Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 | /* tulip.c: A DEC 21040-family ethernet driver for linux. */ /* NOTICE: THIS IS THE ALPHA TEST VERSION! Written 1994-1997 by Donald Becker. This software may be used and distributed according to the terms of the GNU Public License, incorporated herein by reference. This driver is for the SMC EtherPower PCI ethernet adapter. It should work with most other DEC 21*40-based ethercards. The author may be reached as becker@CESDIS.gsfc.nasa.gov, or C/O Center of Excellence in Space Data and Information Sciences Code 930.5, Goddard Space Flight Center, Greenbelt MD 20771 Support and updates available at http://cesdis.gsfc.nasa.gov/linux/drivers/tulip.html */ static const char *version = "tulip.c:v0.79 9/3/97 becker@cesdis.gsfc.nasa.gov\n"; /* A few user-configurable values. */ /* Set if the PCI BIOS detects the chips on a multiport board backwards. */ #ifdef REVERSE_PROBE_ORDER static int reverse_probe = 1; #else static int reverse_probe = 0; #endif /* Keep the ring sizes a power of two for efficiency. Making the Tx ring too large decreases the effectiveness of channel bonding and packet priority. There are no ill effects from too-large receive rings. */ #define TX_RING_SIZE 16 #define RX_RING_SIZE 16 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */ static const rx_copybreak = 200; /* The following example shows how to always use the 10base2 port. */ #ifdef notdef #define TULIP_DEFAULT_MEDIA 1 /* 1 == 10base2 */ #define TULIP_NO_MEDIA_SWITCH /* Don't switch from this port */ #endif /* Define to force full-duplex operation on all Tulip interfaces. */ /* #define TULIP_FULL_DUPLEX 1 */ /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT ((2000*HZ)/1000) #include <linux/config.h> #ifdef MODULE #ifdef MODVERSIONS #include <linux/modversions.h> #endif #include <linux/module.h> #include <linux/version.h> #else #define MOD_INC_USE_COUNT #define MOD_DEC_USE_COUNT #endif #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/malloc.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/bios32.h> #include <asm/processor.h> /* Processor type for cache alignment. */ #include <asm/bitops.h> #include <asm/io.h> #include <asm/dma.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> /* Kernel compatibility defines, common to David Hind's PCMCIA package. This is only in the support-all-kernels source code. */ #include <linux/version.h> /* Evil, but neccessary */ #if defined (LINUX_VERSION_CODE) && LINUX_VERSION_CODE < 0x10300 #define RUN_AT(x) (x) /* What to put in timer->expires. */ #define DEV_ALLOC_SKB(len) alloc_skb(len, GFP_ATOMIC) #define virt_to_bus(addr) ((unsigned long)addr) #define bus_to_virt(addr) ((void*)addr) #else /* 1.3.0 and later */ #define RUN_AT(x) (jiffies + (x)) #define DEV_ALLOC_SKB(len) dev_alloc_skb(len + 2) #endif #if defined (LINUX_VERSION_CODE) && LINUX_VERSION_CODE < 0x10338 #ifdef MODULE #if !defined(CONFIG_MODVERSIONS) && !defined(__NO_VERSION__) char kernel_version[] = UTS_RELEASE; #endif #else #undef MOD_INC_USE_COUNT #define MOD_INC_USE_COUNT #undef MOD_DEC_USE_COUNT #define MOD_DEC_USE_COUNT #endif #endif /* 1.3.38 */ #if (LINUX_VERSION_CODE >= 0x10344) #define NEW_MULTICAST #include <linux/delay.h> #endif #if (LINUX_VERSION_CODE >= 0x20100) char kernel_version[] = UTS_RELEASE; #endif #ifdef SA_SHIRQ #define IRQ(irq, dev_id, pt_regs) (irq, dev_id, pt_regs) #else #define IRQ(irq, dev_id, pt_regs) (irq, pt_regs) #endif #if (LINUX_VERSION_CODE < 0x20123) #define test_and_set_bit(val, addr) set_bit(val, addr) #endif /* This my implementation of shared IRQs, now only used for 1.2.13. */ #ifdef HAVE_SHARED_IRQ #define USE_SHARED_IRQ #include <linux/shared_irq.h> #endif /* The total size is unusually large: The 21040 aligns each of its 16 longword-wide registers on a quadword boundary. */ #define TULIP_TOTAL_SIZE 0x80 #ifdef HAVE_DEVLIST struct netdev_entry tulip_drv = {"Tulip", tulip_pci_probe, TULIP_TOTAL_SIZE, NULL}; #endif #ifdef TULIP_DEBUG int tulip_debug = TULIP_DEBUG; #else int tulip_debug = 1; #endif /* Theory of Operation I. Board Compatibility This device driver is designed for the DECchip "Tulip", Digital's single-chip ethernet controllers for PCI. Supported members of the family are the 21040, 21041, 21140, 21140A and 21142. These chips are used on many PCI boards including the SMC EtherPower series. II. Board-specific settings PCI bus devices are configured by the system at boot time, so no jumpers need to be set on the board. The system BIOS preferably should assign the PCI INTA signal to an otherwise unused system IRQ line. Note: Kernel versions earlier than 1.3.73 do not support shared PCI interrupt lines. III. Driver operation IIIa. Ring buffers The Tulip can use either ring buffers or lists of Tx and Rx descriptors. This driver uses statically allocated rings of Rx and Tx descriptors, set at compile time by RX/TX_RING_SIZE. This version of the driver allocates skbuffs for the Rx ring buffers at open() time and passes the skb->data field to the Tulip as receive data buffers. When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is copied to the new skbuff. When the incoming frame is larger, the skbuff is passed directly up the protocol stack and replaced by a newly allocated skbuff. The RX_COPYBREAK value is chosen to trade-off the memory wasted by using a full-sized skbuff for small frames vs. the copying costs of larger frames. For small frames the copying cost is negligible (esp. considering that we are pre-loading the cache with immediately useful header information). For large frames the copying cost is non-trivial, and the larger copy might flush the cache of useful data. A subtle aspect of this choice is that the Tulip only receives into longword aligned buffers, thus the IP header at offset 14 isn't longword aligned for further processing. Copied frames are put into the new skbuff at an offset of "+2", thus copying has the beneficial effect of aligning the IP header and preloading the cache. IIIC. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and other software. The send packet thread has partial control over the Tx ring and 'dev->tbusy' flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next queue slot is empty, it clears the tbusy flag when finished otherwise it sets the 'tp->tx_full' flag. The interrupt handler has exclusive control over the Rx ring and records stats from the Tx ring. (The Tx-done interrupt can't be selectively turned off, so we can't avoid the interrupt overhead by having the Tx routine reap the Tx stats.) After reaping the stats, it marks the queue entry as empty by setting the 'base' to zero. Iff the 'tp->tx_full' flag is set, it clears both the tx_full and tbusy flags. IV. Notes Thanks to Duke Kamstra of SMC for providing an EtherPower board. IVb. References http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html http://www.digital.com (search for current 21*4* datasheets and "21X4 SROM") http://www.national.com/pf/DP/DP83840.html IVc. Errata The DEC databook doesn't document which Rx filter settings accept broadcast packets. Nor does it document how to configure the part to configure the serial subsystem for normal (vs. loopback) operation or how to have it autoswitch between internal 10baseT, SIA and AUI transceivers. The 21040 databook claims that CSR13, CSR14, and CSR15 should each be the last register of the set CSR12-15 written. Hmmm, now how is that possible? */ /* A few values that may be tweaked. */ #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ /* This is a mysterious value that can be written to CSR11 in the 21040 (only) to support a pre-NWay full-duplex signaling mechanism using short frames. No one knows what it should be, but if left at its default value some 10base2(!) packets trigger a full-duplex-request interrupt. */ #define FULL_DUPLEX_MAGIC 0x6969 #ifndef PCI_VENDOR_ID_DEC /* Now defined in linux/pci.h */ #define PCI_VENDOR_ID_DEC 0x1011 #define PCI_DEVICE_ID_TULIP 0x0002 /* 21040. */ #define PCI_DEVICE_ID_TULIP_FAST 0x0009 /* 21140. */ #endif #ifndef PCI_DEVICE_ID_DEC_TULIP_PLUS #define PCI_DEVICE_ID_DEC_TULIP_PLUS 0x0014 /* 21041. */ #endif #ifndef PCI_DEVICE_ID_DEC_TULIP_21142 #define PCI_DEVICE_ID_DEC_TULIP_21142 0x0019 #endif /* The rest of these values should never change. */ static void tulip_timer(unsigned long data); /* A table describing the chip types. */ static struct tulip_chip_table { int device_id; char *chip_name; int flags; void (*media_timer)(unsigned long data); } tulip_tbl[] = { { PCI_DEVICE_ID_DEC_TULIP, "DS21040 Tulip", 0, tulip_timer }, { PCI_DEVICE_ID_DEC_TULIP_PLUS, "DS21041 Tulip", 0, tulip_timer }, { PCI_DEVICE_ID_DEC_TULIP_FAST, "DS21140 Tulip", 0, tulip_timer }, /* + 21140A*/ { PCI_DEVICE_ID_DEC_TULIP_21142, "DS21142 Tulip", 0, tulip_timer }, /* + 21143 */ {0, 0, 0, 0}, }; /* This matches the table above. */ enum chips { DC21040=0, DC21041=1, DC21140=2, DC21142=3, }; static const char * const medianame[] = { "10baseT", "10base2", "AUI", "100baseTx", "10baseT-FD", "100baseTx-FD", "100baseT4", "100baseFx", "100baseFx-FD", "MII 10baseT", "MII 10baseT-FD", "MII", "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FD", "MII 100baseT4", }; /* A full-duplex map for above. */ static const char media_fd[] = {0,0,0,0, 0xff,0xff,0,0, 0xff,0,0xff,0x01, 0,0,0xff,0 }; /* 21041 transceiver register settings: 10-T, 10-2, AUI, 10-T, 10T-FD*/ static u16 t21041_csr13[] = { 0xEF05, 0xEF09, 0xEF09, 0xEF01, 0xEF09, }; static u16 t21041_csr14[] = { 0x7F3F, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, }; static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, }; static u16 t21142_csr13[] = { 0x0001, 0x0009, 0x0009, 0x0001, 0x0001, }; static u16 t21142_csr14[] = { 0xFFFF, 0x0705, 0x0705, 0x7F3F, 0x7F3D, }; static u16 t21142_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, }; /* Offsets to the Command and Status Registers, "CSRs". All accesses must be longword instructions and quadword aligned. */ enum tulip_offsets { CSR0=0, CSR1=0x08, CSR2=0x10, CSR3=0x18, CSR4=0x20, CSR5=0x28, CSR6=0x30, CSR7=0x38, CSR8=0x40, CSR9=0x48, CSR10=0x50, CSR11=0x58, CSR12=0x60, CSR13=0x68, CSR14=0x70, CSR15=0x78 }; /* The bits in the CSR5 status registers, mostly interrupt sources. */ enum status_bits { TimerInt=0x800, TPLnkFail=0x1000, TPLnkPass=0x10, RxJabber=0x200, RxDied=0x100, RxNoBuf=0x80, RxIntr=0x40, TxFIFOUnderflow=0x20, TxJabber=0x08, TxNoBuf=0x04, TxDied=0x02, TxIntr=0x01, }; /* The Tulip Rx and Tx buffer descriptors. */ struct tulip_rx_desc { s32 status; s32 length; u32 buffer1, buffer2; }; struct tulip_tx_desc { s32 status; s32 length; u32 buffer1, buffer2; /* We use only buffer 1. */ }; struct medialeaf { u8 type; u8 media; unsigned char *leafdata; }; struct mediatable { u16 defaultmedia; u8 leafcount, csr12dir; /* General purpose pin directions. */ unsigned has_mii:1; struct medialeaf mleaf[0]; }; struct mediainfo { struct mediainfo *next; int info_type; int index; struct non_mii { char media; unsigned char csr12val; char bitnum, flags;} non_mii; unsigned char *info; }; struct tulip_private { char devname[8]; /* Used only for kernel debugging. */ const char *product_name; struct device *next_module; struct tulip_rx_desc rx_ring[RX_RING_SIZE]; struct tulip_tx_desc tx_ring[TX_RING_SIZE]; /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; /* The addresses of receive-in-place skbuffs. */ struct sk_buff* rx_skbuff[RX_RING_SIZE]; char *rx_buffs; /* Address of temporary Rx buffers. */ int setup_frame[48]; /* Pseudo-Tx frame to init address table. */ int chip_id; int revision; #if LINUX_VERSION_CODE > 0x20139 struct net_device_stats stats; #else struct enet_statistics stats; #endif struct timer_list timer; /* Media selection timer. */ unsigned int cur_rx, cur_tx; /* The next free ring entry */ unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ unsigned int tx_full:1; /* The Tx queue is full. */ unsigned int full_duplex:1; /* Full-duplex operation requested. */ unsigned int default_port:4; /* Last dev->if_port value. */ unsigned int media2:4; /* Secondary monitored media port. */ unsigned int medialock:1; /* Don't sense media type. */ unsigned int mediasense:1; /* Media sensing in progress. */ unsigned int csr6; /* Current CSR6 control settings. */ unsigned char eeprom[128]; /* Serial EEPROM contents. */ signed char phys[4]; /* MII device addresses. */ struct mediatable *mtable; int cur_index; /* Current media index. */ unsigned char pci_bus, pci_device_fn; int pad0, pad1; /* Used for 8-byte alignment */ }; /* Used to pass the full-duplex flag, etc. */ static int full_duplex[8] = {0, }; static int options[8] = {0, }; static struct device *tulip_probe1(struct device *dev, int ioaddr, int irq, int chip_id, int options); static void parse_eeprom(struct device *dev); static int read_eeprom(int ioaddr, int location); static int mdio_read(int ioaddr, int phy_id, int location); static void select_media(struct device *dev, int startup); static int tulip_open(struct device *dev); static void tulip_timer(unsigned long data); static void tulip_tx_timeout(struct device *dev); static void tulip_init_ring(struct device *dev); static int tulip_start_xmit(struct sk_buff *skb, struct device *dev); static int tulip_rx(struct device *dev); static void tulip_interrupt IRQ(int irq, void *dev_instance, struct pt_regs *regs); static int tulip_close(struct device *dev); static struct enet_statistics *tulip_get_stats(struct device *dev); #ifdef NEW_MULTICAST static void set_multicast_list(struct device *dev); #else static void set_multicast_list(struct device *dev, int num_addrs, void *addrs); #endif #ifdef MODULE /* A list of all installed Tulip devices, for removing the driver module. */ static struct device *root_tulip_dev = NULL; #endif /* This 21040 probe no longer uses a large fixed contiguous Rx buffer region, but now receives directly into full-sized skbuffs that are allocated at open() time. This allows the probe routine to use the old driver initialization interface. */ int tulip_probe(struct device *dev) { int cards_found = 0; static int pci_index = 0; /* Static, for multiple probe calls. */ /* Ideally we would detect all network cards in slot order. That would be best done a central PCI probe dispatch, which wouldn't work well with the current structure. So instead we detect just the Tulip cards in slot order. */ if (pcibios_present()) { unsigned char pci_bus, pci_device_fn; for (;pci_index < 0xff; pci_index++) { unsigned char pci_irq_line, pci_latency; unsigned short pci_command, vendor, device; unsigned int pci_ioaddr, chip_idx = 0; if (pcibios_find_class (PCI_CLASS_NETWORK_ETHERNET << 8, reverse_probe ? 0xfe - pci_index : pci_index, &pci_bus, &pci_device_fn) != PCIBIOS_SUCCESSFUL) if (reverse_probe) continue; else break; pcibios_read_config_word(pci_bus, pci_device_fn, PCI_VENDOR_ID, &vendor); pcibios_read_config_word(pci_bus, pci_device_fn, PCI_DEVICE_ID, &device); pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_INTERRUPT_LINE, &pci_irq_line); pcibios_read_config_dword(pci_bus, pci_device_fn, PCI_BASE_ADDRESS_0, &pci_ioaddr); /* Remove I/O space marker in bit 0. */ pci_ioaddr &= ~3; if (vendor != PCI_VENDOR_ID_DEC) continue; for (chip_idx = 0; tulip_tbl[chip_idx].chip_name; chip_idx++) if (device == tulip_tbl[chip_idx].device_id) break; if (tulip_tbl[chip_idx].chip_name == 0) { printk(KERN_INFO "Unknown Digital PCI ethernet chip type" " %4.4x"" detected: not configured.\n", device); continue; } if (tulip_debug > 2) printk(KERN_DEBUG "Found DEC PCI Tulip at I/O %#x, IRQ %d.\n", pci_ioaddr, pci_irq_line); if (check_region(pci_ioaddr, TULIP_TOTAL_SIZE)) continue; #ifdef MODULE dev = tulip_probe1(dev, pci_ioaddr, pci_irq_line, chip_idx, cards_found); #else dev = tulip_probe1(dev, pci_ioaddr, pci_irq_line, chip_idx, -1); #endif if (dev) { /* Get and check the bus-master and latency values. */ pcibios_read_config_word(pci_bus, pci_device_fn, PCI_COMMAND, &pci_command); if ( ! (pci_command & PCI_COMMAND_MASTER)) { printk(KERN_INFO " PCI Master Bit has not been set! Setting...\n"); pci_command |= PCI_COMMAND_MASTER; pcibios_write_config_word(pci_bus, pci_device_fn, PCI_COMMAND, pci_command); } pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency < 10) { printk(KERN_INFO " PCI latency timer (CFLT) is unreasonably" " low at %d. Setting to 64 clocks.\n", pci_latency); pcibios_write_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, 64); } else if (tulip_debug > 1) printk(KERN_INFO " PCI latency timer (CFLT) is %#x.\n", pci_latency); /* Bring the 21143 out power-down mode. */ if (device == PCI_DEVICE_ID_DEC_TULIP_21142) pcibios_write_config_dword(pci_bus, pci_device_fn, 0x40, 0x40000000); dev = 0; cards_found++; } } } return cards_found ? 0 : -ENODEV; } static struct device *tulip_probe1(struct device *dev, int ioaddr, int irq, int chip_id, int board_idx) { static int did_version = 0; /* Already printed version info. */ struct tulip_private *tp; /* See note below on the multiport cards. */ static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'}; static int last_irq = 0; int i; unsigned short sum; if (tulip_debug > 0 && did_version++ == 0) printk(KERN_INFO "%s", version); dev = init_etherdev(dev, 0); printk(KERN_INFO "%s: DEC %s at %#3x,", dev->name, tulip_tbl[chip_id].chip_name, ioaddr); /* Stop the chip's Tx and Rx processes. */ outl(inl(ioaddr + CSR6) & ~0x2002, ioaddr + CSR6); /* Clear the missed-packet counter. */ (volatile)inl(ioaddr + CSR8); if (chip_id == DC21041) { if (inl(ioaddr + CSR9) & 0x8000) { printk(" 21040 compatible mode,"); chip_id = DC21040; } else { printk(" 21041 mode,"); } } /* The station address ROM is read byte serially. The register must be polled, waiting for the value to be read bit serially from the EEPROM. */ sum = 0; if (chip_id == DC21040) { outl(0, ioaddr + CSR9); /* Reset the pointer with a dummy write. */ for (i = 0; i < 6; i++) { int value, boguscnt = 100000; do value = inl(ioaddr + CSR9); while (value < 0 && --boguscnt > 0); dev->dev_addr[i] = value; sum += value & 0xff; } } else { /* Must be a new chip, with a serial EEPROM interface. */ /* We read the whole EEPROM, and sort it out later. DEC has a specification _Digital Semiconductor 21X4 Serial ROM Format_ but early vendor boards just put the address in the first six EEPROM locations. */ unsigned char ee_data[128]; int sa_offset = 0; for (i = 0; i < sizeof(ee_data)/2; i++) ((u16 *)ee_data)[i] = read_eeprom(ioaddr, i); /* Detect the simple EEPROM format by the duplicated station addr. */ for (i = 0; i < 8; i ++) if (ee_data[i] != ee_data[16+i]) sa_offset = 20; for (i = 0; i < 6; i ++) { dev->dev_addr[i] = ee_data[i + sa_offset]; sum += ee_data[i + sa_offset]; } } /* On the Zynx 315 Etherarray and other multiport boards only the first Tulip has an EEPROM. The addresses of the subsequent ports are derived from the first. Many PCI BIOSes also incorrectly report the IRQ line, so we correct that here as well. */ if (sum == 0 || sum == 6*0xff) { printk(" EEPROM not present,"); for (i = 0; i < 5; i++) dev->dev_addr[i] = last_phys_addr[i]; dev->dev_addr[i] = last_phys_addr[i] + 1; irq = last_irq; } for (i = 0; i < 6; i++) printk(" %2.2x", last_phys_addr[i] = dev->dev_addr[i]); printk(", IRQ %d.\n", irq); last_irq = irq; /* We do a request_region() only to register /proc/ioports info. */ request_region(ioaddr, TULIP_TOTAL_SIZE, tulip_tbl[chip_id].chip_name); dev->base_addr = ioaddr; dev->irq = irq; /* Make certain the data structures are quadword aligned. */ tp = (void *)(((long)kmalloc(sizeof(*tp), GFP_KERNEL | GFP_DMA) + 7) & ~7); memset(tp, 0, sizeof(*tp)); dev->priv = tp; #ifdef MODULE tp->next_module = root_tulip_dev; root_tulip_dev = dev; #endif tp->chip_id = chip_id; #ifdef TULIP_FULL_DUPLEX tp->full_duplex = 1; #endif #ifdef TULIP_DEFAULT_MEDIA tp->default_port = TULIP_DEFAULT_MEDIA; #endif #ifdef TULIP_NO_MEDIA_SWITCH tp->medialock = 1; #endif /* The lower four bits are the media type. */ if (board_idx >= 0) { tp->full_duplex = (options[board_idx]&16) || full_duplex[board_idx]>0; tp->default_port = options[board_idx] & 15; if (tp->default_port) tp->medialock = 1; } /* This is logically part of probe1(), but too complex to write inline. */ if (chip_id != DC21040) parse_eeprom(dev); if (tp->mtable && tp->mtable->has_mii) { int phy, phy_idx; /* Find the connected MII xcvrs. Doing this in open() would allow detecting external xcvrs later, but takes much time. */ for (phy = 0, phy_idx = 0; phy < 32 && phy_idx < sizeof(tp->phys); phy++) { int mii_status = mdio_read(ioaddr, phy, 0); if (mii_status != 0xffff && mii_status != 0x0000) { tp->phys[phy_idx++] = phy; printk(KERN_INFO "%s: MII transceiver found at MDIO address %d.\n", dev->name, phy); } } if (phy_idx == 0) { printk(KERN_INFO "%s: ***WARNING***: No MII transceiver found!\n", dev->name); tp->phys[0] = 1; } } /* The Tulip-specific entries in the device structure. */ dev->open = &tulip_open; dev->hard_start_xmit = &tulip_start_xmit; dev->stop = &tulip_close; dev->get_stats = &tulip_get_stats; #ifdef HAVE_MULTICAST dev->set_multicast_list = &set_multicast_list; #endif /* Reset the xcvr interface and turn on heartbeat. */ switch (chip_id) { case DC21041: outl(0x00000000, ioaddr + CSR13); outl(0xFFFFFFFF, ioaddr + CSR14); outl(0x00000008, ioaddr + CSR15); /* Listen on AUI also. */ outl(inl(ioaddr + CSR6) | 0x200, ioaddr + CSR6); outl(0x0000EF05, ioaddr + CSR13); break; case DC21140: case DC21142: if (tp->mtable) outl(tp->mtable->csr12dir | 0x100, ioaddr + CSR12); break; case DC21040: outl(0x00000000, ioaddr + CSR13); outl(0x00000004, ioaddr + CSR13); break; } return dev; } /* Serial EEPROM section. */ /* The main routine to parse the very complicated SROM structure. Search www.digital.com for "21X4 SROM" to get details. This code is very complex, and will require changes to support additional cards, so I'll be verbose about what is going on. */ /* Known cards that have old-style EEPROMs. */ static struct fixups { char *name; unsigned char addr0, addr1, addr2; u16 newtable[32]; /* Max length below. */ } eeprom_fixups[] = { {"Asante", 0, 0, 0x94, {0x1e00, 0x0000, 0x0800, 0x0100, 0x018c, 0x0000, 0x0000, 0xe078, 0x0001, 0x0050, 0x0018 }}, {"SMC9332DST", 0, 0, 0xC0, { 0x1e00, 0x0000, 0x0800, 0x021f, 0x0000, 0x009E, /* 10baseT */ 0x0903, 0x006D, /* 100baseTx */ }}, {"Cogent EM100", 0, 0, 0x92, { 0x1e00, 0x0000, 0x0800, 0x013f, 0x0103, 0x006D, /* 100baseTx */ }}, {"Maxtech NX-110", 0, 0, 0xE8, { 0x1e00, 0x0000, 0x0800, 0x0313, 0x1001, 0x009E, /* 10base2, CSR12 0x10*/ 0x0000, 0x009E, /* 10baseT */ 0x0303, 0x006D, /* 100baseTx, CSR12 0x03 */ }}, {"Accton EN1207", 0, 0, 0xE8, { 0x1e00, 0x0000, 0x0800, 0x031F, 0x1B01, 0x0000, /* 10base2, CSR12 0x1B */ 0x1B03, 0x006D, /* 100baseTx, CSR12 0x1B */ 0x0B00, 0x009E, /* 10baseT, CSR12 0x0B */ }}, {0, 0, 0, 0, {}}}; static const char * block_name[] = {"21140 non-MII", "21140 MII PHY", "21142 non-MII PHY", "21142 MII PHY", }; #define EEPROM_SIZE 128 static void parse_eeprom(struct device *dev) { /* The last media info list parsed, for multiport boards. */ static struct mediatable *last_mediatable = NULL; static unsigned char *last_ee_data = NULL; static controller_index = 0; struct tulip_private *tp = (struct tulip_private *)dev->priv; int ioaddr = dev->base_addr; unsigned char *ee_data = tp->eeprom; int i; { static int done_did_that = 0; if (done_did_that++ == 0) printk(KERN_INFO" The following verbose information is emitted for\n" KERN_INFO" bug reports on media selection.\n"); } tp->mtable = 0; for (i = 0; i < EEPROM_SIZE/2; i++) ((u16 *)ee_data)[i] = read_eeprom(ioaddr, i); /* Detect an old-style (SA only) EEPROM layout: memcmp(eedata, eedata+16, 8). */ for (i = 0; i < 8; i ++) if (ee_data[i] != ee_data[16+i]) break; if (i >= 8) { if (ee_data[0] == 0xff) { if (last_mediatable) { controller_index++; printk(KERN_INFO "%s: Controller %d of multiport board.\n", dev->name, controller_index); tp->mtable = last_mediatable; ee_data = last_ee_data; goto subsequent_board; } else printk(KERN_INFO "%s: Missing EEPROM, this device may not work correctly!\n", dev->name); return; } /* Do a fix-up based on the vendor half of the station address prefix. */ for (i = 0; eeprom_fixups[i].name; i++) { if (dev->dev_addr[0] == eeprom_fixups[i].addr0 && dev->dev_addr[1] == eeprom_fixups[i].addr1 && dev->dev_addr[2] == eeprom_fixups[i].addr2) { if (dev->dev_addr[2] == 0xE8 && ee_data[0x1a] == 0x55) i++; /* An Accton EN1207, not an outlaw Maxtech. */ memcpy(ee_data + 26, eeprom_fixups[i].newtable, sizeof(eeprom_fixups[i].newtable)); printk(KERN_INFO "%s: Old format EEPROM on '%s' board. Using" " substitute media control info.\n", dev->name, eeprom_fixups[i].name); break; } } if (eeprom_fixups[i].name == NULL) { /* No fixup found. */ printk(KERN_INFO "%s: Old style EEPROM -- no media selection information.\n", dev->name); return; } } if (tulip_debug > 1) { printk(KERN_DEBUG "\nread_eeprom:"); for (i = 0; i < 64; i++) { printk("%s%4.4x", (i & 7) == 0 ? "\n" KERN_DEBUG : " ", read_eeprom(ioaddr, i)); } printk("\n"); } controller_index = 0; if (ee_data[19] > 1) { /* Multiport board. */ last_ee_data = ee_data; } subsequent_board: if (tp->chip_id == DC21041) { unsigned char *p = (void *)ee_data + ee_data[27 + controller_index*3]; short media = *(u16 *)p; int count = p[2]; printk(KERN_INFO "%s:21041 Media information at %d, default media " "%4.4x (%s).\n", dev->name, ee_data[27], media, media & 0x0800 ? "Autosense" : medianame[media & 15]); for (i = 0; i < count; i++) { unsigned char media_code = p[3 + i*7]; unsigned short *csrvals = (unsigned short *)&p[3 + i*7 + 1]; printk(KERN_INFO "%s: 21041 media %2.2x (%s)," " csr13 %4.4x csr14 %4.4x csr15 %4.4x.\n", dev->name, media_code & 15, medianame[media_code & 15], csrvals[0], csrvals[1], csrvals[2]); } } else { unsigned char *p = (void *)ee_data + ee_data[27]; unsigned char csr12dir = 0; int count; struct mediatable *mtable; short media = *((u16 *)p)++; if (tp->chip_id == DC21140) csr12dir = *p++; count = *p++; mtable = (struct mediatable *) kmalloc(sizeof(struct mediatable) + count*sizeof(struct medialeaf), GFP_KERNEL); if (mtable == NULL) return; /* Horrible, impossible failure. */ last_mediatable = tp->mtable = mtable; mtable->defaultmedia = media; mtable->leafcount = count; mtable->csr12dir = csr12dir; mtable->has_mii = 0; printk(KERN_INFO "%s: EEPROM default media type %s.\n", dev->name, media & 0x0800 ? "Autosense" : medianame[media & 15]); for (i = 0; i < count; i++) { struct medialeaf *leaf = &mtable->mleaf[i]; if ((p[0] & 0x80) == 0) { /* 21140 Compact block. */ leaf->type = 0; leaf->media = p[0] & 0x3f; leaf->leafdata = p; p += 4; } else { leaf->type = p[1]; if (p[1] & 1) { mtable->has_mii = 1; leaf->media = 11; } else leaf->media = p[2] & 0x0f; leaf->leafdata = p + 2; p += (p[0] & 0x3f) + 1; } if (tulip_debug > 1 && leaf->media == 11) { unsigned char *bp = leaf->leafdata; printk(KERN_INFO "%s: MII interface PHY %d, setup/reset " "sequences %d/%d long, capabilities %2.2x %2.2x.\n", dev->name, bp[0], bp[1], bp[1 + bp[1]*2], bp[5 + bp[2 + bp[1]*2]*2], bp[4 + bp[2 + bp[1]*2]*2]); if (tulip_debug > 2) { int mii_reg; printk(KERN_DEBUG "%s: MII xcvr control registers:", dev->name); for (mii_reg = 0; mii_reg < 32; mii_reg++) printk(" %4.4x", mdio_read(ioaddr,bp[0], mii_reg)); printk(".\n"); } } printk(KERN_INFO "%s: Index #%d - Media %s (#%d) described " "by a %s (%d) block.\n", dev->name, i, medianame[leaf->media], leaf->media, block_name[leaf->type], leaf->type); } } } /* Reading a serial EEPROM is a "bit" grungy, but we work our way through:->.*/ /* EEPROM_Ctrl bits. */ #define EE_SHIFT_CLK 0x02 /* EEPROM shift clock. */ #define EE_CS 0x01 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ #define EE_WRITE_0 0x01 #define EE_WRITE_1 0x05 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ #define EE_ENB (0x4800 | EE_CS) /* Delay between EEPROM clock transitions. The 1.2 code is a "nasty" timing loop, but PC compatible machines are *supposed* to delay an ISA-compatible period for the SLOW_DOWN_IO macro. */ #ifdef _LINUX_DELAY_H #define eeprom_delay(nanosec) udelay((nanosec + 999)/1000) #else #define eeprom_delay(nanosec) do { int _i = 3; while (--_i > 0) { __SLOW_DOWN_IO; }} while (0) #endif /* The EEPROM commands include the alway-set leading bit. */ #define EE_WRITE_CMD (5 << 6) #define EE_READ_CMD (6 << 6) #define EE_ERASE_CMD (7 << 6) static int read_eeprom(int ioaddr, int location) { int i; unsigned short retval = 0; int ee_addr = ioaddr + CSR9; int read_cmd = location | EE_READ_CMD; outl(EE_ENB & ~EE_CS, ee_addr); outl(EE_ENB, ee_addr); /* Shift the read command bits out. */ for (i = 10; i >= 0; i--) { short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; outl(EE_ENB | dataval, ee_addr); eeprom_delay(100); outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); eeprom_delay(150); outl(EE_ENB | dataval, ee_addr); /* Finish EEPROM a clock tick. */ eeprom_delay(250); } outl(EE_ENB, ee_addr); for (i = 16; i > 0; i--) { outl(EE_ENB | EE_SHIFT_CLK, ee_addr); eeprom_delay(100); retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0); outl(EE_ENB, ee_addr); eeprom_delay(100); } /* Terminate the EEPROM access. */ outl(EE_ENB & ~EE_CS, ee_addr); return retval; } /* Read and write the MII registers using software-generated serial MDIO protocol. It is just different enough from the EEPROM protocol to not share code. The maxium data clock rate is 2.5 Mhz. */ #define MDIO_SHIFT_CLK 0x10000 #define MDIO_DATA_WRITE0 0x00000 #define MDIO_DATA_WRITE1 0x20000 #define MDIO_ENB 0x00000 /* Ignore the 0x02000 databook setting. */ #define MDIO_ENB_IN 0x40000 #define MDIO_DATA_READ 0x80000 #ifdef _LINUX_DELAY_H #define mdio_delay() udelay(1) #else #define mdio_delay() __SLOW_DOWN_IO #endif static int mdio_read(int ioaddr, int phy_id, int location) { int i; int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; unsigned short retval = 0; int mdio_addr = ioaddr + CSR9; /* Establish sync by sending at least 32 logic ones. */ for (i = 32; i >= 0; i--) { outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr); mdio_delay(); outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } /* Shift the read command bits out. */ for (i = 17; i >= 0; i--) { int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0; outl(dataval, mdio_addr); mdio_delay(); outl(dataval | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); outl(dataval, mdio_addr); mdio_delay(); } outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); outl(MDIO_ENB_IN, mdio_addr); for (i = 16; i > 0; i--) { outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); retval = (retval << 1) | ((inl(mdio_addr) & MDIO_DATA_READ) ? 1 : 0); outl(MDIO_ENB_IN, mdio_addr); mdio_delay(); } /* Clear out extra bits. */ for (i = 16; i > 0; i--) { outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); outl(MDIO_ENB_IN, mdio_addr); mdio_delay(); } return retval; } static int tulip_open(struct device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; int ioaddr = dev->base_addr; int i = 0; /* On some chip revs we must set the MII/SYM port before the reset!? */ if (tp->mtable && tp->mtable->has_mii) outl(0x00040000, ioaddr + CSR6); /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ outl(0x00000001, ioaddr + CSR0); #ifdef _LINUX_DELAY_H udelay(2); #else SLOW_DOWN_IO; #endif /* Deassert reset. 486: Set 8 longword cache alignment, 8 longword burst. 586: Set 16 longword cache alignment, no burst limit. Cache alignment bits 15:14 Burst length 13:8 0000 No alignment 0x00000000 unlimited 0800 8 longwords 4000 8 longwords 0100 1 longword 1000 16 longwords 8000 16 longwords 0200 2 longwords 2000 32 longwords C000 32 longwords 0400 4 longwords Wait the specified 50 PCI cycles after a reset by initializing Tx and Rx queues and the address filter list. */ #if defined(__alpha__) /* ToDo: Alpha setting could be better. */ outl(0x00200000 | 0xE000, ioaddr + CSR0); #else #if defined(MODULE) /* When a module we don't have 'x86' to check. */ outl(0x00200000 | 0x4800, ioaddr + CSR0); #else outl(0x00200000 | (x86 <= 4 ? 0x4800 : 0x8000), ioaddr + CSR0); if (x86 <= 4) printk(KERN_INFO "%s: This is a 386/486 PCI system, setting cache " "alignment to %x.\n", dev->name, 0x00200000 | (x86 <= 4 ? 0x4800 : 0x8000)); #endif #endif #ifdef SA_SHIRQ if (request_irq(dev->irq, &tulip_interrupt, SA_SHIRQ, tulip_tbl[tp->chip_id].chip_name, dev)) { return -EAGAIN; } #else if (irq2dev_map[dev->irq] != NULL || (irq2dev_map[dev->irq] = dev) == NULL || dev->irq == 0 || request_irq(dev->irq, &tulip_interrupt, 0, tulip_tbl[tp->chip_id].chip_name)) { return -EAGAIN; } #endif if (tulip_debug > 1) printk(KERN_DEBUG "%s: tulip_open() irq %d.\n", dev->name, dev->irq); MOD_INC_USE_COUNT; tulip_init_ring(dev); /* This is set_rx_mode(), but without starting the transmitter. */ /* Fill the whole address filter table with our physical address. */ { u16 *eaddrs = (u16 *)dev->dev_addr; int *setup_frm = tp->setup_frame, i; /* You must add the broadcast address when doing perfect filtering! */ *setup_frm++ = 0xffff; *setup_frm++ = 0xffff; *setup_frm++ = 0xffff; /* Fill the rest of the accept table with our physical address. */ for (i = 1; i < 16; i++) { *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[2]; } /* Put the setup frame on the Tx list. */ tp->tx_ring[0].length = 0x08000000 | 192; tp->tx_ring[0].buffer1 = virt_to_bus(tp->setup_frame); tp->tx_ring[0].status = 0x80000000; tp->cur_tx++; } outl(virt_to_bus(tp->rx_ring), ioaddr + CSR3); outl(virt_to_bus(tp->tx_ring), ioaddr + CSR4); if (dev->if_port == 0) dev->if_port = tp->default_port; if (tp->chip_id == DC21041 && dev->if_port > 4) /* Invalid: Select initial TP, autosense, autonegotiate. */ dev->if_port = 4; /* Allow selecting a default media. */ if (tp->mtable == NULL) goto media_picked; if (dev->if_port) for (i = 0; i < tp->mtable->leafcount; i++) if (tp->mtable->mleaf[i].media == (dev->if_port == 12 ? 0 : dev->if_port)) { printk(KERN_INFO "%s: Using user-specified media %s.\n", dev->name, medianame[dev->if_port]); goto media_picked; } if ((tp->mtable->defaultmedia & 0x0800) == 0) for (i = 0; i < tp->mtable->leafcount; i++) if (tp->mtable->mleaf[i].media == (tp->mtable->defaultmedia & 15)) { printk(KERN_INFO "%s: Using EEPROM-set media %s.\n", dev->name, medianame[tp->mtable->mleaf[i].media]); goto media_picked; } for (i = tp->mtable->leafcount - 1; (media_fd[tp->mtable->mleaf[i].media] & 2) && i > 0; i--) ; media_picked: tp->cur_index = i; tp->csr6 = 0; select_media(dev, 1); /* Start the chip's Tx to process setup frame. */ outl(tp->csr6, ioaddr + CSR6); outl(tp->csr6 | 0x2000, ioaddr + CSR6); dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; /* Enable interrupts by setting the interrupt mask. */ outl(0x0001fbff, ioaddr + CSR7); outl(tp->csr6 | 0x2002, ioaddr + CSR6); outl(0, ioaddr + CSR2); /* Rx poll demand */ if (tulip_debug > 2) { printk(KERN_DEBUG "%s: Done tulip_open(), CSR0 %8.8x, CSR5 %8.8x CSR13 %8.8x.\n", dev->name, inl(ioaddr + CSR0), inl(ioaddr + CSR5), inl(ioaddr + CSR13)); } /* Set the timer to switch to check for link beat and perhaps switch to an alternate media type. */ init_timer(&tp->timer); tp->timer.expires = RUN_AT((24*HZ)/10); /* 2.4 sec. */ tp->timer.data = (unsigned long)dev; tp->timer.function = &tulip_timer; /* timer handler */ add_timer(&tp->timer); return 0; } /* Set up the transceiver control registers for the selected media type. */ static void select_media(struct device *dev, int startup) { int ioaddr = dev->base_addr; struct tulip_private *tp = (struct tulip_private *)dev->priv; struct mediatable *mtable = tp->mtable; u32 new_csr6; int check_mii =0, i; if (mtable) { struct medialeaf *mleaf = &mtable->mleaf[tp->cur_index]; unsigned char *p = mleaf->leafdata; switch (mleaf->type) { case 0: /* 21140 non-MII xcvr. */ if (tulip_debug > 1) printk(KERN_DEBUG "%s: Using a 21140 non-MII transceiver with control" " setting %2.2x.\n", dev->name, p[1]); dev->if_port = p[0]; if (startup) outl(mtable->csr12dir | 0x100, ioaddr + CSR12); outl(p[1], ioaddr + CSR12); new_csr6 = 0x02000000 | ((p[2] & 0x71) << 18); break; case 1: if (startup) { outl(mtable->csr12dir | 0x100, ioaddr + CSR12); dev->if_port = 11; if (tulip_debug > 2) printk(KERN_DEBUG "%s: Doing a reset sequence of length %d.\n", dev->name, p[2 + p[1]]); for (i = 0; i < p[2 + p[1]]; i++) outl(p[3 + p[1] + i], ioaddr + CSR12); if (tulip_debug > 2) printk(KERN_DEBUG "%s Doing a transceiver setup sequence of length %d.\n", dev->name, p[1]); for (i = 0; i < p[1]; i++) outl(p[2 + i], ioaddr + CSR12); } check_mii = 1; new_csr6 = 0x020C0000; break; case 2: case 4: { u16 *setup = (u16*)&p[1]; dev->if_port = p[0] & 15; if (tulip_debug > 1) printk(KERN_DEBUG "%s: 21142 non-MII %s transceiver control %4.4x/%4.4x.\n", dev->name, medianame[dev->if_port], setup[0], setup[1]); if (p[0] & 0x40) { /* SIA (CSR13-15) setup values are provided. */ outl(0, ioaddr + CSR13); outl(setup[1], ioaddr + CSR14); outl(setup[2], ioaddr + CSR15); outl(setup[0], ioaddr + CSR13); setup += 3; } else { outl(0, ioaddr + CSR13); outl(t21142_csr14[dev->if_port], ioaddr + CSR14); outl(t21142_csr15[dev->if_port], ioaddr + CSR15); outl(t21142_csr13[dev->if_port], ioaddr + CSR13); } outl(setup[0]<<16, ioaddr + CSR15); /* Direction */ outl(setup[1]<<16, ioaddr + CSR15); /* Data */ new_csr6 = 0x02000000; break; } case 3: { int init_length = p[1]; u16 * init_sequence = (u16*)(p + 2); int reset_length = p[2 + init_length*2]; u16 * reset_sequence = (u16*)&p[3 + init_length*2]; dev->if_port = 11; if (startup) { if (tulip_debug > 2) printk(KERN_DEBUG "%s: Doing a 21142 reset sequence of length %d.\n", dev->name, reset_length); for (i = 0; i < reset_length; i++) outl(reset_sequence[i] << 16, ioaddr + CSR15); } if (tulip_debug > 2) printk(KERN_DEBUG "%s: Doing a 21142 xcvr setup sequence of length %d.\n", dev->name, init_length); for (i = 0; i < init_length; i++) outl(init_sequence[i] << 16, ioaddr + CSR15); check_mii = 1; new_csr6 = 0x020C0000; break; } default: new_csr6 = 0x020C0000; } if (tulip_debug > 1) printk(KERN_DEBUG "%s: Using media type %s, CSR12 is %2.2x.\n", dev->name, medianame[dev->if_port], inl(ioaddr + CSR12) & 0xff); } else if (tp->chip_id == DC21140) { /* Set media type to MII @ 100mbps: 0x020C0000 */ new_csr6 = 0x020C0000; dev->if_port = 11; if (tulip_debug > 1) { printk(KERN_DEBUG "%s: Unknown media control, assuming MII, CSR12 %2.2x.\n", dev->name, inl(ioaddr + CSR12) & 0xff); } } else if (tp->chip_id == DC21041) { if (tulip_debug > 1) printk(KERN_DEBUG "%s: 21041 using media %s, CSR12 is %4.4x.\n", dev->name, medianame[dev->if_port & 15], inl(ioaddr + CSR12) & 0xffff); outl(0x00000000, ioaddr + CSR13); /* Reset the serial interface */ outl(t21041_csr14[dev->if_port], ioaddr + CSR14); outl(t21041_csr15[dev->if_port], ioaddr + CSR15); outl(t21041_csr13[dev->if_port], ioaddr + CSR13); new_csr6 = 0x80020000; } else { /* 21040 */ /* Turn on the xcvr interface. */ int csr12 = inl(ioaddr + CSR12); if (tulip_debug > 1) printk(KERN_DEBUG "%s: 21040 media type is %s, CSR12 is %2.2x.\n", dev->name, dev->if_port ? "AUI" : "10baseT", csr12); new_csr6 = (dev->if_port ? 0x01860000 : 0x00420000); /* Set the full duplux match frame. */ outl(FULL_DUPLEX_MAGIC, ioaddr + CSR11); outl(0x00000000, ioaddr + CSR13); /* Reset the serial interface */ outl(dev->if_port ? 0x0000000C : 0x00000004, ioaddr + CSR13); } tp->csr6 = new_csr6 | (tp->csr6 & 0xfdff) | (tp->full_duplex ? 0x0200 : 0); return; } static void tulip_timer(unsigned long data) { struct device *dev = (struct device *)data; struct tulip_private *tp = (struct tulip_private *)dev->priv; int ioaddr = dev->base_addr; u32 csr12 = inl(ioaddr + CSR12); int next_tick = 0; if (tulip_debug > 3) { printk(KERN_DEBUG "%s: Media selection tick, status %8.8x mode %8.8x " "SIA %8.8x %8.8x %8.8x %8.8x.\n", dev->name, inl(ioaddr + CSR5), inl(ioaddr + CSR6), csr12, inl(ioaddr + CSR13), inl(ioaddr + CSR14), inl(ioaddr + CSR15)); } switch (tp->chip_id) { case DC21040: if (csr12 & 0x0002) { /* Network error */ printk(KERN_INFO "%s: No 10baseT link beat found, switching to %s media.\n", dev->name, dev->if_port ? "10baseT" : "AUI"); dev->if_port ^= 1; outl(dev->if_port ? 0x0000000C : 0x00000004, ioaddr + CSR13); dev->trans_start = jiffies; } break; case DC21041: if (tulip_debug > 2) printk(KERN_DEBUG "%s: 21041 media tick CSR12 %8.8x.\n", dev->name, csr12); switch (dev->if_port) { case 0: case 3: case 4: if (csr12 & 0x0004) { /*LnkFail */ /* 10baseT is dead. Check for activity on alternate port. */ tp->mediasense = 1; if (csr12 & 0x0200) dev->if_port = 2; else dev->if_port = 1; printk(KERN_INFO "%s: No 21041 10baseT link beat, Media switched to %s.\n", dev->name, medianame[dev->if_port]); outl(0, ioaddr + CSR13); /* Reset */ outl(t21041_csr14[dev->if_port], ioaddr + CSR14); outl(t21041_csr15[dev->if_port], ioaddr + CSR15); outl(t21041_csr13[dev->if_port], ioaddr + CSR13); next_tick = 10*HZ; /* 2.4 sec. */ } else next_tick = 30*HZ; break; case 1: /* 10base2 */ case 2: /* AUI */ if (csr12 & 0x0100) { next_tick = (30*HZ); /* 30 sec. */ tp->mediasense = 0; } else if ((csr12 & 0x0004) == 0) { printk(KERN_INFO "%s: 21041 media switched to 10baseT.\n", dev->name); dev->if_port = 0; select_media(dev, 0); next_tick = (24*HZ)/10; /* 2.4 sec. */ } else if (tp->mediasense || (csr12 & 0x0002)) { dev->if_port = 3 - dev->if_port; /* Swap ports. */ select_media(dev, 0); next_tick = 20*HZ; } else { next_tick = 20*HZ; } break; } break; case DC21140: case DC21142: { struct medialeaf *mleaf; unsigned char *p; if (tp->mtable == NULL) { /* No EEPROM info, use generic code. */ /* Assume this is like a SMC card, and check its link beat bit. */ if ((dev->if_port == 0 && (csr12 & 0x0080)) || (dev->if_port == 1 && (csr12 & 0x0040) == 0)) { dev->if_port ^= 1; /* Stop the transmit process. */ tp->csr6 = (dev->if_port ? 0x03860000 : 0x02420000); outl(tp->csr6 | 0x0002, ioaddr + CSR6); printk(KERN_INFO "%s: link beat timed out, CSR12 is 0x%2.2x, switching to" " %s media.\n", dev->name, csr12 & 0xff, dev->if_port ? "100baseTx" : "10baseT"); outl(tp->csr6 | 0xA002, ioaddr + CSR6); dev->trans_start = jiffies; next_tick = (24*HZ)/10; } else { next_tick = 10*HZ; if (tulip_debug > 2) printk(KERN_DEBUG "%s: network media monitor 0x%2.2x, link" " beat detected as %s.\n", dev->name, csr12 & 0xff, dev->if_port ? "100baseTx" : "10baseT"); } break; } mleaf = &tp->mtable->mleaf[tp->cur_index]; p = mleaf->leafdata; switch (mleaf->type) { case 0: case 4: { /* Type 0 non-MII or #4 SYM transceiver. Check the link beat bit. */ s8 bitnum = p[mleaf->type == 4 ? 5 : 2]; if (tulip_debug > 2) printk(KERN_DEBUG "%s: Transceiver monitor tick: CSR12=%#2.2x bit %d is" " %d, expecting %d.\n", dev->name, csr12, (bitnum >> 1) & 7, (csr12 & (1 << ((bitnum >> 1) & 7))) != 0, (bitnum >= 0)); /* Check that the specified bit has the proper value. */ if ((bitnum < 0) != ((csr12 & (1 << ((bitnum >> 1) & 7))) != 0)) { if (tulip_debug > 1) printk(KERN_DEBUG "%s: Link beat detected for %s.\n", dev->name, medianame[mleaf->media]); break; } if (tp->medialock) break; select_next_media: if (--tp->cur_index < 0) { /* We start again, but should instead look for default. */ tp->cur_index = tp->mtable->leafcount - 1; } dev->if_port = tp->mtable->mleaf[tp->cur_index].media; if (media_fd[dev->if_port]) goto select_next_media; /* Skip FD entries. */ if (tulip_debug > 1) printk(KERN_DEBUG "%s: No link beat on media %s," " trying transceiver type %s.\n", dev->name, medianame[mleaf->media & 15], medianame[tp->mtable->mleaf[tp->cur_index].media]); select_media(dev, 0); /* Restart the transmit process. */ outl(tp->csr6 | 0x0002, ioaddr + CSR6); outl(tp->csr6 | 0x2002, ioaddr + CSR6); next_tick = (24*HZ)/10; break; } case 1: { int mii_reg5 = mdio_read(ioaddr, tp->phys[0], 5); printk(KERN_INFO "%s: MII monitoring tick: CSR12 %2.2x, " "Link partner report %4.4x.\n", dev->name, csr12, mii_reg5); if (mii_reg5 != 0xffff && mdio_read(ioaddr, tp->phys[0], 1) & 0x0020) { int full_duplex = mii_reg5 & 0x0100 ? 1 : 0; if (full_duplex != tp->full_duplex) { tp->full_duplex = full_duplex; tp->csr6 ^= 0x0200; outl(tp->csr6 | 0x0002, ioaddr + CSR6); outl(tp->csr6 | 0x2002, ioaddr + CSR6); } if (tulip_debug > 0) /* Gurppp, should be >1 */ printk(KERN_INFO "%s: Setting %s-duplex based on MII" " Xcvr #%d partner capability of %4.4x.\n", dev->name, full_duplex ? "full" : "half", tp->phys[0], mii_reg5); } } /* Hack for D-Link: Full duplex indication is on bit 3. */ if (dev->dev_addr[0] == 0 && dev->dev_addr[1] == 0x80 && dev->dev_addr[2] == 0xC8) { if (csr12 & 0x08) { tp->full_duplex = 0; tp->csr6 &= ~0x0200; outl(tp->csr6 | 0x0002, ioaddr + CSR6); outl(tp->csr6 | 0x2002, ioaddr + CSR6); } else { tp->full_duplex = 1; tp->csr6 |= 0x0200; outl(tp->csr6 | 0x0002, ioaddr + CSR6); outl(tp->csr6 | 0x2002, ioaddr + CSR6); } } break; case 2: /* 21142 non-MII */ case 3: /* 21142 MII */ next_tick = (24*HZ)/10; break; default: break; } } default: /* Invalid chip type. */ break; } if (next_tick) { tp->timer.expires = RUN_AT(next_tick); add_timer(&tp->timer); } } static void tulip_tx_timeout(struct device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; int ioaddr = dev->base_addr; if (tp->mtable && tp->mtable->has_mii) { /* Do nothing -- the media monitor should handle this. */ if (tulip_debug > 1) printk(KERN_WARNING "%s: Transmit timeout using MII device.\n", dev->name); } else if (tp->chip_id == DC21040) { if (inl(ioaddr + CSR12) & 0x0002) { printk(KERN_INFO "%s: transmit timed out, switching to %s media.\n", dev->name, dev->if_port ? "10baseT" : "AUI"); dev->if_port ^= 1; outl(dev->if_port ? 0x0000000C : 0x00000004, ioaddr + CSR13); } dev->trans_start = jiffies; return; } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142) { /* Stop the transmit process. */ outl(tp->csr6 | 0x0002, ioaddr + CSR6); dev->if_port ^= 1; printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, " "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n", dev->name, inl(ioaddr + CSR5), inl(ioaddr + CSR12), inl(ioaddr + CSR13), inl(ioaddr + CSR14), inl(ioaddr + CSR15)); printk(KERN_WARNING "%s: transmit timed out, switching to %s media.\n", dev->name, dev->if_port ? "100baseTx" : "10baseT"); outl(tp->csr6 | 0x2002, ioaddr + CSR6); tp->stats.tx_errors++; dev->trans_start = jiffies; return; } else if (tp->chip_id == DC21041) { u32 csr12 = inl(ioaddr + CSR12); printk(KERN_WARNING "%s: 21041 transmit timed out, status %8.8x, CSR12 %8.8x," " CSR13 %8.8x, CSR14 %8.8x, resetting...\n", dev->name, inl(ioaddr + CSR5), csr12, inl(ioaddr + CSR13), inl(ioaddr + CSR14)); tp->mediasense = 1; if (dev->if_port == 1 || dev->if_port == 2) if (csr12 & 0x0004) { dev->if_port = 2 - dev->if_port; } else dev->if_port = 0; else dev->if_port = 1; select_media(dev, 0); tp->stats.tx_errors++; dev->trans_start = jiffies; return; } else printk(KERN_WARNING "%s: transmit timed out, status %8.8x, CSR12 %8.8x," " resetting...\n", dev->name, inl(ioaddr + CSR5), inl(ioaddr + CSR12)); #ifdef way_too_many_messages printk(" Rx ring %8.8x: ", (int)tp->rx_ring); for (i = 0; i < RX_RING_SIZE; i++) printk(" %8.8x", (unsigned int)tp->rx_ring[i].status); printk("\n Tx ring %8.8x: ", (int)tp->tx_ring); for (i = 0; i < TX_RING_SIZE; i++) printk(" %8.8x", (unsigned int)tp->tx_ring[i].status); printk("\n"); #endif /* Perhaps we should reinitialize the hardware here. */ dev->if_port = 0; /* Stop and restart the chip's Tx processes . */ outl(tp->csr6 | 0x0002, ioaddr + CSR6); outl(tp->csr6 | 0x2002, ioaddr + CSR6); /* Trigger an immediate transmit demand. */ outl(0, ioaddr + CSR1); dev->trans_start = jiffies; tp->stats.tx_errors++; return; } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void tulip_init_ring(struct device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; int i; tp->tx_full = 0; tp->cur_rx = tp->cur_tx = 0; tp->dirty_rx = tp->dirty_tx = 0; for (i = 0; i < RX_RING_SIZE; i++) { tp->rx_ring[i].status = 0x80000000; /* Owned by Tulip chip */ tp->rx_ring[i].length = PKT_BUF_SZ; { /* Note the receive buffer must be longword aligned. dev_alloc_skb() provides 16 byte alignment. But do *not* use skb_reserve() to align the IP header! */ struct sk_buff *skb; skb = DEV_ALLOC_SKB(PKT_BUF_SZ); tp->rx_skbuff[i] = skb; if (skb == NULL) break; /* Bad news! */ skb->dev = dev; /* Mark as being used by this device. */ #if LINUX_VERSION_CODE > 0x10300 tp->rx_ring[i].buffer1 = virt_to_bus(skb->tail); #else tp->rx_ring[i].buffer1 = virt_to_bus(skb->data); #endif } tp->rx_ring[i].buffer2 = virt_to_bus(&tp->rx_ring[i+1]); } /* Mark the last entry as wrapping the ring. */ tp->rx_ring[i-1].length = PKT_BUF_SZ | 0x02000000; tp->rx_ring[i-1].buffer2 = virt_to_bus(&tp->rx_ring[0]); /* The Tx buffer descriptor is filled in as needed, but we do need to clear the ownership bit. */ for (i = 0; i < TX_RING_SIZE; i++) { tp->tx_skbuff[i] = 0; tp->tx_ring[i].status = 0x00000000; tp->tx_ring[i].buffer2 = virt_to_bus(&tp->tx_ring[i+1]); } tp->tx_ring[i-1].buffer2 = virt_to_bus(&tp->tx_ring[0]); } static int tulip_start_xmit(struct sk_buff *skb, struct device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; int entry; u32 flag; #ifndef final_version if (skb == NULL || skb->len <= 0) { printk(KERN_ERR "%s: Obsolete driver layer request made: skbuff==NULL.\n", dev->name); dev_tint(dev); return 0; } #endif /* Block a timer-based transmit from overlapping. This could better be done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */ if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) { if (jiffies - dev->trans_start < TX_TIMEOUT) return 1; tulip_tx_timeout(dev); return 1; } /* Caution: the write order is important here, set the base address with the "ownership" bits last. */ /* Calculate the next Tx descriptor entry. */ entry = tp->cur_tx % TX_RING_SIZE; tp->tx_skbuff[entry] = skb; tp->tx_ring[entry].buffer1 = virt_to_bus(skb->data); if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */ flag = 0x60000000; /* No interrupt */ dev->tbusy = 0; } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) { flag = 0xe0000000; /* Tx-done intr. */ dev->tbusy = 0; } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) { flag = 0x60000000; /* No Tx-done intr. */ dev->tbusy = 0; } else { /* Leave room for set_rx_mode() to fill entries. */ flag = 0xe0000000; /* Tx-done intr. */ tp->tx_full = 1; } if (entry == TX_RING_SIZE-1) flag |= 0xe2000000; tp->tx_ring[entry].length = skb->len | flag; tp->tx_ring[entry].status = 0x80000000; /* Pass ownership to the chip. */ tp->cur_tx++; /* Trigger an immediate transmit demand. */ outl(0, dev->base_addr + CSR1); dev->trans_start = jiffies; return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void tulip_interrupt IRQ(int irq, void *dev_instance, struct pt_regs *regs) { #ifdef SA_SHIRQ /* Use the now-standard shared IRQ implementation. */ struct device *dev = (struct device *)dev_instance; #else struct device *dev = (struct device *)(irq2dev_map[irq]); #endif struct tulip_private *lp; int csr5, ioaddr, boguscnt = 12; if (dev == NULL) { printk ("tulip_interrupt(): irq %d for unknown device.\n", irq); return; } ioaddr = dev->base_addr; lp = (struct tulip_private *)dev->priv; if (dev->interrupt) printk(KERN_ERR "%s: Re-entering the interrupt handler.\n", dev->name); dev->interrupt = 1; do { csr5 = inl(ioaddr + CSR5); /* Acknowledge all of the current interrupt sources ASAP. */ outl(csr5 & 0x0001ffff, ioaddr + CSR5); if (tulip_debug > 4) printk(KERN_DEBUG "%s: interrupt csr5=%#8.8x new csr5=%#8.8x.\n", dev->name, csr5, inl(dev->base_addr + CSR5)); if ((csr5 & 0x00018000) == 0) break; if (csr5 & 0x0040) /* Rx interrupt */ tulip_rx(dev); if (csr5 & 0x0007) { /* Tx-done interrupt */ int dirty_tx; for (dirty_tx = lp->dirty_tx; dirty_tx < lp->cur_tx; dirty_tx++) { int entry = dirty_tx % TX_RING_SIZE; int status = lp->tx_ring[entry].status; if (status < 0) break; /* It still hasn't been Txed */ /* Check for Rx filter setup frames. */ if (lp->tx_skbuff[entry] == NULL) continue; if (status & 0x8000) { /* There was an major error, log it. */ #ifndef final_version if (tulip_debug > 1) printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n", dev->name, status); #endif lp->stats.tx_errors++; if (status & 0x4104) lp->stats.tx_aborted_errors++; if (status & 0x0C00) lp->stats.tx_carrier_errors++; if (status & 0x0200) lp->stats.tx_window_errors++; if (status & 0x0002) lp->stats.tx_fifo_errors++; if ((status & 0x0080) && lp->full_duplex == 0) lp->stats.tx_heartbeat_errors++; #ifdef ETHER_STATS if (status & 0x0100) lp->stats.collisions16++; #endif } else { #ifdef ETHER_STATS if (status & 0x0001) lp->stats.tx_deferred++; #endif lp->stats.collisions += (status >> 3) & 15; lp->stats.tx_packets++; } /* Free the original skb. */ dev_kfree_skb(lp->tx_skbuff[entry], FREE_WRITE); lp->tx_skbuff[entry] = 0; } #ifndef final_version if (lp->cur_tx - dirty_tx > TX_RING_SIZE) { printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n", dev->name, dirty_tx, lp->cur_tx, lp->tx_full); dirty_tx += TX_RING_SIZE; } #endif if (lp->tx_full && dev->tbusy && dirty_tx > lp->cur_tx - TX_RING_SIZE + 2) { /* The ring is no longer full, clear tbusy. */ lp->tx_full = 0; dev->tbusy = 0; mark_bh(NET_BH); } lp->dirty_tx = dirty_tx; } /* Log errors. */ if (csr5 & 0x8000) { /* Abnormal error summary bit. */ if (csr5 & 0x0008) lp->stats.tx_errors++; /* Tx babble. */ if (csr5 & 0x0020) { /* Tx FIFO underflow. */ lp->csr6 |= 0x00200000; /* Reconfigure to store-n-forward. */ /* Restart the transmit process. */ outl(lp->csr6 | 0x0002, ioaddr + CSR6); outl(lp->csr6 | 0x2002, ioaddr + CSR6); } if (csr5 & 0x0100) { /* Missed a Rx frame. */ lp->stats.rx_errors++; lp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff; } if (csr5 & 0x0800) { printk(KERN_ERR "%s: Something Wicked happened! %8.8x.\n", dev->name, csr5); /* Hmmmmm, it's not clear what to do here. */ } /* Clear all error sources, included undocumented ones! */ outl(0x000f7ba, ioaddr + CSR5); } if (--boguscnt < 0) { printk(KERN_WARNING "%s: Too much work at interrupt, csr5=0x%8.8x.\n", dev->name, csr5); /* Clear all interrupt sources. */ outl(0x0001ffff, ioaddr + CSR5); break; } } while (1); if (tulip_debug > 3) printk(KERN_DEBUG "%s: exiting interrupt, csr5=%#4.4x.\n", dev->name, inl(ioaddr + CSR5)); /* Code that should never be run! Perhaps remove after testing.. */ { static int stopit = 10; if (dev->start == 0 && --stopit < 0) { printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n" KERN_ERR "%s: Disabling interrupt handler %d to avoid " "locking up the machine.\n", dev->name, dev->name, dev->irq); #ifdef SA_SHIRQ free_irq(irq, dev); #else free_irq(irq); #endif } } dev->interrupt = 0; return; } static int tulip_rx(struct device *dev) { struct tulip_private *lp = (struct tulip_private *)dev->priv; int entry = lp->cur_rx % RX_RING_SIZE; if (tulip_debug > 4) printk(KERN_DEBUG " In tulip_rx(), entry %d %8.8x.\n", entry, lp->rx_ring[entry].status); /* If we own the next entry, it's a new packet. Send it up. */ while (lp->rx_ring[entry].status >= 0) { int status = lp->rx_ring[entry].status; if ((status & 0x0300) != 0x0300) { if ((status & 0xffff) != 0x7fff) { /* Ingore earlier buffers. */ printk(KERN_WARNING "%s: Oversized Ethernet frame spanned " "multiple buffers, status %8.8x!\n", dev->name, status); lp->stats.rx_length_errors++; } } else if (status & 0x8000) { /* There was a fatal error. */ lp->stats.rx_errors++; /* end of a packet.*/ if (status & 0x0890) lp->stats.rx_length_errors++; if (status & 0x0004) lp->stats.rx_frame_errors++; if (status & 0x0002) lp->stats.rx_crc_errors++; if (status & 0x0001) lp->stats.rx_fifo_errors++; } else { /* Malloc up new buffer, compatible with net-2e. */ /* Omit the four octet CRC from the length. */ short pkt_len = (lp->rx_ring[entry].status >> 16) - 4; struct sk_buff *skb; int rx_in_place = 0; /* Check if the packet is long enough to just accept without copying to a properly sized skbuff. */ if (pkt_len > rx_copybreak) { struct sk_buff *newskb; char *temp; /* Get a fresh skbuff to replace the filled one. */ newskb = DEV_ALLOC_SKB(PKT_BUF_SZ); if (newskb == NULL) { skb = 0; /* No memory, drop the packet. */ goto memory_squeeze; } /* Pass up the skb already on the Rx ring. */ skb = lp->rx_skbuff[entry]; temp = skb_put(skb, pkt_len); if (bus_to_virt(lp->rx_ring[entry].buffer1) != temp) printk(KERN_ERR "%s: Internal consistency error -- the " "skbuff addresses do not match" " in tulip_rx: %p vs. %p / %p.\n", dev->name, bus_to_virt(lp->rx_ring[entry].buffer1), skb->head, temp); rx_in_place = 1; lp->rx_skbuff[entry] = newskb; newskb->dev = dev; /* Longword alignment required: do not skb_reserve(2)! */ lp->rx_ring[entry].buffer1 = virt_to_bus(newskb->tail); } else skb = DEV_ALLOC_SKB(pkt_len + 2); memory_squeeze: if (skb == NULL) { int i; printk(KERN_WARNING "%s: Memory squeeze, deferring packet.\n", dev->name); /* Check that at least two ring entries are free. If not, free one and mark stats->rx_dropped++. */ for (i = 0; i < RX_RING_SIZE; i++) if (lp->rx_ring[(entry+i) % RX_RING_SIZE].status < 0) break; if (i > RX_RING_SIZE -2) { lp->stats.rx_dropped++; lp->rx_ring[entry].status = 0x80000000; lp->cur_rx++; } break; } skb->dev = dev; if (! rx_in_place) { skb_reserve(skb, 2); /* 16 byte align the data fields */ memcpy(skb_put(skb, pkt_len), bus_to_virt(lp->rx_ring[entry].buffer1), pkt_len); } #if LINUX_VERSION_CODE > 0x10300 skb->protocol = eth_type_trans(skb, dev); #else skb->len = pkt_len; #endif netif_rx(skb); lp->stats.rx_packets++; } lp->rx_ring[entry].status = 0x80000000; entry = (++lp->cur_rx) % RX_RING_SIZE; } return 0; } static int tulip_close(struct device *dev) { int ioaddr = dev->base_addr; struct tulip_private *tp = (struct tulip_private *)dev->priv; int i; dev->start = 0; dev->tbusy = 1; if (tulip_debug > 1) printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n", dev->name, inl(ioaddr + CSR5)); /* Disable interrupts by clearing the interrupt mask. */ outl(0x00000000, ioaddr + CSR7); /* Stop the chip's Tx and Rx processes. */ outl(inl(ioaddr + CSR6) & ~0x2002, ioaddr + CSR6); /* 21040 -- Leave the card in 10baseT state. */ if (tp->chip_id == DC21040) outl(0x00000004, ioaddr + CSR13); tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff; del_timer(&tp->timer); #ifdef SA_SHIRQ free_irq(dev->irq, dev); #else free_irq(dev->irq); irq2dev_map[dev->irq] = 0; #endif /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = tp->rx_skbuff[i]; tp->rx_skbuff[i] = 0; tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */ tp->rx_ring[i].length = 0; tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */ if (skb) { #if LINUX_VERSION_CODE < 0x20100 skb->free = 1; #endif dev_kfree_skb(skb, FREE_WRITE); } } for (i = 0; i < TX_RING_SIZE; i++) { if (tp->tx_skbuff[i]) dev_kfree_skb(tp->tx_skbuff[i], FREE_WRITE); tp->tx_skbuff[i] = 0; } MOD_DEC_USE_COUNT; return 0; } static struct enet_statistics * tulip_get_stats(struct device *dev) { struct tulip_private *tp = (struct tulip_private *)dev->priv; int ioaddr = dev->base_addr; if (dev->start) tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff; return &tp->stats; } /* Set or clear the multicast filter for this adaptor. Note that we only use exclusion around actually queueing the new frame, not around filling tp->setup_frame. This is non-deterministic when re-entered but still correct. */ /* The little-endian AUTODIN32 ethernet CRC calculation. N.B. Do not use for bulk data, use a table-based routine instead. This is common code and should be moved to net/core/crc.c */ static unsigned const ethernet_polynomial_le = 0xedb88320U; static inline unsigned ether_crc_le(int length, unsigned char *data) { unsigned int crc = 0xffffffff; /* Initial value. */ while(--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 8; --bit >= 0; current_octet >>= 1) { if ((crc ^ current_octet) & 1) { crc >>= 1; crc ^= ethernet_polynomial_le; } else crc >>= 1; } } return crc; } static void #ifdef NEW_MULTICAST set_multicast_list(struct device *dev) #else static void set_multicast_list(struct device *dev, int num_addrs, void *addrs); #endif { int ioaddr = dev->base_addr; int csr6 = inl(ioaddr + CSR6) & ~0x00D5; struct tulip_private *tp = (struct tulip_private *)dev->priv; tp->csr6 &= ~0x00D5; if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ outl(csr6 | 0x00C0, ioaddr + CSR6); /* Unconditionally log net taps. */ printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); tp->csr6 |= 0xC0; } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ outl(csr6 | 0x0080, ioaddr + CSR6); tp->csr6 |= 0x80; } else { u32 *setup_frm = tp->setup_frame; struct dev_mc_list *mclist; u16 *eaddrs; u32 tx_flags; int i; if (dev->mc_count > 14) { /* Must use a multicast hash table. */ u16 hash_table[32]; memset(hash_table, 0, sizeof(hash_table)); for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff, hash_table); /* Copy the hash table to the setup frame. NOTE that only the LOW SHORTWORD of setup_frame[] is valid! This code may require tweaking for non-x86 architectures! */ for (i = 0; i < 32; i++) *setup_frm++ = hash_table[i]; setup_frm += 7; tx_flags = 0x08400000 | 192; /* Too clever: i > 15 for fall-though. */ } else { /* We have <= 15 addresses so we can use the wonderful 16 address perfect filtering of the Tulip. */ for (i = 0, mclist = dev->mc_list; i < dev->mc_count; i++, mclist = mclist->next) { /* Note that only the low shortword of setup_frame[] is valid! This code may require tweaking for non-x86 architectures! */ eaddrs = (u16 *)mclist->dmi_addr; *setup_frm++ = *eaddrs++; *setup_frm++ = *eaddrs++; *setup_frm++ = *eaddrs++; } /* Fill the rest of the table with our physical address. Once again, only the low shortword or setup_frame[] is valid! */ *setup_frm++ = 0xffff; *setup_frm++ = 0xffff; *setup_frm++ = 0xffff; tx_flags = 0x08000000 | 192; } eaddrs = (u16 *)dev->dev_addr; do { *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[2]; } while (++i < 15); /* Now add this frame to the Tx list. */ if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) { /* Same setup recently queued, we need not add it. */ } else { unsigned long flags; unsigned int entry; save_flags(flags); cli(); entry = tp->cur_tx++ % TX_RING_SIZE; if (entry != 0) { /* Avoid a chip errata by prefixing a dummy entry. */ tp->tx_skbuff[entry] = 0; tp->tx_ring[entry].length = (entry == TX_RING_SIZE-1) ? 0x02000000 : 0; tp->tx_ring[entry].buffer1 = 0; tp->tx_ring[entry].status = 0x80000000; entry = tp->cur_tx++ % TX_RING_SIZE; } tp->tx_skbuff[entry] = 0; /* Put the setup frame on the Tx list. */ if (entry == TX_RING_SIZE-1) tx_flags |= 0x02000000; /* Wrap ring. */ tp->tx_ring[entry].length = tx_flags; tp->tx_ring[entry].buffer1 = virt_to_bus(tp->setup_frame); tp->tx_ring[entry].status = 0x80000000; if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) { dev->tbusy = 1; tp->tx_full = 1; } restore_flags(flags); /* Trigger an immediate transmit demand. */ outl(0, ioaddr + CSR1); } outl(csr6 | 0x0000, ioaddr + CSR6); } } #ifdef MODULE #if LINUX_VERSION_CODE > 0x20118 MODULE_PARM(debug, "i"); MODULE_PARM(reverse_probe, "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(8) "i"); #endif /* An additional parameter that may be passed in... */ static int debug = -1; int init_module(void) { if (debug >= 0) tulip_debug = debug; root_tulip_dev = NULL; return tulip_probe(NULL); } void cleanup_module(void) { struct device *next_dev; /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_tulip_dev) { next_dev = ((struct tulip_private *)root_tulip_dev->priv)->next_module; unregister_netdev(root_tulip_dev); release_region(root_tulip_dev->base_addr, TULIP_TOTAL_SIZE); kfree(root_tulip_dev); root_tulip_dev = next_dev; } } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -DMODVERSIONS -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c tulip.c" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */ |