Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | #ifndef __ALPHA_UACCESS_H #define __ALPHA_UACCESS_H #include <linux/errno.h> #include <linux/sched.h> /* * The fs value determines whether argument validity checking should be * performed or not. If get_fs() == USER_DS, checking is performed, with * get_fs() == KERNEL_DS, checking is bypassed. * * Or at least it did once upon a time. Nowadays it is a mask that * defines which bits of the address space are off limits. This is a * wee bit faster than the above. * * For historical reasons, these macros are grossly misnamed. */ #define KERNEL_DS ((mm_segment_t) { 0UL }) #define USER_DS ((mm_segment_t) { -0x40000000000UL }) #define VERIFY_READ 0 #define VERIFY_WRITE 1 #define get_fs() (current->tss.fs) #define get_ds() (KERNEL_DS) #define set_fs(x) (current->tss.fs = (x)) #define segment_eq(a,b) ((a).seg == (b).seg) /* * Is a address valid? This does a straighforward calculation rather * than tests. * * Address valid if: * - "addr" doesn't have any high-bits set * - AND "size" doesn't have any high-bits set * - AND "addr+size" doesn't have any high-bits set * - OR we are in kernel mode. */ #define __access_ok(addr,size,segment) \ (((segment).seg & (addr | size | (addr+size))) == 0) #define access_ok(type,addr,size) \ __access_ok(((unsigned long)(addr)),(size),get_fs()) extern inline int verify_area(int type, const void * addr, unsigned long size) { return access_ok(type,addr,size) ? 0 : -EFAULT; } /* * These are the main single-value transfer routines. They automatically * use the right size if we just have the right pointer type. * * As the alpha uses the same address space for kernel and user * data, we can just do these as direct assignments. (Of course, the * exception handling means that it's no longer "just"...) * * Careful to not * (a) re-use the arguments for side effects (sizeof/typeof is ok) * (b) require any knowledge of processes at this stage */ #define put_user(x,ptr) \ __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)),get_fs()) #define get_user(x,ptr) \ __get_user_check((x),(ptr),sizeof(*(ptr)),get_fs()) /* * The "__xxx" versions do not do address space checking, useful when * doing multiple accesses to the same area (the programmer has to do the * checks by hand with "access_ok()") */ #define __put_user(x,ptr) \ __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) #define __get_user(x,ptr) \ __get_user_nocheck((x),(ptr),sizeof(*(ptr))) /* * The "xxx_ret" versions return constant specified in third argument, if * something bad happens. These macros can be optimized for the * case of just returning from the function xxx_ret is used. */ #define put_user_ret(x,ptr,ret) ({ \ if (put_user(x,ptr)) return ret; }) #define get_user_ret(x,ptr,ret) ({ \ if (get_user(x,ptr)) return ret; }) #define __put_user_ret(x,ptr,ret) ({ \ if (__put_user(x,ptr)) return ret; }) #define __get_user_ret(x,ptr,ret) ({ \ if (__get_user(x,ptr)) return ret; }) /* * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to * encode the bits we need for resolving the exception. See the * more extensive comments with fixup_inline_exception below for * more information. */ extern void __get_user_unknown(void); #define __get_user_nocheck(x,ptr,size) \ ({ \ long __gu_err = 0, __gu_val; \ switch (size) { \ case 1: __get_user_8(ptr); break; \ case 2: __get_user_16(ptr); break; \ case 4: __get_user_32(ptr); break; \ case 8: __get_user_64(ptr); break; \ default: __get_user_unknown(); break; \ } \ (x) = (__typeof__(*(ptr))) __gu_val; \ __gu_err; \ }) #define __get_user_check(x,ptr,size,segment) \ ({ \ long __gu_err = -EFAULT, __gu_val = 0; \ const __typeof__(*(ptr)) *__gu_addr = (ptr); \ if (__access_ok((long)__gu_addr,size,segment)) { \ __gu_err = 0; \ switch (size) { \ case 1: __get_user_8(__gu_addr); break; \ case 2: __get_user_16(__gu_addr); break; \ case 4: __get_user_32(__gu_addr); break; \ case 8: __get_user_64(__gu_addr); break; \ default: __get_user_unknown(); break; \ } \ } \ (x) = (__typeof__(*(ptr))) __gu_val; \ __gu_err; \ }) struct __large_struct { unsigned long buf[100]; }; #define __m(x) (*(struct __large_struct *)(x)) #define __get_user_64(addr) \ __asm__("1: ldq %0,%2\n" \ "2:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda %0, 2b-1b(%1)\n" \ ".previous" \ : "=r"(__gu_val), "=r"(__gu_err) \ : "m"(__m(addr)), "1"(__gu_err)) #define __get_user_32(addr) \ __asm__("1: ldl %0,%2\n" \ "2:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda %0, 2b-1b(%1)\n" \ ".previous" \ : "=r"(__gu_val), "=r"(__gu_err) \ : "m"(__m(addr)), "1"(__gu_err)) #ifdef __HAVE_CPU_BWX /* Those lucky bastards with ev56 and later cpus can do byte/word moves. */ #define __get_user_16(addr) \ __asm__("1: ldwu %0,%2\n" \ "2:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda %0, 2b-1b(%1)\n" \ ".previous" \ : "=r"(__gu_val), "=r"(__gu_err) \ : "m"(__m(addr)), "1"(__gu_err)) #define __get_user_8(addr) \ __asm__("1: ldbu %0,%2\n" \ "2:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda %0, 2b-1b(%1)\n" \ ".previous" \ : "=r"(__gu_val), "=r"(__gu_err) \ : "m"(__m(addr)), "1"(__gu_err)) #else /* Unfortunately, we can't get an unaligned access trap for the sub-word load, so we have to do a general unaligned operation. */ #define __get_user_16(addr) \ { \ long __gu_tmp; \ __asm__("1: ldq_u %0,0(%3)\n" \ "2: ldq_u %1,1(%3)\n" \ " extwl %0,%3,%0\n" \ " extwh %1,%3,%1\n" \ " or %0,%1,%0\n" \ "3:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda %0, 3b-1b(%2)\n" \ " .gprel32 2b\n" \ " lda %0, 2b-1b(%2)\n" \ ".previous" \ : "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err) \ : "r"(addr), "2"(__gu_err)); \ } #define __get_user_8(addr) \ __asm__("1: ldq_u %0,0(%2)\n" \ " extbl %0,%2,%0\n" \ "2:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda %0, 2b-1b(%1)\n" \ ".previous" \ : "=&r"(__gu_val), "=r"(__gu_err) \ : "r"(addr), "1"(__gu_err)) #endif extern void __put_user_unknown(void); #define __put_user_nocheck(x,ptr,size) \ ({ \ long __pu_err = 0; \ switch (size) { \ case 1: __put_user_8(x,ptr); break; \ case 2: __put_user_16(x,ptr); break; \ case 4: __put_user_32(x,ptr); break; \ case 8: __put_user_64(x,ptr); break; \ default: __put_user_unknown(); break; \ } \ __pu_err; \ }) #define __put_user_check(x,ptr,size,segment) \ ({ \ long __pu_err = -EFAULT; \ __typeof__(*(ptr)) *__pu_addr = (ptr); \ if (__access_ok((long)__pu_addr,size,segment)) { \ __pu_err = 0; \ switch (size) { \ case 1: __put_user_8(x,__pu_addr); break; \ case 2: __put_user_16(x,__pu_addr); break; \ case 4: __put_user_32(x,__pu_addr); break; \ case 8: __put_user_64(x,__pu_addr); break; \ default: __put_user_unknown(); break; \ } \ } \ __pu_err; \ }) /* * The "__put_user_xx()" macros tell gcc they read from memory * instead of writing: this is because they do not write to * any memory gcc knows about, so there are no aliasing issues */ #define __put_user_64(x,addr) \ __asm__ __volatile__("1: stq %r2,%1\n" \ "2:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda $31,2b-1b(%0)\n" \ ".previous" \ : "=r"(__pu_err) \ : "m" (__m(addr)), "rJ" (x), "0"(__pu_err)) #define __put_user_32(x,addr) \ __asm__ __volatile__("1: stl %r2,%1\n" \ "2:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda $31,2b-1b(%0)\n" \ ".previous" \ : "=r"(__pu_err) \ : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) #ifdef __HAVE_CPU_BWX /* Those lucky bastards with ev56 and later cpus can do byte/word moves. */ #define __put_user_16(x,addr) \ __asm__ __volatile__("1: stw %r2,%1\n" \ "2:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda $31,2b-1b(%0)\n" \ ".previous" \ : "=r"(__pu_err) \ : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) #define __put_user_8(x,addr) \ __asm__ __volatile__("1: stb %r2,%1\n" \ "2:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda $31,2b-1b(%0)\n" \ ".previous" \ : "=r"(__pu_err) \ : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) #else /* Unfortunately, we can't get an unaligned access trap for the sub-word write, so we have to do a general unaligned operation. */ #define __put_user_16(x,addr) \ { \ long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4; \ __asm__ __volatile__( \ "1: ldq_u %2,1(%5)\n" \ "2: ldq_u %1,0(%5)\n" \ " inswh %6,%5,%4\n" \ " inswl %6,%5,%3\n" \ " mskwh %2,%5,%2\n" \ " mskwl %1,%5,%1\n" \ " or %2,%4,%2\n" \ " or %1,%3,%1\n" \ "3: stq_u %2,1(%5)\n" \ "4: stq_u %1,0(%5)\n" \ "5:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda $31, 5b-1b(%0)\n" \ " .gprel32 2b\n" \ " lda $31, 5b-2b(%0)\n" \ " .gprel32 3b\n" \ " lda $31, 5b-3b(%0)\n" \ " .gprel32 4b\n" \ " lda $31, 5b-4b(%0)\n" \ ".previous" \ : "=r"(__pu_err), "=&r"(__pu_tmp1), \ "=&r"(__pu_tmp2), "=&r"(__pu_tmp3), \ "=&r"(__pu_tmp4) \ : "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \ } #define __put_user_8(x,addr) \ { \ long __pu_tmp1, __pu_tmp2; \ __asm__ __volatile__( \ "1: ldq_u %1,0(%4)\n" \ " insbl %3,%4,%2\n" \ " mskbl %1,%4,%1\n" \ " or %1,%2,%1\n" \ "2: stq_u %1,0(%4)\n" \ "3:\n" \ ".section __ex_table,\"a\"\n" \ " .gprel32 1b\n" \ " lda $31, 3b-1b(%0)\n" \ " .gprel32 2b\n" \ " lda $31, 3b-2b(%0)\n" \ ".previous" \ : "=r"(__pu_err), \ "=&r"(__pu_tmp1), "=&r"(__pu_tmp2) \ : "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \ } #endif /* * Complex access routines */ #define __copy_to_user(to,from,n) __copy_tofrom_user_nocheck((to),(from),(n)) #define __copy_from_user(to,from,n) __copy_tofrom_user_nocheck((to),(from),(n)) #define copy_to_user(to,from,n) __copy_tofrom_user((to),(from),(n),__cu_to) #define copy_from_user(to,from,n) __copy_tofrom_user((to),(from),(n),__cu_from) extern void __copy_user(void); #define __copy_tofrom_user_nocheck(to,from,n) \ ({ \ register void * __cu_to __asm__("$6") = (to); \ register const void * __cu_from __asm__("$7") = (from); \ register long __cu_len __asm__("$0") = (n); \ __asm__ __volatile__( \ "jsr $28,(%3),__copy_user" \ : "=r" (__cu_len), "=r" (__cu_from), "=r" (__cu_to) \ : "r" (__copy_user), "0" (__cu_len), \ "1" (__cu_from), "2" (__cu_to) \ : "$1","$2","$3","$4","$5","$28","memory"); \ __cu_len; \ }) #define __copy_tofrom_user(to,from,n,v) \ ({ \ register void * __cu_to __asm__("$6") = (to); \ register const void * __cu_from __asm__("$7") = (from); \ register long __cu_len __asm__("$0") = (n); \ if (__access_ok(((long)(v)),__cu_len,get_fs())) { \ __asm__ __volatile__( \ "jsr $28,(%3),__copy_user" \ : "=r" (__cu_len), "=r" (__cu_from), "=r" (__cu_to) \ : "r" (__copy_user), "0" (__cu_len), \ "1" (__cu_from), "2" (__cu_to) \ : "$1","$2","$3","$4","$5","$28","memory"); \ } \ __cu_len; \ }) #define copy_to_user_ret(to,from,n,retval) ({ \ if (copy_to_user(to,from,n)) \ return retval; \ }) #define copy_from_user_ret(to,from,n,retval) ({ \ if (copy_from_user(to,from,n)) \ return retval; \ }) extern void __do_clear_user(void); #define __clear_user(to,n) \ ({ \ register void * __cl_to __asm__("$6") = (to); \ register long __cl_len __asm__("$0") = (n); \ __asm__ __volatile__( \ "jsr $28,(%2),__do_clear_user" \ : "=r"(__cl_len), "=r"(__cl_to) \ : "r"(__do_clear_user), "0"(__cl_len), "1"(__cl_to) \ : "$1","$2","$3","$4","$5","$28","memory"); \ __cl_len; \ }) #define clear_user(to,n) \ ({ \ register void * __cl_to __asm__("$6") = (to); \ register long __cl_len __asm__("$0") = (n); \ if (__access_ok(((long)__cl_to),__cl_len,get_fs())) { \ __asm__ __volatile__( \ "jsr $28,(%2),__do_clear_user" \ : "=r"(__cl_len), "=r"(__cl_to) \ : "r"(__do_clear_user), "0"(__cl_len), "1"(__cl_to)\ : "$1","$2","$3","$4","$5","$28","memory"); \ } \ __cl_len; \ }) /* Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else strlen. */ extern long __strncpy_from_user(char *__to, const char *__from, long __to_len); #define strncpy_from_user(to,from,n) \ ({ \ char * __sfu_to = (to); \ const char * __sfu_from = (from); \ long __sfu_ret = -EFAULT; \ if (__access_ok(((long)__sfu_from),0,get_fs())) \ __sfu_ret = __strncpy_from_user(__sfu_to,__sfu_from,(n)); \ __sfu_ret; \ }) /* Returns: 0 if bad, string length+1 (memory size) of string if ok */ extern long __strlen_user(const char *); extern inline long strlen_user(const char *str) { return access_ok(VERIFY_READ,str,0) ? __strlen_user(str) : 0; } /* * About the exception table: * * - insn is a 32-bit offset off of the kernel's or module's gp. * - nextinsn is a 16-bit offset off of the faulting instruction * (not off of the *next* instruction as branches are). * - errreg is the register in which to place -EFAULT. * - valreg is the final target register for the load sequence * and will be zeroed. * * Either errreg or valreg may be $31, in which case nothing happens. * * The exception fixup information "just so happens" to be arranged * as in a MEM format instruction. This lets us emit our three * values like so: * * lda valreg, nextinsn(errreg) * */ struct exception_table_entry { signed int insn; union exception_fixup { unsigned unit; struct { signed int nextinsn : 16; unsigned int errreg : 5; unsigned int valreg : 5; } bits; } fixup; }; /* Returns 0 if exception not found and fixup.unit otherwise. */ extern unsigned search_exception_table(unsigned long); /* Returns the new pc */ #define fixup_exception(map_reg, fixup_unit, pc) \ ({ \ union exception_fixup __fie_fixup; \ __fie_fixup.unit = fixup_unit; \ if (__fie_fixup.bits.valreg != 31) \ map_reg(__fie_fixup.bits.valreg) = 0; \ if (__fie_fixup.bits.errreg != 31) \ map_reg(__fie_fixup.bits.errreg) = -EFAULT; \ (pc) + __fie_fixup.bits.nextinsn; \ }) #endif /* __ALPHA_UACCESS_H */ |