Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 | #ifndef _ALPHA_PGTABLE_H #define _ALPHA_PGTABLE_H /* * This file contains the functions and defines necessary to modify and use * the alpha page table tree. * * This hopefully works with any standard alpha page-size, as defined * in <asm/page.h> (currently 8192). */ #include <asm/system.h> #include <asm/mmu_context.h> /* Caches aren't brain-dead on the alpha. */ #define flush_cache_all() do { } while (0) #define flush_cache_mm(mm) do { } while (0) #define flush_cache_range(mm, start, end) do { } while (0) #define flush_cache_page(vma, vmaddr) do { } while (0) #define flush_page_to_ram(page) do { } while (0) /* * Force a context reload. This is needed when we * change the page table pointer or when we update * the ASN of the current process. */ static inline void reload_context(struct task_struct *task) { __asm__ __volatile__( "bis %0,%0,$16\n\t" "call_pal %1" : /* no outputs */ : "r" (&task->tss), "i" (PAL_swpctx) : "$0", "$1", "$16", "$22", "$23", "$24", "$25"); } /* * Use a few helper functions to hide the ugly broken ASN * numbers on early alpha's (ev4 and ev45) */ #ifdef BROKEN_ASN #define flush_tlb_current(x) tbiap() #define flush_tlb_other(x) do { } while (0) #else extern void get_new_asn_and_reload(struct task_struct *, struct mm_struct *); #define flush_tlb_current(mm) get_new_asn_and_reload(current, mm) #define flush_tlb_other(mm) do { (mm)->context = 0; } while (0) #endif /* * Flush just one page in the current TLB set. * We need to be very careful about the icache here, there * is no way to invalidate a specific icache page.. */ static inline void flush_tlb_current_page(struct mm_struct * mm, struct vm_area_struct *vma, unsigned long addr) { #ifdef BROKEN_ASN tbi(2 + ((vma->vm_flags & VM_EXEC) != 0), addr); #else if (vma->vm_flags & VM_EXEC) flush_tlb_current(mm); else tbi(2, addr); #endif } /* * Flush current user mapping. */ static inline void flush_tlb(void) { flush_tlb_current(current->mm); } /* * Flush everything (kernel mapping may also have * changed due to vmalloc/vfree) */ static inline void flush_tlb_all(void) { tbia(); } /* * Flush a specified user mapping */ static inline void flush_tlb_mm(struct mm_struct *mm) { if (mm != current->mm) flush_tlb_other(mm); else flush_tlb_current(mm); } /* * Page-granular tlb flush. * * do a tbisd (type = 2) normally, and a tbis (type = 3) * if it is an executable mapping. We want to avoid the * itlb flush, because that potentially also does a * icache flush. */ static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { struct mm_struct * mm = vma->vm_mm; if (mm != current->mm) flush_tlb_other(mm); else flush_tlb_current_page(mm, vma, addr); } /* * Flush a specified range of user mapping: on the * alpha we flush the whole user tlb */ static inline void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { flush_tlb_mm(mm); } /* Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) /* PMD_SHIFT determines the size of the area a second-level page table can map */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3)) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* * entries per page directory level: the alpha is three-level, with * all levels having a one-page page table. * * The PGD is special: the last entry is reserved for self-mapping. */ #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3)) #define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3)) #define PTRS_PER_PGD ((1UL << (PAGE_SHIFT-3))-1) /* the no. of pointers that fit on a page: this will go away */ #define PTRS_PER_PAGE (1UL << (PAGE_SHIFT-3)) #define VMALLOC_START 0xFFFFFE0000000000 #define VMALLOC_VMADDR(x) ((unsigned long)(x)) /* * OSF/1 PAL-code-imposed page table bits */ #define _PAGE_VALID 0x0001 #define _PAGE_FOR 0x0002 /* used for page protection (fault on read) */ #define _PAGE_FOW 0x0004 /* used for page protection (fault on write) */ #define _PAGE_FOE 0x0008 /* used for page protection (fault on exec) */ #define _PAGE_ASM 0x0010 #define _PAGE_KRE 0x0100 /* xxx - see below on the "accessed" bit */ #define _PAGE_URE 0x0200 /* xxx */ #define _PAGE_KWE 0x1000 /* used to do the dirty bit in software */ #define _PAGE_UWE 0x2000 /* used to do the dirty bit in software */ /* .. and these are ours ... */ #define _PAGE_DIRTY 0x20000 #define _PAGE_ACCESSED 0x40000 /* * NOTE! The "accessed" bit isn't necessarily exact: it can be kept exactly * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it. * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use * the KRE/URE bits to watch for it. That way we don't need to overload the * KWE/UWE bits with both handling dirty and accessed. * * Note that the kernel uses the accessed bit just to check whether to page * out a page or not, so it doesn't have to be exact anyway. */ #define __DIRTY_BITS (_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE) #define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE) #define _PFN_MASK 0xFFFFFFFF00000000 #define _PAGE_TABLE (_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS) #define _PAGE_CHG_MASK (_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS) /* * All the normal masks have the "page accessed" bits on, as any time they are used, * the page is accessed. They are cleared only by the page-out routines */ #define PAGE_NONE __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE) #define PAGE_SHARED __pgprot(_PAGE_VALID | __ACCESS_BITS) #define PAGE_COPY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) #define PAGE_READONLY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW) #define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE) #define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x)) #define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW)) #define _PAGE_S(x) _PAGE_NORMAL(x) /* * The hardware can handle write-only mappings, but as the alpha * architecture does byte-wide writes with a read-modify-write * sequence, it's not practical to have write-without-read privs. * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in * arch/alpha/mm/fault.c) */ /* xwr */ #define __P000 _PAGE_P(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR) #define __P001 _PAGE_P(_PAGE_FOE | _PAGE_FOW) #define __P010 _PAGE_P(_PAGE_FOE) #define __P011 _PAGE_P(_PAGE_FOE) #define __P100 _PAGE_P(_PAGE_FOW | _PAGE_FOR) #define __P101 _PAGE_P(_PAGE_FOW) #define __P110 _PAGE_P(0) #define __P111 _PAGE_P(0) #define __S000 _PAGE_S(_PAGE_FOE | _PAGE_FOW | _PAGE_FOR) #define __S001 _PAGE_S(_PAGE_FOE | _PAGE_FOW) #define __S010 _PAGE_S(_PAGE_FOE) #define __S011 _PAGE_S(_PAGE_FOE) #define __S100 _PAGE_S(_PAGE_FOW | _PAGE_FOR) #define __S101 _PAGE_S(_PAGE_FOW) #define __S110 _PAGE_S(0) #define __S111 _PAGE_S(0) /* * BAD_PAGETABLE is used when we need a bogus page-table, while * BAD_PAGE is used for a bogus page. * * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern pte_t __bad_page(void); extern pmd_t * __bad_pagetable(void); extern unsigned long __zero_page(void); #define BAD_PAGETABLE __bad_pagetable() #define BAD_PAGE __bad_page() #define ZERO_PAGE 0xfffffc000030A000 /* number of bits that fit into a memory pointer */ #define BITS_PER_PTR (8*sizeof(unsigned long)) /* to align the pointer to a pointer address */ #define PTR_MASK (~(sizeof(void*)-1)) /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ #define SIZEOF_PTR_LOG2 3 /* to find an entry in a page-table */ #define PAGE_PTR(address) \ ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) extern unsigned long high_memory; /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ extern inline pte_t mk_pte(unsigned long page, pgprot_t pgprot) { pte_t pte; pte_val(pte) = ((page-PAGE_OFFSET) << (32-PAGE_SHIFT)) | pgprot_val(pgprot); return pte; } extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep) { pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp) { pgd_val(*pgdp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); } extern inline unsigned long pte_page(pte_t pte) { return PAGE_OFFSET + ((pte_val(pte) & _PFN_MASK) >> (32-PAGE_SHIFT)); } extern inline unsigned long pmd_page(pmd_t pmd) { return PAGE_OFFSET + ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)); } extern inline unsigned long pgd_page(pgd_t pgd) { return PAGE_OFFSET + ((pgd_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)); } extern inline int pte_none(pte_t pte) { return !pte_val(pte); } extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; } extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; } extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); } extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE || pmd_page(pmd) > high_memory; } extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; } extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; } extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); } extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & ~_PFN_MASK) != _PAGE_TABLE || pgd_page(pgd) > high_memory; } extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_VALID; } extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ extern inline int pte_read(pte_t pte) { return !(pte_val(pte) & _PAGE_FOR); } extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_FOW); } extern inline int pte_exec(pte_t pte) { return !(pte_val(pte) & _PAGE_FOE); } extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOW; return pte; } extern inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOR; return pte; } extern inline pte_t pte_exprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOE; return pte; } extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(__DIRTY_BITS); return pte; } extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(__ACCESS_BITS); return pte; } extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_FOW; return pte; } extern inline pte_t pte_mkread(pte_t pte) { pte_val(pte) &= ~_PAGE_FOR; return pte; } extern inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) &= ~_PAGE_FOE; return pte; } extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= __DIRTY_BITS; return pte; } extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= __ACCESS_BITS; return pte; } /* * To set the page-dir. Note the self-mapping in the last entry * * Also note that if we update the current process ptbr, we need to * update the PAL-cached ptbr value as well.. There doesn't seem to * be any "wrptbr" PAL-insn, but we can do a dummy swpctx to ourself * instead. */ extern inline void SET_PAGE_DIR(struct task_struct * tsk, pgd_t * pgdir) { pgd_val(pgdir[PTRS_PER_PGD]) = pte_val(mk_pte((unsigned long) pgdir, PAGE_KERNEL)); tsk->tss.ptbr = ((unsigned long) pgdir - PAGE_OFFSET) >> PAGE_SHIFT; if (tsk == current) reload_context(tsk); } #define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address)) /* to find an entry in a page-table-directory. */ extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + ((address >> PGDIR_SHIFT) & (PTRS_PER_PAGE - 1)); } /* Find an entry in the second-level page table.. */ extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1)); } /* Find an entry in the third-level page table.. */ extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1)); } /* * Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any. */ extern inline void pte_free_kernel(pte_t * pte) { free_page((unsigned long) pte); } extern inline pte_t * pte_alloc_kernel(pmd_t *pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t *page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { pmd_set(pmd, page); return page + address; } pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } extern inline void pmd_free_kernel(pmd_t * pmd) { free_page((unsigned long) pmd); } extern inline pmd_t * pmd_alloc_kernel(pgd_t *pgd, unsigned long address) { address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); if (pgd_none(*pgd)) { pmd_t *page = (pmd_t *) get_free_page(GFP_KERNEL); if (pgd_none(*pgd)) { if (page) { pgd_set(pgd, page); return page + address; } pgd_set(pgd, BAD_PAGETABLE); return NULL; } free_page((unsigned long) page); } if (pgd_bad(*pgd)) { printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd)); pgd_set(pgd, BAD_PAGETABLE); return NULL; } return (pmd_t *) pgd_page(*pgd) + address; } extern inline void pte_free(pte_t * pte) { free_page((unsigned long) pte); } extern inline pte_t * pte_alloc(pmd_t *pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t *page = (pte_t *) get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { pmd_set(pmd, page); return page + address; } pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } free_page((unsigned long) page); } if (pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } return (pte_t *) pmd_page(*pmd) + address; } extern inline void pmd_free(pmd_t * pmd) { free_page((unsigned long) pmd); } extern inline pmd_t * pmd_alloc(pgd_t *pgd, unsigned long address) { address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); if (pgd_none(*pgd)) { pmd_t *page = (pmd_t *) get_free_page(GFP_KERNEL); if (pgd_none(*pgd)) { if (page) { pgd_set(pgd, page); return page + address; } pgd_set(pgd, BAD_PAGETABLE); return NULL; } free_page((unsigned long) page); } if (pgd_bad(*pgd)) { printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd)); pgd_set(pgd, BAD_PAGETABLE); return NULL; } return (pmd_t *) pgd_page(*pgd) + address; } extern inline void pgd_free(pgd_t * pgd) { free_page((unsigned long) pgd); } extern inline pgd_t * pgd_alloc(void) { return (pgd_t *) get_free_page(GFP_KERNEL); } extern pgd_t swapper_pg_dir[1024]; /* * The alpha doesn't have any external MMU info: the kernel page * tables contain all the necessary information. */ extern inline void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) { } /* * Non-present pages: high 24 bits are offset, next 8 bits type, * low 32 bits zero.. */ extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) { pte_t pte; pte_val(pte) = (type << 32) | (offset << 40); return pte; } #define SWP_TYPE(entry) (((entry) >> 32) & 0xff) #define SWP_OFFSET(entry) ((entry) >> 40) #define SWP_ENTRY(type,offset) pte_val(mk_swap_pte((type),(offset))) #endif /* _ALPHA_PGTABLE_H */ |