ENTRIES) { printk("%s: DMA table too small\n", drive->name); return 0; /* revert to PIO for this request */ } else { unsigned int xcount, bcount = 0x10000 - (addr & 0xffff); if (bcount > size) bcount = size; *table++ = cpu_to_le32(addr); xcount = bcount & 0xffff; if (is_trm290_chipset) xcount = ((xcount >> 2) - 1) << 16; *table++ = cpu_to_le32(xcount); addr += bcount; size -= bcount; } } } while (bh != NULL); if (!count) printk("%s: empty DMA table?\n", drive->name); else if (!is_trm290_chipset) *--table |= cpu_to_le32(0x80000000); /* set End-Of-Table (EOT) bit */ return count; } static int config_drive_for_dma (ide_drive_t *drive) { const char **list; struct hd_driveid *id = drive->id; ide_hwif_t *hwif = HWIF(drive); if (id && (id->capability & 1) && hwif->autodma) { /* Enable DMA on any drive that has UltraDMA (mode 0/1/2) enabled */ if (id->field_valid & 4) /* UltraDMA */ if ((id->dma_ultra & (id->dma_ultra >> 8) & 7)) return hwif->dmaproc(ide_dma_on, drive); /* Enable DMA on any drive that has mode2 DMA (multi or single) enabled */ if (id->field_valid & 2) /* regular DMA */ if ((id->dma_mword & 0x404) == 0x404 || (id->dma_1word & 0x404) == 0x404) return hwif->dmaproc(ide_dma_on, drive); /* Consult the list of known "good" drives */ list = good_dma_drives; while (*list) { if (!strcmp(*list++,id->model)) return hwif->dmaproc(ide_dma_on, drive); } } return hwif->dmaproc(ide_dma_off_quietly, drive); } /* * ide_dmaproc() initiates/aborts DMA read/write operations on a drive. * * The caller is assumed to have selected the drive and programmed the drive's * sector address using CHS or LBA. All that remains is to prepare for DMA * and then issue the actual read/write DMA/PIO command to the drive. * * For ATAPI devices, we just prepare for DMA and return. The caller should * then issue the packet command to the drive and call us again with * ide_dma_begin afterwards. * * Returns 0 if all went well. * Returns 1 if DMA read/write could not be started, in which case * the caller should revert to PIO for the current request. * May also be invoked from trm290.c */ int ide_dmaproc (ide_dma_action_t func, ide_drive_t *drive) { ide_hwif_t *hwif = HWIF(drive); unsigned long dma_base = hwif->dma_base; unsigned int count, reading = 0; byte dma_stat; switch (func) { case ide_dma_off: printk("%s: DMA disabled\n", drive->name); case ide_dma_off_quietly: case ide_dma_on: drive->using_dma = (func == ide_dma_on); return 0; case ide_dma_check: return config_drive_for_dma (drive); case ide_dma_read: reading = 1 << 3; case ide_dma_write: if (!(count = ide_build_dmatable(drive))) return 1; /* try PIO instead of DMA */ outl(virt_to_bus(hwif->dmatable), dma_base + 4); /* PRD table */ outb(reading, dma_base); /* specify r/w */ outb(inb(dma_base+2)|6, dma_base+2); /* clear INTR & ERROR flags */ drive->waiting_for_dma = 1; if (drive->media != ide_disk) return 0; ide_set_handler(drive, &ide_dma_intr, WAIT_CMD);/* issue cmd to drive */ OUT_BYTE(reading ? WIN_READDMA : WIN_WRITEDMA, IDE_COMMAND_REG); case ide_dma_begin: /* Note that this is done *after* the cmd has * been issued to the drive, as per the BM-IDE spec. * The Promise Ultra33 doesn't work correctly when * we do this part before issuing the drive cmd. */ outb(inb(dma_base)|1, dma_base); /* start DMA */ return 0; case ide_dma_end: /* returns 1 on error, 0 otherwise */ drive->waiting_for_dma = 0; dma_stat = inb(dma_base+2); outb(inb(dma_base)&~1, dma_base); /* stop DMA */ outb(dma_stat|6, dma_base+2); /* clear the INTR & ERROR bits */ return (dma_stat & 7) != 4; /* verify good DMA status */ case ide_dma_test_irq: /* returns 1 if dma irq issued, 0 otherwise */ dma_stat = inb(dma_base+2); return (dma_stat & 4) == 4; /* return 1 if INTR asserted */ default: printk("ide_dmaproc: unsupported func: %d\n", func); return 1; } } __initfunc(void ide_setup_dma (ide_hwif_t *hwif, unsigned long dma_base, unsigned int num_ports)) { static unsigned long dmatable = 0; static unsigned leftover = 0; printk(" %s: BM-DMA at 0x%04lx-0x%04lx", hwif->name, dma_base, dma_base + num_ports - 1); if (check_region(dma_base, num_ports)) { printk(" -- ERROR, PORT ADDRESSES ALREADY IN USE\n"); return; } request_region(dma_base, num_ports, hwif->name); hwif->dma_base = dma_base; if (leftover < (PRD_ENTRIES * PRD_BYTES)) { /* * The BM-DMA uses full 32bit addr, so we can * safely use __get_free_page() here instead * of __get_dma_pages() -- no ISA limitations. */ dmatable = __get_free_pages(GFP_KERNEL,1); leftover = dmatable ? PAGE_SIZE : 0; } if (!dmatable) { printk(" -- ERROR, UNABLE TO ALLOCATE PRD TABLE\n"); } else { hwif->dmatable = (unsigned long *) dmatable; dmatable += (PRD_ENTRIES * PRD_BYTES); leftover -= (PRD_ENTRIES * PRD_BYTES); hwif->dmaproc = &ide_dmaproc; if (hwif->chipset != ide_trm290) { byte dma_stat = inb(dma_base+2); printk(", BIOS settings: %s:%s, %s:%s", hwif->drives[0].name, (dma_stat & 0x20) ? "DMA" : "pio", hwif->drives[1].name, (dma_stat & 0x40) ? "DMA" : "pio"); } printk("\n"); } } /* * Fetch the DMA Bus-Master-I/O-Base-Address (BMIBA) from PCI space: */ __initfunc(unsigned long ide_get_or_set_dma_base (ide_hwif_t *hwif, int extra, const char *name)) { unsigned long dma_base = 0; struct pci_dev *dev = hwif->pci_dev; if (hwif->mate && hwif->mate->dma_base) { dma_base = hwif->mate->dma_base - (hwif->channel ? 0 : 8); } else { dma_base = dev->base_address[4] & PCI_BASE_ADDRESS_IO_MASK; if (!dma_base || dma_base == PCI_BASE_ADDRESS_IO_MASK) { printk("%s: dma_base is invalid (0x%04lx, BIOS problem), please report to <mj@ucw.cz>\n", name, dma_base); dma_base = 0; } } if (dma_base) { if (extra) /* PDC20246 */ request_region(dma_base+16, extra, name); dma_base += hwif->channel ? 8 : 0; if (inb(dma_base+2) & 0x80) { printk("%s: simplex device: DMA disabled\n", name); dma_base = 0; } } return dma_base; } |