Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
/*
 *	linux/arch/i386/kernel/irq.c
 *
 *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
 *
 * This file contains the code used by various IRQ handling routines:
 * asking for different IRQ's should be done through these routines
 * instead of just grabbing them. Thus setups with different IRQ numbers
 * shouldn't result in any weird surprises, and installing new handlers
 * should be easier.
 */

/*
 * IRQs are in fact implemented a bit like signal handlers for the kernel.
 * Naturally it's not a 1:1 relation, but there are similarities.
 */

#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/kernel_stat.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/malloc.h>
#include <linux/random.h>
#include <linux/smp.h>
#include <linux/tasks.h>
#include <linux/smp_lock.h>
#include <linux/init.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/smp.h>
#include <asm/pgtable.h>
#include <asm/delay.h>

#include "irq.h"

unsigned int local_bh_count[NR_CPUS];
unsigned int local_irq_count[NR_CPUS];

atomic_t nmi_counter;

/*
 * About the IO-APIC, the architecture is 'merged' into our
 * current irq architecture, seemlessly. (i hope). It is only
 * visible through 8 more hardware interrupt lines, but otherwise
 * drivers are unaffected. The main code is believed to be
 * NR_IRQS-safe (nothing anymore thinks we have 16
 * irq lines only), but there might be some places left ...
 */

/*
 * This contains the irq mask for both 8259A irq controllers,
 * and on SMP the extended IO-APIC IRQs 16-23. The IO-APIC
 * uses this mask too, in probe_irq*().
 *
 * (0x0000ffff for NR_IRQS==16, 0x00ffffff for NR_IRQS=24)
 */
#if NR_IRQS == 64
unsigned long long cached_irq_mask = -1;
#else
unsigned long long cached_irq_mask = (((unsigned long long) 1)<<NR_IRQS)-1;
#endif

#define cached_21	((cached_irq_mask | io_apic_irqs) & 0xff)
#define cached_A1	(((cached_irq_mask | io_apic_irqs) >> 8) & 0xff)

spinlock_t irq_controller_lock;

/*
 * Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
 * boards the timer interrupt is not connected to any IO-APIC pin, it's
 * fed to the CPU IRQ line directly.
 *
 * Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
 * this 'mixed mode' IRQ handling costs us one more branch in do_IRQ,
 * but we have _much_ higher compatibility and robustness this way.
 */

/*
 * Default to all normal IRQ's _not_ using the IO APIC.
 *
 * To get IO-APIC interrupts we turn some of them into IO-APIC
 * interrupts during boot.
 */
unsigned long long io_apic_irqs = 0;

static void do_8259A_IRQ (unsigned int irq, int cpu, struct pt_regs * regs);
static void enable_8259A_irq (unsigned int irq);
static void disable_8259A_irq (unsigned int irq);

/*
 * Dummy controller type for unused interrupts
 */
static void do_none(unsigned int irq, int cpu, struct pt_regs * regs) { }
static void enable_none(unsigned int irq) { }
static void disable_none(unsigned int irq) { }

static struct hw_interrupt_type no_irq_type = {
	"none",
	do_none,
	enable_none,
	disable_none
};

static struct hw_interrupt_type i8259A_irq_type = {
	"XT-PIC",
	do_8259A_IRQ,
	enable_8259A_irq,
	disable_8259A_irq
};

irq_desc_t irq_desc[NR_IRQS] = {
	[0 ... 15] = { 0, 0, 0, &i8259A_irq_type, },	/* default to standard ISA IRQs */
	[16 ... 63] = { 0, 0, 0, &no_irq_type, },	/* 'high' PCI IRQs filled in on demand */
};

int irq_vector[NR_IRQS] = { IRQ0_TRAP_VECTOR , 0 };


/*
 * These have to be protected by the irq controller spinlock
 * before being called.
 */

static inline void mask_8259A(unsigned int irq)
{
	cached_irq_mask |= 1 << irq;
	if (irq & 8) {
		outb(cached_A1,0xA1);
	} else {
		outb(cached_21,0x21);
	}
}

static inline void unmask_8259A(unsigned int irq)
{
	cached_irq_mask &= ~(1 << irq);
	if (irq & 8) {
		outb(cached_A1,0xA1);
	} else {
		outb(cached_21,0x21);
	}
}

void set_8259A_irq_mask(unsigned int irq)
{
	/*
	 * (it might happen that we see IRQ>15 on a UP box, with SMP
	 * emulation)
	 */
	if (irq < 16) {
		if (irq & 8) {
			outb(cached_A1,0xA1);
		} else {
			outb(cached_21,0x21);
		}
	}
}

/*
 * This builds up the IRQ handler stubs using some ugly macros in irq.h
 *
 * These macros create the low-level assembly IRQ routines that save
 * register context and call do_IRQ(). do_IRQ() then does all the
 * operations that are needed to keep the AT (or SMP IOAPIC)
 * interrupt-controller happy.
 */


BUILD_COMMON_IRQ()
/*
 * ISA PIC or IO-APIC triggered (INTA-cycle or APIC) interrupts:
 */
BUILD_IRQ(0) BUILD_IRQ(1) BUILD_IRQ(2) BUILD_IRQ(3)
BUILD_IRQ(4) BUILD_IRQ(5) BUILD_IRQ(6) BUILD_IRQ(7)
BUILD_IRQ(8) BUILD_IRQ(9) BUILD_IRQ(10) BUILD_IRQ(11)
BUILD_IRQ(12) BUILD_IRQ(13) BUILD_IRQ(14) BUILD_IRQ(15)

#ifdef __SMP__

/*
 * The IO-APIC (present only in SMP boards) has 8 more hardware
 * interrupt pins, for all of them we define an IRQ vector:
 *
 * raw PCI interrupts 0-3, basically these are the ones used
 * heavily:
 */
BUILD_IRQ(16) BUILD_IRQ(17) BUILD_IRQ(18) BUILD_IRQ(19)

/*
 * [FIXME: anyone with 2 separate PCI buses and 2 IO-APICs, please
 *	   speak up if problems and request experimental patches.
 *         --mingo ]
 */

/*
 * MIRQ (motherboard IRQ) interrupts 0-1:
 */
BUILD_IRQ(20) BUILD_IRQ(21)

/*
 * 'nondefined general purpose interrupt'.
 */
BUILD_IRQ(22)
/*
 * optionally rerouted SMI interrupt:
 */
BUILD_IRQ(23)

BUILD_IRQ(24)
BUILD_IRQ(25) BUILD_IRQ(26) BUILD_IRQ(27) BUILD_IRQ(28) BUILD_IRQ(29)
BUILD_IRQ(30) BUILD_IRQ(31) BUILD_IRQ(32) BUILD_IRQ(33) BUILD_IRQ(34)
BUILD_IRQ(35) BUILD_IRQ(36) BUILD_IRQ(37) BUILD_IRQ(38) BUILD_IRQ(39)
BUILD_IRQ(40) BUILD_IRQ(41) BUILD_IRQ(42) BUILD_IRQ(43) BUILD_IRQ(44)
BUILD_IRQ(45) BUILD_IRQ(46) BUILD_IRQ(47) BUILD_IRQ(48) BUILD_IRQ(49)
BUILD_IRQ(50) BUILD_IRQ(51) BUILD_IRQ(52) BUILD_IRQ(53) BUILD_IRQ(54)
BUILD_IRQ(55) BUILD_IRQ(56) BUILD_IRQ(57) BUILD_IRQ(58) BUILD_IRQ(59)
BUILD_IRQ(60) BUILD_IRQ(61) BUILD_IRQ(62) BUILD_IRQ(63)

/*
 * The following vectors are part of the Linux architecture, there
 * is no hardware IRQ pin equivalent for them, they are triggered
 * through the ICC by us (IPIs), via smp_message_pass():
 */
BUILD_SMP_INTERRUPT(reschedule_interrupt)
BUILD_SMP_INTERRUPT(invalidate_interrupt)
BUILD_SMP_INTERRUPT(stop_cpu_interrupt)
BUILD_SMP_INTERRUPT(mtrr_interrupt)
BUILD_SMP_INTERRUPT(spurious_interrupt)

/*
 * every pentium local APIC has two 'local interrupts', with a
 * soft-definable vector attached to both interrupts, one of
 * which is a timer interrupt, the other one is error counter
 * overflow. Linux uses the local APIC timer interrupt to get
 * a much simpler SMP time architecture:
 */
BUILD_SMP_TIMER_INTERRUPT(apic_timer_interrupt)

#endif

static void (*interrupt[NR_IRQS])(void) = {
	IRQ0_interrupt, IRQ1_interrupt, IRQ2_interrupt, IRQ3_interrupt,
	IRQ4_interrupt, IRQ5_interrupt, IRQ6_interrupt, IRQ7_interrupt,
	IRQ8_interrupt, IRQ9_interrupt, IRQ10_interrupt, IRQ11_interrupt,
	IRQ12_interrupt, IRQ13_interrupt, IRQ14_interrupt, IRQ15_interrupt
#ifdef __SMP__
	,IRQ16_interrupt, IRQ17_interrupt, IRQ18_interrupt, IRQ19_interrupt,
	IRQ20_interrupt, IRQ21_interrupt, IRQ22_interrupt, IRQ23_interrupt,
	IRQ24_interrupt, IRQ25_interrupt, IRQ26_interrupt, IRQ27_interrupt,
	IRQ28_interrupt, IRQ29_interrupt,
	IRQ30_interrupt, IRQ31_interrupt, IRQ32_interrupt, IRQ33_interrupt,
	IRQ34_interrupt, IRQ35_interrupt, IRQ36_interrupt, IRQ37_interrupt,
	IRQ38_interrupt, IRQ39_interrupt,
	IRQ40_interrupt, IRQ41_interrupt, IRQ42_interrupt, IRQ43_interrupt,
	IRQ44_interrupt, IRQ45_interrupt, IRQ46_interrupt, IRQ47_interrupt,
	IRQ48_interrupt, IRQ49_interrupt,
	IRQ50_interrupt, IRQ51_interrupt, IRQ52_interrupt, IRQ53_interrupt,
	IRQ54_interrupt, IRQ55_interrupt, IRQ56_interrupt, IRQ57_interrupt,
	IRQ58_interrupt, IRQ59_interrupt,
	IRQ60_interrupt, IRQ61_interrupt, IRQ62_interrupt, IRQ63_interrupt
#endif
};

/*
 * Initial irq handlers.
 */

static void no_action(int cpl, void *dev_id, struct pt_regs *regs) { }

/*
 * Note that on a 486, we don't want to do a SIGFPE on an irq13
 * as the irq is unreliable, and exception 16 works correctly
 * (ie as explained in the intel literature). On a 386, you
 * can't use exception 16 due to bad IBM design, so we have to
 * rely on the less exact irq13.
 *
 * Careful.. Not only is IRQ13 unreliable, but it is also
 * leads to races. IBM designers who came up with it should
 * be shot.
 */
 
static void math_error_irq(int cpl, void *dev_id, struct pt_regs *regs)
{
	outb(0,0xF0);
	if (ignore_irq13 || !boot_cpu_data.hard_math)
		return;
	math_error();
}

static struct irqaction irq13 = { math_error_irq, 0, 0, "fpu", NULL, NULL };

/*
 * IRQ2 is cascade interrupt to second interrupt controller
 */
static struct irqaction irq2  = { no_action, 0, 0, "cascade", NULL, NULL};

int get_irq_list(char *buf)
{
	int i, j;
	struct irqaction * action;
	char *p = buf;

	p += sprintf(p, "           ");
	for (j=0; j<smp_num_cpus; j++)
		p += sprintf(p, "CPU%d       ",j);
	*p++ = '\n';

	for (i = 0 ; i < NR_IRQS ; i++) {
		action = irq_desc[i].action;
		if (!action) 
			continue;
		p += sprintf(p, "%3d: ",i);
#ifndef __SMP__
		p += sprintf(p, "%10u ", kstat_irqs(i));
#else
		for (j=0; j<smp_num_cpus; j++)
			p += sprintf(p, "%10u ",
				kstat.irqs[cpu_logical_map(j)][i]);
#endif
		p += sprintf(p, " %14s", irq_desc[i].handler->typename);
		p += sprintf(p, "  %s", action->name);

		for (action=action->next; action; action = action->next) {
			p += sprintf(p, ", %s", action->name);
		}
		*p++ = '\n';
	}
	p += sprintf(p, "NMI: %10u\n", atomic_read(&nmi_counter));
#ifdef __SMP__
	p += sprintf(p, "IPI: %10lu\n", ipi_count);
#endif		
	return p - buf;
}

/*
 * Global interrupt locks for SMP. Allow interrupts to come in on any
 * CPU, yet make cli/sti act globally to protect critical regions..
 */
#ifdef __SMP__
unsigned char global_irq_holder = NO_PROC_ID;
unsigned volatile int global_irq_lock;
atomic_t global_irq_count;

atomic_t global_bh_count;
atomic_t global_bh_lock;

/*
 * "global_cli()" is a special case, in that it can hold the
 * interrupts disabled for a longish time, and also because
 * we may be doing TLB invalidates when holding the global
 * IRQ lock for historical reasons. Thus we may need to check
 * SMP invalidate events specially by hand here (but not in
 * any normal spinlocks)
 */
static inline void check_smp_invalidate(int cpu)
{
	if (test_bit(cpu, &smp_invalidate_needed)) {
		clear_bit(cpu, &smp_invalidate_needed);
		local_flush_tlb();
	}
}

static void show(char * str)
{
	int i;
	unsigned long *stack;
	int cpu = smp_processor_id();

	printk("\n%s, CPU %d:\n", str, cpu);
	printk("irq:  %d [%d %d]\n",
		atomic_read(&global_irq_count), local_irq_count[0], local_irq_count[1]);
	printk("bh:   %d [%d %d]\n",
		atomic_read(&global_bh_count), local_bh_count[0], local_bh_count[1]);
	stack = (unsigned long *) &str;
	for (i = 40; i ; i--) {
		unsigned long x = *++stack;
		if (x > (unsigned long) &init_task_union && x < (unsigned long) &vsprintf) {
			printk("<[%08lx]> ", x);
		}
	}
}
	

#define MAXCOUNT 100000000

static inline void wait_on_bh(void)
{
	int count = MAXCOUNT;
	do {
		if (!--count) {
			show("wait_on_bh");
			count = ~0;
		}
		/* nothing .. wait for the other bh's to go away */
	} while (atomic_read(&global_bh_count) != 0);
}

/*
 * I had a lockup scenario where a tight loop doing
 * spin_unlock()/spin_lock() on CPU#1 was racing with
 * spin_lock() on CPU#0. CPU#0 should have noticed spin_unlock(), but
 * apparently the spin_unlock() information did not make it
 * through to CPU#0 ... nasty, is this by design, do we have to limit
 * 'memory update oscillation frequency' artificially like here?
 *
 * Such 'high frequency update' races can be avoided by careful design, but
 * some of our major constructs like spinlocks use similar techniques,
 * it would be nice to clarify this issue. Set this define to 0 if you
 * want to check whether your system freezes.  I suspect the delay done
 * by SYNC_OTHER_CORES() is in correlation with 'snooping latency', but
 * i thought that such things are guaranteed by design, since we use
 * the 'LOCK' prefix.
 */
#define SUSPECTED_CPU_OR_CHIPSET_BUG_WORKAROUND 1

#if SUSPECTED_CPU_OR_CHIPSET_BUG_WORKAROUND
# define SYNC_OTHER_CORES(x) udelay(x+1)
#else
/*
 * We have to allow irqs to arrive between __sti and __cli
 */
# define SYNC_OTHER_CORES(x) __asm__ __volatile__ ("nop")
#endif

static inline void wait_on_irq(int cpu)
{
	int count = MAXCOUNT;

	for (;;) {

		/*
		 * Wait until all interrupts are gone. Wait
		 * for bottom half handlers unless we're
		 * already executing in one..
		 */
		if (!atomic_read(&global_irq_count)) {
			if (local_bh_count[cpu] || !atomic_read(&global_bh_count))
				break;
		}

		/* Duh, we have to loop. Release the lock to avoid deadlocks */
		clear_bit(0,&global_irq_lock);

		for (;;) {
			if (!--count) {
				show("wait_on_irq");
				count = ~0;
			}
			__sti();
			SYNC_OTHER_CORES(cpu);
			__cli();
			check_smp_invalidate(cpu);
			if (atomic_read(&global_irq_count))
				continue;
			if (global_irq_lock)
				continue;
			if (!local_bh_count[cpu] && atomic_read(&global_bh_count))
				continue;
			if (!test_and_set_bit(0,&global_irq_lock))
				break;
		}
	}
}

/*
 * This is called when we want to synchronize with
 * bottom half handlers. We need to wait until
 * no other CPU is executing any bottom half handler.
 *
 * Don't wait if we're already running in an interrupt
 * context or are inside a bh handler.
 */
void synchronize_bh(void)
{
	if (atomic_read(&global_bh_count) && !in_interrupt())
			wait_on_bh();
}

/*
 * This is called when we want to synchronize with
 * interrupts. We may for example tell a device to
 * stop sending interrupts: but to make sure there
 * are no interrupts that are executing on another
 * CPU we need to call this function.
 */
void synchronize_irq(void)
{
	if (atomic_read(&global_irq_count)) {
		/* Stupid approach */
		cli();
		sti();
	}
}

static inline void get_irqlock(int cpu)
{
	if (test_and_set_bit(0,&global_irq_lock)) {
		/* do we already hold the lock? */
		if ((unsigned char) cpu == global_irq_holder)
			return;
		/* Uhhuh.. Somebody else got it. Wait.. */
		do {
			do {
				check_smp_invalidate(cpu);
			} while (test_bit(0,&global_irq_lock));
		} while (test_and_set_bit(0,&global_irq_lock));		
	}
	/* 
	 * We also to make sure that nobody else is running
	 * in an interrupt context. 
	 */
	wait_on_irq(cpu);

	/*
	 * Ok, finally..
	 */
	global_irq_holder = cpu;
}

#define EFLAGS_IF_SHIFT 9

/*
 * A global "cli()" while in an interrupt context
 * turns into just a local cli(). Interrupts
 * should use spinlocks for the (very unlikely)
 * case that they ever want to protect against
 * each other.
 *
 * If we already have local interrupts disabled,
 * this will not turn a local disable into a
 * global one (problems with spinlocks: this makes
 * save_flags+cli+sti usable inside a spinlock).
 */
void __global_cli(void)
{
	unsigned int flags;

	__save_flags(flags);
	if (flags & (1 << EFLAGS_IF_SHIFT)) {
		int cpu = smp_processor_id();
		__cli();
		if (!local_irq_count[cpu])
			get_irqlock(cpu);
	}
}

void __global_sti(void)
{
	int cpu = smp_processor_id();

	if (!local_irq_count[cpu])
		release_irqlock(cpu);
	__sti();
}

/*
 * SMP flags value to restore to:
 * 0 - global cli
 * 1 - global sti
 * 2 - local cli
 * 3 - local sti
 */
unsigned long __global_save_flags(void)
{
	int retval;
	int local_enabled;
	unsigned long flags;

	__save_flags(flags);
	local_enabled = (flags >> EFLAGS_IF_SHIFT) & 1;
	/* default to local */
	retval = 2 + local_enabled;

	/* check for global flags if we're not in an interrupt */
	if (!local_irq_count[smp_processor_id()]) {
		if (local_enabled)
			retval = 1;
		if (global_irq_holder == (unsigned char) smp_processor_id())
			retval = 0;
	}
	return retval;
}

void __global_restore_flags(unsigned long flags)
{
	switch (flags) {
	case 0:
		__global_cli();
		break;
	case 1:
		__global_sti();
		break;
	case 2:
		__cli();
		break;
	case 3:
		__sti();
		break;
	default:
		printk("global_restore_flags: %08lx (%08lx)\n",
			flags, (&flags)[-1]);
	}
}

#endif

int handle_IRQ_event(unsigned int irq, struct pt_regs * regs)
{
	struct irqaction * action;
	int status;

	status = 0;
	action = irq_desc[irq].action;

	if (action) {
		status |= 1;

		if (!(action->flags & SA_INTERRUPT))
			__sti();

		do {
			status |= action->flags;
			action->handler(irq, action->dev_id, regs);
			action = action->next;
		} while (action);
		if (status & SA_SAMPLE_RANDOM)
			add_interrupt_randomness(irq);
		__cli();
	}

	return status;
}

/*
 * disable/enable_irq() wait for all irq contexts to finish
 * executing. Also it's recursive.
 */
static void disable_8259A_irq(unsigned int irq)
{
	cached_irq_mask |= 1 << irq;
	set_8259A_irq_mask(irq);
}

void enable_8259A_irq (unsigned int irq)
{
	cached_irq_mask &= ~(1 << irq);
	set_8259A_irq_mask(irq);
}

int i8259A_irq_pending (unsigned int irq)
{
	unsigned int mask = 1<<irq;

	if (irq < 8)
                return (inb(0x20) & mask);
        return (inb(0xA0) & (mask >> 8));
}


void make_8259A_irq (unsigned int irq)
{
	io_apic_irqs &= ~(1<<irq);
	irq_desc[irq].handler = &i8259A_irq_type;
	disable_irq(irq);
	enable_irq(irq);
}

/*
 * Careful! The 8259A is a fragile beast, it pretty
 * much _has_ to be done exactly like this (mask it
 * first, _then_ send the EOI, and the order of EOI
 * to the two 8259s is important!
 */
static inline void mask_and_ack_8259A(unsigned int irq)
{
	spin_lock(&irq_controller_lock);
	irq_desc[irq].status |= IRQ_INPROGRESS;
	cached_irq_mask |= 1 << irq;
	if (irq & 8) {
		inb(0xA1);	/* DUMMY */
		outb(cached_A1,0xA1);
		outb(0x62,0x20);	/* Specific EOI to cascade */
		outb(0x20,0xA0);
	} else {
		inb(0x21);	/* DUMMY */
		outb(cached_21,0x21);
		outb(0x20,0x20);
	}
	spin_unlock(&irq_controller_lock);
}

static void do_8259A_IRQ(unsigned int irq, int cpu, struct pt_regs * regs)
{
	mask_and_ack_8259A(irq);

	irq_enter(cpu, irq);

	if (handle_IRQ_event(irq, regs)) {
		spin_lock(&irq_controller_lock);
		if (!(irq_desc[irq].status &= IRQ_DISABLED))
			unmask_8259A(irq);
		spin_unlock(&irq_controller_lock);
	}

	irq_exit(cpu, irq);
}


/*
 * Generic enable/disable code: this just calls
 * down into the PIC-specific version for the actual
 * hardware disable after having gotten the irq
 * controller lock. 
 */
void disable_irq(unsigned int irq)
{
	unsigned long flags;

	spin_lock_irqsave(&irq_controller_lock, flags);
	/*
	 * At this point we may actually have a pending interrupt being active
	 * on another CPU. So don't touch the IRQ_INPROGRESS bit..
	 */
	irq_desc[irq].status |= IRQ_DISABLED;
	irq_desc[irq].handler->disable(irq);
	spin_unlock_irqrestore(&irq_controller_lock, flags);

	synchronize_irq();
}

void enable_irq(unsigned int irq)
{
	unsigned long flags;

	spin_lock_irqsave(&irq_controller_lock, flags);
	/*
	 * In contrast to the above, we should _not_ have any concurrent
	 * interrupt activity here, so we just clear both disabled bits.
	 *
	 * This allows us to have IRQ_INPROGRESS set until we actually
	 * install a handler for this interrupt (make irq autodetection
	 * work by just looking at the status field for the irq)
	 */
	irq_desc[irq].status = 0;
	irq_desc[irq].handler->enable(irq);
	spin_unlock_irqrestore(&irq_controller_lock, flags);
}

/*
 * do_IRQ handles all normal device IRQ's (the special
 * SMP cross-CPU interrupts have their own specific
 * handlers).
 *
 * the biggest change on SMP is the fact that we no more mask
 * interrupts in hardware, please believe me, this is unavoidable,
 * the hardware is largely message-oriented, i tried to force our
 * state-driven irq handling scheme onto the IO-APIC, but no avail.
 *
 * so we soft-disable interrupts via 'event counters', the first 'incl'
 * will do the IRQ handling. This also has the nice side effect of increased
 * overlapping ... i saw no driver problem so far.
 */
asmlinkage void do_IRQ(struct pt_regs regs)
{	
	/* 
	 * We ack quickly, we don't want the irq controller
	 * thinking we're snobs just because some other CPU has
	 * disabled global interrupts (we have already done the
	 * INT_ACK cycles, it's too late to try to pretend to the
	 * controller that we aren't taking the interrupt).
	 *
	 * 0 return value means that this irq is already being
	 * handled by some other CPU. (or is disabled)
	 */
	unsigned int irq = regs.orig_eax & 0xff;
	int cpu = smp_processor_id();

	kstat.irqs[cpu][irq]++;
	irq_desc[irq].handler->handle(irq, cpu, &regs);

	/*
	 * This should be conditional: we should really get
	 * a return code from the irq handler to tell us
	 * whether the handler wants us to do software bottom
	 * half handling or not..
	 */
	if (1) {
		if (bh_active & bh_mask)
			do_bottom_half();
	}
}

int setup_x86_irq(unsigned int irq, struct irqaction * new)
{
	int shared = 0;
	struct irqaction *old, **p;
	unsigned long flags;

	/*
	 * Some drivers like serial.c use request_irq() heavily,
	 * so we have to be careful not to interfere with a
	 * running system.
	 */
	if (new->flags & SA_SAMPLE_RANDOM) {
		/*
		 * This function might sleep, we want to call it first,
		 * outside of the atomic block.
		 * Yes, this might clear the entropy pool if the wrong
		 * driver is attempted to be loaded, without actually
		 * installing a new handler, but is this really a problem,
		 * only the sysadmin is able to do this.
		 */
		rand_initialize_irq(irq);
	}

	/*
	 * The following block of code has to be executed atomically
	 */
	spin_lock_irqsave(&irq_controller_lock,flags);
	p = &irq_desc[irq].action;
	if ((old = *p) != NULL) {
		/* Can't share interrupts unless both agree to */
		if (!(old->flags & new->flags & SA_SHIRQ)) {
			spin_unlock_irqrestore(&irq_controller_lock,flags);
			return -EBUSY;
		}

		/* add new interrupt at end of irq queue */
		do {
			p = &old->next;
			old = *p;
		} while (old);
		shared = 1;
	}

	*p = new;

	if (!shared) {
#ifdef __SMP__
		if (IO_APIC_IRQ(irq)) {
			/*
			 * First disable it in the 8259A:
			 */
			cached_irq_mask |= 1 << irq;
			if (irq < 16) {
				set_8259A_irq_mask(irq);
				/*
				 * transport pending ISA IRQs to
				 * the new descriptor
				 */
				if (i8259A_irq_pending(irq))
					irq_desc[irq].events = 1;
			}
		}
#endif
		irq_desc[irq].status = 0;
		irq_desc[irq].handler->enable(irq);
	}
	spin_unlock_irqrestore(&irq_controller_lock,flags);
	return 0;
}

int request_irq(unsigned int irq, 
		void (*handler)(int, void *, struct pt_regs *),
		unsigned long irqflags, 
		const char * devname,
		void *dev_id)
{
	int retval;
	struct irqaction * action;

	if (irq >= NR_IRQS)
		return -EINVAL;
	if (!handler)
		return -EINVAL;

	action = (struct irqaction *)
			kmalloc(sizeof(struct irqaction), GFP_KERNEL);
	if (!action)
		return -ENOMEM;

	action->handler = handler;
	action->flags = irqflags;
	action->mask = 0;
	action->name = devname;
	action->next = NULL;
	action->dev_id = dev_id;

	retval = setup_x86_irq(irq, action);

	if (retval)
		kfree(action);
	return retval;
}
		
void free_irq(unsigned int irq, void *dev_id)
{
	struct irqaction * action, **p;
	unsigned long flags;

	if (irq >= NR_IRQS)
		return;

	spin_lock_irqsave(&irq_controller_lock,flags);
	for (p = &irq_desc[irq].action; (action = *p) != NULL; p = &action->next) {
		if (action->dev_id != dev_id)
			continue;

		/* Found it - now free it */
		*p = action->next;
		kfree(action);
		if (!irq_desc[irq].action)
			irq_desc[irq].handler->disable(irq);
		goto out;
	}
	printk("Trying to free free IRQ%d\n",irq);
out:
	spin_unlock_irqrestore(&irq_controller_lock,flags);
}

/*
 * IRQ autodetection code..
 *
 * This depends on the fact that any interrupt that
 * comes in on to an unassigned handler will get stuck
 * with "IRQ_INPROGRESS" asserted and the interrupt
 * disabled.
 */
unsigned long probe_irq_on (void)
{
	unsigned int i, irqs = 0;
	unsigned long delay;

	/*
	 * first, enable any unassigned irqs
	 */
	spin_lock_irq(&irq_controller_lock);
	for (i = NR_IRQS-1; i > 0; i--) {
		if (!irq_desc[i].action) {
			irq_desc[i].status = 0;
			irq_desc[i].handler->enable(i);
			irqs |= (1 << i);
		}
	}
	spin_unlock_irq(&irq_controller_lock);

	/*
	 * wait for spurious interrupts to increase counters
	 */
	for (delay = jiffies + HZ/10; delay > jiffies; )
		/* about 100ms delay */ synchronize_irq();

	/*
	 * now filter out any obviously spurious interrupts
	 */
	spin_lock_irq(&irq_controller_lock);
	for (i=0; i<NR_IRQS; i++) {
		if (irq_desc[i].status & IRQ_INPROGRESS)
			irqs &= ~(1UL << i);
	}
	spin_unlock_irq(&irq_controller_lock);

	return irqs;
}

int probe_irq_off (unsigned long irqs)
{
	int i, irq_found = -1;

	spin_lock_irq(&irq_controller_lock);
	for (i=0; i<NR_IRQS; i++) {
		if ((irqs & 1) && (irq_desc[i].status & IRQ_INPROGRESS)) {
			if (irq_found != -1) {
				irq_found = -irq_found;
				goto out;
			}
			irq_found = i;
		}
		irqs >>= 1;
	}
	if (irq_found == -1)
		irq_found = 0;
out:
	spin_unlock_irq(&irq_controller_lock);
	return irq_found;
}

__initfunc(void init_IRQ(void))
{
	int i;

	/* set the clock to 100 Hz */
	outb_p(0x34,0x43);		/* binary, mode 2, LSB/MSB, ch 0 */
	outb_p(LATCH & 0xff , 0x40);	/* LSB */
	outb(LATCH >> 8 , 0x40);	/* MSB */

	for (i=0; i<NR_IRQS; i++) {
		irq_desc[i].events = 0;
		irq_desc[i].status = 0;
	}
	/*
	 * 16 old-style INTA-cycle interrupt gates:
	 */
	for (i = 0; i < 16; i++)
		set_intr_gate(0x20+i,interrupt[i]);

#ifdef __SMP__	

	/*
	  IRQ0 must be given a fixed assignment and initialized
	  before init_IRQ_SMP.
	*/
	set_intr_gate(IRQ0_TRAP_VECTOR, interrupt[0]);

	/*
	 * The reschedule interrupt slowly changes it's functionality,
	 * while so far it was a kind of broadcasted timer interrupt,
	 * in the future it should become a CPU-to-CPU rescheduling IPI,
	 * driven by schedule() ?
	 *
	 * [ It has to be here .. it doesn't work if you put
	 *   it down the bottom - assembler explodes 8) ]
	 */

	/* IPI for rescheduling */
	set_intr_gate(0x30, reschedule_interrupt);

	/* IPI for invalidation */
	set_intr_gate(0x31, invalidate_interrupt);

	/* IPI for CPU halt */
	set_intr_gate(0x40, stop_cpu_interrupt);

	/* self generated IPI for local APIC timer */
	set_intr_gate(0x41, apic_timer_interrupt);

	/* IPI for MTRR control */
	set_intr_gate(0x50, mtrr_interrupt);

	/* IPI vector for APIC spurious interrupts */
	set_intr_gate(0xff, spurious_interrupt);
#endif	
	request_region(0x20,0x20,"pic1");
	request_region(0xa0,0x20,"pic2");
	setup_x86_irq(2, &irq2);
	setup_x86_irq(13, &irq13);
} 

#ifdef __SMP__	

__initfunc(void init_IRQ_SMP(void))
{
	int i;
	for (i = 0; i < NR_IRQS ; i++)
		if (IO_APIC_VECTOR(i) > 0)
			set_intr_gate(IO_APIC_VECTOR(i), interrupt[i]);
}

#endif