Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | /* * Basic four-word fraction declaration and manipulation. * * When adding quadword support for 32 bit machines, we need * to be a little careful as double multiply uses some of these * macros: (in op-2.h) * _FP_MUL_MEAT_2_wide() uses _FP_FRAC_DECL_4, _FP_FRAC_WORD_4, * _FP_FRAC_ADD_4, _FP_FRAC_SRS_4 * _FP_MUL_MEAT_2_gmp() uses _FP_FRAC_SRS_4 (and should use * _FP_FRAC_DECL_4: it appears to be broken and is not used * anywhere anyway. ) * * I've now fixed all the macros that were here from the sparc64 code. * [*none* of the shift macros were correct!] -- PMM 02/1998 * * The only quadword stuff that remains to be coded is: * 1) the conversion to/from ints, which requires * that we check (in op-common.h) that the following do the right thing * for quadwords: _FP_TO_INT(Q,4,r,X,rsz,rsg), _FP_FROM_INT(Q,4,X,r,rs,rt) * 2) multiply, divide and sqrt, which require: * _FP_MUL_MEAT_4_*(R,X,Y), _FP_DIV_MEAT_4_*(R,X,Y), _FP_SQRT_MEAT_4(R,S,T,X,q), * This also needs _FP_MUL_MEAT_Q and _FP_DIV_MEAT_Q to be defined to * some suitable _FP_MUL_MEAT_4_* macros in sfp-machine.h. * [we're free to choose whatever FP_MUL_MEAT_4_* macros we need for * these; they are used nowhere else. ] */ #define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4] #define _FP_FRAC_COPY_4(D,S) \ (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \ D##_f[2] = S##_f[2], D##_f[3] = S##_f[3]) /* The _FP_FRAC_SET_n(X,I) macro is intended for use with another * macro such as _FP_ZEROFRAC_n which returns n comma separated values. * The result is that we get an expansion of __FP_FRAC_SET_n(X,I0,I1,I2,I3) * which just assigns the In values to the array X##_f[]. * This is why the number of parameters doesn't appear to match * at first glance... -- PMM */ #define _FP_FRAC_SET_4(X,I) __FP_FRAC_SET_4(X, I) #define _FP_FRAC_HIGH_4(X) (X##_f[3]) #define _FP_FRAC_LOW_4(X) (X##_f[0]) #define _FP_FRAC_WORD_4(X,w) (X##_f[w]) #define _FP_FRAC_SLL_4(X,N) \ do { \ _FP_I_TYPE _up, _down, _skip, _i; \ _skip = (N) / _FP_W_TYPE_SIZE; \ _up = (N) % _FP_W_TYPE_SIZE; \ _down = _FP_W_TYPE_SIZE - _up; \ for (_i = 3; _i > _skip; --_i) \ X##_f[_i] = X##_f[_i-_skip] << _up | X##_f[_i-_skip-1] >> _down; \ /* bugfixed: was X##_f[_i] <<= _up; -- PMM 02/1998 */ \ X##_f[_i] = X##_f[0] << _up; \ for (--_i; _i >= 0; --_i) \ X##_f[_i] = 0; \ } while (0) /* This one was broken too */ #define _FP_FRAC_SRL_4(X,N) \ do { \ _FP_I_TYPE _up, _down, _skip, _i; \ _skip = (N) / _FP_W_TYPE_SIZE; \ _down = (N) % _FP_W_TYPE_SIZE; \ _up = _FP_W_TYPE_SIZE - _down; \ for (_i = 0; _i < 3-_skip; ++_i) \ X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up; \ X##_f[_i] = X##_f[3] >> _down; \ for (++_i; _i < 4; ++_i) \ X##_f[_i] = 0; \ } while (0) /* Right shift with sticky-lsb. * What this actually means is that we do a standard right-shift, * but that if any of the bits that fall off the right hand side * were one then we always set the LSbit. */ #define _FP_FRAC_SRS_4(X,N,size) \ do { \ _FP_I_TYPE _up, _down, _skip, _i; \ _FP_W_TYPE _s; \ _skip = (N) / _FP_W_TYPE_SIZE; \ _down = (N) % _FP_W_TYPE_SIZE; \ _up = _FP_W_TYPE_SIZE - _down; \ for (_s = _i = 0; _i < _skip; ++_i) \ _s |= X##_f[_i]; \ _s |= X##_f[_i] << _up; \ /* s is now != 0 if we want to set the LSbit */ \ for (_i = 0; _i < 3-_skip; ++_i) \ X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up; \ X##_f[_i] = X##_f[3] >> _down; \ for (++_i; _i < 4; ++_i) \ X##_f[_i] = 0; \ /* don't fix the LSB until the very end when we're sure f[0] is stable */ \ X##_f[0] |= (_s != 0); \ } while (0) #define _FP_FRAC_ADD_4(R,X,Y) \ __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \ X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) #define _FP_FRAC_SUB_4(R,X,Y) \ __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \ X##_f[3], X##_f[2], X##_f[1], X##_f[0], \ Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0]) #define _FP_FRAC_ADDI_4(X,I) \ __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I) #define _FP_ZEROFRAC_4 0,0,0,0 #define _FP_MINFRAC_4 0,0,0,1 #define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0) #define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE)X##_f[3] < 0) #define _FP_FRAC_OVERP_4(fs,X) (X##_f[0] & _FP_OVERFLOW_##fs) #define _FP_FRAC_EQ_4(X,Y) \ (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \ && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3]) #define _FP_FRAC_GT_4(X,Y) \ (X##_f[3] > Y##_f[3] || \ (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \ (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \ (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0]) \ )) \ )) \ ) #define _FP_FRAC_GE_4(X,Y) \ (X##_f[3] > Y##_f[3] || \ (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \ (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \ (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0]) \ )) \ )) \ ) #define _FP_FRAC_CLZ_4(R,X) \ do { \ if (X##_f[3]) \ { \ __FP_CLZ(R,X##_f[3]); \ } \ else if (X##_f[2]) \ { \ __FP_CLZ(R,X##_f[2]); \ R += _FP_W_TYPE_SIZE; \ } \ else if (X##_f[1]) \ { \ __FP_CLZ(R,X##_f[2]); \ R += _FP_W_TYPE_SIZE*2; \ } \ else \ { \ __FP_CLZ(R,X##_f[0]); \ R += _FP_W_TYPE_SIZE*3; \ } \ } while(0) #define _FP_UNPACK_RAW_4(fs, X, val) \ do { \ union _FP_UNION_##fs _flo; _flo.flt = (val); \ X##_f[0] = _flo.bits.frac0; \ X##_f[1] = _flo.bits.frac1; \ X##_f[2] = _flo.bits.frac2; \ X##_f[3] = _flo.bits.frac3; \ X##_e = _flo.bits.exp; \ X##_s = _flo.bits.sign; \ } while (0) #define _FP_PACK_RAW_4(fs, val, X) \ do { \ union _FP_UNION_##fs _flo; \ _flo.bits.frac0 = X##_f[0]; \ _flo.bits.frac1 = X##_f[1]; \ _flo.bits.frac2 = X##_f[2]; \ _flo.bits.frac3 = X##_f[3]; \ _flo.bits.exp = X##_e; \ _flo.bits.sign = X##_s; \ (val) = _flo.flt; \ } while (0) /* * Internals */ #define __FP_FRAC_SET_4(X,I3,I2,I1,I0) \ (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0) #ifndef __FP_FRAC_ADD_4 #define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ (r0 = x0 + y0, \ r1 = x1 + y1 + (r0 < x0), \ r2 = x2 + y2 + (r1 < x1), \ r3 = x3 + y3 + (r2 < x2)) #endif #ifndef __FP_FRAC_SUB_4 #define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ (r0 = x0 - y0, \ r1 = x1 - y1 - (r0 > x0), \ r2 = x2 - y2 - (r1 > x1), \ r3 = x3 - y3 - (r2 > x2)) #endif #ifndef __FP_FRAC_ADDI_4 /* I always wanted to be a lisp programmer :-> */ #define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \ (x3 += ((x2 += ((x1 += ((x0 += i) < x0)) < x1) < x2))) #endif /* Convert FP values between word sizes. This appears to be more * complicated than I'd have expected it to be, so these might be * wrong... These macros are in any case somewhat bogus because they * use information about what various FRAC_n variables look like * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do * the ones in op-2.h and op-1.h. */ #define _FP_FRAC_CONV_1_4(dfs, sfs, D, S) \ do { \ _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ _FP_WFRACBITS_##sfs); \ D##_f = S##_f[0]; \ } while (0) #define _FP_FRAC_CONV_2_4(dfs, sfs, D, S) \ do { \ _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ _FP_WFRACBITS_##sfs); \ D##_f0 = S##_f[0]; \ D##_f1 = S##_f[1]; \ } while (0) /* Assembly/disassembly for converting to/from integral types. * No shifting or overflow handled here. */ /* Put the FP value X into r, which is an integer of size rsize. */ #define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \ do { \ if (rsize <= _FP_W_TYPE_SIZE) \ r = X##_f[0]; \ else if (rsize <= 2*_FP_W_TYPE_SIZE) \ { \ r = X##_f[1]; \ r <<= _FP_W_TYPE_SIZE; \ r += X##_f[0]; \ } \ else \ { \ /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \ /* and int == 4words as a single case. */ \ r = X##_f[3]; \ r <<= _FP_W_TYPE_SIZE; \ r += X##_f[2]; \ r <<= _FP_W_TYPE_SIZE; \ r += X##_f[1]; \ r <<= _FP_W_TYPE_SIZE; \ r += X##_f[0]; \ } \ } while (0) /* "No disassemble Number Five!" */ /* move an integer of size rsize into X's fractional part. We rely on * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid * having to mask the values we store into it. */ #define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \ do { \ X##_f[0] = r; \ X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \ X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \ X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \ } while (0); #define _FP_FRAC_CONV_4_1(dfs, sfs, D, S) \ do { \ D##_f[0] = S##_f; \ D##_f[1] = D##_f[2] = D##_f[3] = 0; \ _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ } while (0) #define _FP_FRAC_CONV_4_2(dfs, sfs, D, S) \ do { \ D##_f[0] = S##_f0; \ D##_f[1] = S##_f1; \ D##_f[2] = D##_f[3] = 0; \ _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ } while (0) /* FIXME! This has to be written */ #define _FP_SQRT_MEAT_4(R, S, T, X, q) |