Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 | /* sun4m_smp.c: Sparc SUN4M SMP support. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) */ #include <linux/config.h> /* for CONFIG_PROFILE */ #include <asm/head.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/tasks.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/init.h> #include <asm/ptrace.h> #include <asm/atomic.h> #include <asm/delay.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/oplib.h> #include <asm/atops.h> #include <asm/spinlock.h> #include <asm/hardirq.h> #include <asm/softirq.h> #define __KERNEL_SYSCALLS__ #include <linux/unistd.h> #define IRQ_RESCHEDULE 13 #define IRQ_STOP_CPU 14 #define IRQ_CROSS_CALL 15 extern ctxd_t *srmmu_ctx_table_phys; extern int linux_num_cpus; extern void calibrate_delay(void); extern struct task_struct *current_set[NR_CPUS]; extern volatile int smp_processors_ready; extern unsigned long cpu_present_map; extern int smp_num_cpus; extern int smp_threads_ready; extern unsigned char mid_xlate[NR_CPUS]; extern volatile unsigned long cpu_callin_map[NR_CPUS]; extern unsigned long smp_proc_in_lock[NR_CPUS]; extern struct cpuinfo_sparc cpu_data[NR_CPUS]; extern unsigned long cpu_offset[NR_CPUS]; extern unsigned char boot_cpu_id; extern int smp_activated; extern volatile int cpu_number_map[NR_CPUS]; extern volatile int __cpu_logical_map[NR_CPUS]; extern struct klock_info klock_info; extern volatile unsigned long ipi_count; extern volatile int smp_process_available; extern volatile int smp_commenced; extern int __smp4m_processor_id(void); /*#define SMP_DEBUG*/ #ifdef SMP_DEBUG #define SMP_PRINTK(x) printk x #else #define SMP_PRINTK(x) #endif int smp4m_bogo_info(char *buf) { return sprintf(buf, "Cpu0Bogo\t: %lu.%02lu\n" "Cpu1Bogo\t: %lu.%02lu\n" "Cpu2Bogo\t: %lu.%02lu\n" "Cpu3Bogo\t: %lu.%02lu\n", cpu_data[0].udelay_val/500000, (cpu_data[0].udelay_val/5000)%100, cpu_data[1].udelay_val/500000, (cpu_data[1].udelay_val/5000)%100, cpu_data[2].udelay_val/500000, (cpu_data[2].udelay_val/5000)%100, cpu_data[3].udelay_val/500000, (cpu_data[3].udelay_val/5000)%100); } int smp4m_info(char *buf) { return sprintf(buf, " CPU0\t\tCPU1\t\tCPU2\t\tCPU3\n" "State: %s\t\t%s\t\t%s\t\t%s\n", (cpu_present_map & 1) ? ((klock_info.akp == 0) ? "akp" : "online") : "offline", (cpu_present_map & 2) ? ((klock_info.akp == 1) ? "akp" : "online") : "offline", (cpu_present_map & 4) ? ((klock_info.akp == 2) ? "akp" : "online") : "offline", (cpu_present_map & 8) ? ((klock_info.akp == 3) ? "akp" : "online") : "offline"); } static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val) { __asm__ __volatile__("swap [%1], %0\n\t" : "=&r" (val), "=&r" (ptr) : "0" (val), "1" (ptr)); return val; } static void smp_setup_percpu_timer(void); extern void cpu_probe(void); __initfunc(void smp4m_callin(void)) { int cpuid = hard_smp_processor_id(); local_flush_cache_all(); local_flush_tlb_all(); set_irq_udt(mid_xlate[boot_cpu_id]); /* Get our local ticker going. */ smp_setup_percpu_timer(); calibrate_delay(); smp_store_cpu_info(cpuid); local_flush_cache_all(); local_flush_tlb_all(); /* Allow master to continue. */ swap((unsigned long *)&cpu_callin_map[cpuid], 1); local_flush_cache_all(); local_flush_tlb_all(); cpu_probe(); while(!task[cpuid] || current_set[cpuid] != task[cpuid]) barrier(); /* Fix idle thread fields. */ __asm__ __volatile__("ld [%0], %%g6\n\t" : : "r" (¤t_set[cpuid]) : "memory" /* paranoid */); current->mm->mmap->vm_page_prot = PAGE_SHARED; current->mm->mmap->vm_start = PAGE_OFFSET; current->mm->mmap->vm_end = init_task.mm->mmap->vm_end; while(!smp_commenced) barrier(); local_flush_cache_all(); local_flush_tlb_all(); __sti(); } extern int cpu_idle(void *unused); extern void init_IRQ(void); extern void cpu_panic(void); extern int start_secondary(void *unused); /* * Cycle through the processors asking the PROM to start each one. */ extern struct prom_cpuinfo linux_cpus[NR_CPUS]; extern struct linux_prom_registers smp_penguin_ctable; extern unsigned long trapbase_cpu1[]; extern unsigned long trapbase_cpu2[]; extern unsigned long trapbase_cpu3[]; __initfunc(void smp4m_boot_cpus(void)) { int cpucount = 0; int i = 0; int first, prev; printk("Entering SMP Mode...\n"); smp_penguin_ctable.which_io = 0; smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; smp_penguin_ctable.reg_size = 0; for (i = 0; i < NR_CPUS; i++) cpu_offset[i] = (char *)&cpu_data[i] - (char *)&cpu_data; __sti(); cpu_present_map = 0; for(i=0; i < linux_num_cpus; i++) cpu_present_map |= (1<<i); for(i=0; i < NR_CPUS; i++) cpu_number_map[i] = -1; for(i=0; i < NR_CPUS; i++) __cpu_logical_map[i] = -1; mid_xlate[boot_cpu_id] = (linux_cpus[boot_cpu_id].mid & ~8); cpu_number_map[boot_cpu_id] = 0; __cpu_logical_map[0] = boot_cpu_id; klock_info.akp = boot_cpu_id; current->processor = boot_cpu_id; smp_store_cpu_info(boot_cpu_id); set_irq_udt(mid_xlate[boot_cpu_id]); smp_setup_percpu_timer(); local_flush_cache_all(); if(linux_num_cpus == 1) return; /* Not an MP box. */ for(i = 0; i < NR_CPUS; i++) { if(i == boot_cpu_id) continue; if(cpu_present_map & (1 << i)) { extern unsigned long sun4m_cpu_startup; unsigned long *entry = &sun4m_cpu_startup; struct task_struct *p; int timeout; /* Cook up an idler for this guy. */ kernel_thread(start_secondary, NULL, CLONE_PID); p = task[++cpucount]; p->processor = i; current_set[i] = p; /* See trampoline.S for details... */ entry += ((i-1) * 3); /* whirrr, whirrr, whirrrrrrrrr... */ printk("Starting CPU %d at %p\n", i, entry); mid_xlate[i] = (linux_cpus[i].mid & ~8); local_flush_cache_all(); prom_startcpu(linux_cpus[i].prom_node, &smp_penguin_ctable, 0, (char *)entry); /* wheee... it's going... */ for(timeout = 0; timeout < 5000000; timeout++) { if(cpu_callin_map[i]) break; udelay(100); } if(cpu_callin_map[i]) { /* Another "Red Snapper". */ cpu_number_map[i] = i; __cpu_logical_map[i] = i; } else { cpucount--; printk("Processor %d is stuck.\n", i); } } if(!(cpu_callin_map[i])) { cpu_present_map &= ~(1 << i); cpu_number_map[i] = -1; } } local_flush_cache_all(); if(cpucount == 0) { printk("Error: only one Processor found.\n"); cpu_present_map = (1 << smp_processor_id()); } else { unsigned long bogosum = 0; for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1 << i)) bogosum += cpu_data[i].udelay_val; } printk("Total of %d Processors activated (%lu.%02lu BogoMIPS).\n", cpucount + 1, (bogosum + 2500)/500000, ((bogosum + 2500)/5000)%100); smp_activated = 1; smp_num_cpus = cpucount + 1; } /* Setup CPU list for IRQ distribution scheme. */ first = prev = -1; for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1 << i)) { if(first == -1) first = i; if(prev != -1) cpu_data[prev].next = i; cpu_data[i].mid = mid_xlate[i]; prev = i; } } cpu_data[prev].next = first; /* Free unneeded trap tables */ if (!(cpu_present_map & (1 << 1))) { mem_map[MAP_NR((unsigned long)trapbase_cpu1)].flags &= ~(1 << PG_reserved); free_page((unsigned long)trapbase_cpu1); } if (!(cpu_present_map & (1 << 2))) { mem_map[MAP_NR((unsigned long)trapbase_cpu2)].flags &= ~(1 << PG_reserved); free_page((unsigned long)trapbase_cpu2); } if (!(cpu_present_map & (1 << 3))) { mem_map[MAP_NR((unsigned long)trapbase_cpu3)].flags &= ~(1 << PG_reserved); free_page((unsigned long)trapbase_cpu3); } /* Ok, they are spinning and ready to go. */ smp_processors_ready = 1; } /* At each hardware IRQ, we get this called to forward IRQ reception * to the next processor. The caller must disable the IRQ level being * serviced globally so that there are no double interrupts received. */ void smp4m_irq_rotate(int cpu) { if(smp_processors_ready) set_irq_udt(cpu_data[cpu_data[cpu].next].mid); } /* Cross calls, in order to work efficiently and atomically do all * the message passing work themselves, only stopcpu and reschedule * messages come through here. */ void smp4m_message_pass(int target, int msg, unsigned long data, int wait) { static unsigned long smp_cpu_in_msg[NR_CPUS]; unsigned long mask; int me = smp_processor_id(); int irq, i; if(msg == MSG_RESCHEDULE) { irq = IRQ_RESCHEDULE; if(smp_cpu_in_msg[me]) return; } else if(msg == MSG_STOP_CPU) { irq = IRQ_STOP_CPU; } else { goto barf; } smp_cpu_in_msg[me]++; if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) { mask = cpu_present_map; if(target == MSG_ALL_BUT_SELF) mask &= ~(1 << me); for(i = 0; i < 4; i++) { if(mask & (1 << i)) set_cpu_int(mid_xlate[i], irq); } } else { set_cpu_int(mid_xlate[target], irq); } smp_cpu_in_msg[me]--; return; barf: printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me); panic("Bogon SMP message pass."); } static struct smp_funcall { smpfunc_t func; unsigned long arg1; unsigned long arg2; unsigned long arg3; unsigned long arg4; unsigned long arg5; unsigned long processors_in[NR_CPUS]; /* Set when ipi entered. */ unsigned long processors_out[NR_CPUS]; /* Set when ipi exited. */ } ccall_info; static spinlock_t cross_call_lock = SPIN_LOCK_UNLOCKED; /* Cross calls must be serialized, at least currently. */ void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { if(smp_processors_ready) { register int ncpus = smp_num_cpus; unsigned long flags; spin_lock_irqsave(&cross_call_lock, flags); /* Init function glue. */ ccall_info.func = func; ccall_info.arg1 = arg1; ccall_info.arg2 = arg2; ccall_info.arg3 = arg3; ccall_info.arg4 = arg4; ccall_info.arg5 = arg5; /* Init receive/complete mapping, plus fire the IPI's off. */ { register unsigned long mask; register int i; mask = (cpu_present_map & ~(1 << smp_processor_id())); for(i = 0; i < ncpus; i++) { if(mask & (1 << i)) { ccall_info.processors_in[i] = 0; ccall_info.processors_out[i] = 0; set_cpu_int(mid_xlate[i], IRQ_CROSS_CALL); } else { ccall_info.processors_in[i] = 1; ccall_info.processors_out[i] = 1; } } } /* First, run local copy. */ func(arg1, arg2, arg3, arg4, arg5); { register int i; i = 0; do { while(!ccall_info.processors_in[i]) barrier(); } while(++i < ncpus); i = 0; do { while(!ccall_info.processors_out[i]) barrier(); } while(++i < ncpus); } spin_unlock_irqrestore(&cross_call_lock, flags); } else func(arg1, arg2, arg3, arg4, arg5); /* Just need to run local copy. */ } /* Running cross calls. */ void smp4m_cross_call_irq(void) { int i = smp_processor_id(); ccall_info.processors_in[i] = 1; ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4, ccall_info.arg5); ccall_info.processors_out[i] = 1; } /* Protects counters touched during level14 ticker */ static spinlock_t ticker_lock = SPIN_LOCK_UNLOCKED; #ifdef CONFIG_PROFILE /* 32-bit Sparc specific profiling function. */ static inline void sparc_do_profile(unsigned long pc) { if(prof_buffer && current->pid) { extern int _stext; pc -= (unsigned long) &_stext; pc >>= prof_shift; spin_lock(&ticker_lock); if(pc < prof_len) prof_buffer[pc]++; else prof_buffer[prof_len - 1]++; spin_unlock(&ticker_lock); } } #endif extern unsigned int prof_multiplier[NR_CPUS]; extern unsigned int prof_counter[NR_CPUS]; extern void update_one_process(struct task_struct *p, unsigned long ticks, unsigned long user, unsigned long system, int cpu); void smp4m_percpu_timer_interrupt(struct pt_regs *regs) { int cpu = smp_processor_id(); clear_profile_irq(mid_xlate[cpu]); #ifdef CONFIG_PROFILE if(!user_mode(regs)) sparc_do_profile(regs->pc); #endif if(!--prof_counter[cpu]) { int user = user_mode(regs); if(current->pid) { update_one_process(current, 1, user, !user, cpu); if(--current->counter < 0) { current->counter = 0; need_resched = 1; } spin_lock(&ticker_lock); if(user) { if(current->priority < DEF_PRIORITY) { kstat.cpu_nice++; kstat.per_cpu_nice[cpu]++; } else { kstat.cpu_user++; kstat.per_cpu_user[cpu]++; } } else { kstat.cpu_system++; kstat.per_cpu_system[cpu]++; } spin_unlock(&ticker_lock); } prof_counter[cpu] = prof_multiplier[cpu]; } } extern unsigned int lvl14_resolution; __initfunc(static void smp_setup_percpu_timer(void)) { int cpu = smp_processor_id(); prof_counter[cpu] = prof_multiplier[cpu] = 1; load_profile_irq(mid_xlate[cpu], lvl14_resolution); if(cpu == boot_cpu_id) enable_pil_irq(14); } __initfunc(void smp4m_blackbox_id(unsigned *addr)) { int rd = *addr & 0x3e000000; int rs1 = rd >> 11; addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */ addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */ } __initfunc(void smp4m_blackbox_current(unsigned *addr)) { int rd = *addr & 0x3e000000; int rs1 = rd >> 11; addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */ addr[4] = 0x8008200c | rd | rs1; /* and reg, 3, reg */ } __initfunc(void sun4m_init_smp(void)) { BTFIXUPSET_BLACKBOX(smp_processor_id, smp4m_blackbox_id); BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current); BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(smp_bogo_info, smp4m_bogo_info, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(smp_info, smp4m_info, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM); } |