Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
/* tulip.c: A DEC 21040-family ethernet driver for linux. */
/*
   NOTICE: THIS IS THE ALPHA TEST VERSION!
	Written 1994-1997 by Donald Becker.

	This software may be used and distributed according to the terms
	of the GNU Public License, incorporated herein by reference.

	This driver is for the SMC EtherPower PCI ethernet adapter.
	It should work with most other DEC 21*40-based ethercards.

	The author may be reached as becker@CESDIS.gsfc.nasa.gov, or C/O
	Center of Excellence in Space Data and Information Sciences
	   Code 930.5, Goddard Space Flight Center, Greenbelt MD 20771

	Support and updates available at
	http://cesdis.gsfc.nasa.gov/linux/drivers/tulip.html
*/

static const char *version = "tulip.c:v0.79 9/3/97 becker@cesdis.gsfc.nasa.gov\n";

/* A few user-configurable values. */

/* Set if the PCI BIOS detects the chips on a multiport board backwards. */
#ifdef REVERSE_PROBE_ORDER
static int reverse_probe = 1;
#else
static int reverse_probe = 0;
#endif

/* Keep the ring sizes a power of two for efficiency.
   Making the Tx ring too large decreases the effectiveness of channel
   bonding and packet priority.
   There are no ill effects from too-large receive rings. */
#define TX_RING_SIZE	16
#define RX_RING_SIZE	16

/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
static const rx_copybreak = 200;

/* The following example shows how to always use the 10base2 port. */
#ifdef notdef
#define TULIP_DEFAULT_MEDIA 1		/* 1 == 10base2 */
#define TULIP_NO_MEDIA_SWITCH		/* Don't switch from this port */
#endif

/* Define to force full-duplex operation on all Tulip interfaces. */
/* #define  TULIP_FULL_DUPLEX 1 */

/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT  ((2000*HZ)/1000)

#include <linux/config.h>
#ifdef MODULE
#ifdef MODVERSIONS
#include <linux/modversions.h>
#endif
#include <linux/module.h>
#include <linux/version.h>
#else
#define MOD_INC_USE_COUNT
#define MOD_DEC_USE_COUNT
#endif

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/malloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/bios32.h>
#include <asm/processor.h>		/* Processor type for cache alignment. */
#include <asm/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>

#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>

/* Kernel compatibility defines, common to David Hind's PCMCIA package.
   This is only in the support-all-kernels source code. */
#include <linux/version.h>		/* Evil, but neccessary */

#if defined (LINUX_VERSION_CODE) && LINUX_VERSION_CODE < 0x10300
#define RUN_AT(x) (x)			/* What to put in timer->expires.  */
#define DEV_ALLOC_SKB(len) alloc_skb(len, GFP_ATOMIC)
#define virt_to_bus(addr)  ((unsigned long)addr)
#define bus_to_virt(addr) ((void*)addr)

#else  /* 1.3.0 and later */
#define RUN_AT(x) (jiffies + (x))
#define DEV_ALLOC_SKB(len) dev_alloc_skb(len + 2)
#endif

#if defined (LINUX_VERSION_CODE) && LINUX_VERSION_CODE < 0x10338
#ifdef MODULE
#if !defined(CONFIG_MODVERSIONS) && !defined(__NO_VERSION__)
char kernel_version[] = UTS_RELEASE;
#endif
#else
#undef MOD_INC_USE_COUNT
#define MOD_INC_USE_COUNT
#undef MOD_DEC_USE_COUNT
#define MOD_DEC_USE_COUNT
#endif
#endif /* 1.3.38 */

#if (LINUX_VERSION_CODE >= 0x10344)
#define NEW_MULTICAST
#include <linux/delay.h>
#endif
#if (LINUX_VERSION_CODE >= 0x20100)
char kernel_version[] = UTS_RELEASE;
#endif
#ifdef SA_SHIRQ
#define IRQ(irq, dev_id, pt_regs) (irq, dev_id, pt_regs)
#else
#define IRQ(irq, dev_id, pt_regs) (irq, pt_regs)
#endif

#if (LINUX_VERSION_CODE < 0x20123)
#define test_and_set_bit(val, addr) set_bit(val, addr)
#endif

/* This my implementation of shared IRQs, now only used for 1.2.13. */
#ifdef HAVE_SHARED_IRQ
#define USE_SHARED_IRQ
#include <linux/shared_irq.h>
#endif

/* The total size is unusually large: The 21040 aligns each of its 16
   longword-wide registers on a quadword boundary. */
#define TULIP_TOTAL_SIZE 0x80

#ifdef HAVE_DEVLIST
struct netdev_entry tulip_drv =
{"Tulip", tulip_pci_probe, TULIP_TOTAL_SIZE, NULL};
#endif

#ifdef TULIP_DEBUG
int tulip_debug = TULIP_DEBUG;
#else
int tulip_debug = 1;
#endif

/*
				Theory of Operation

I. Board Compatibility

This device driver is designed for the DECchip "Tulip", Digital's
single-chip ethernet controllers for PCI.  Supported members of the family
are the 21040, 21041, 21140, 21140A and 21142.  These chips are used on
many PCI boards including the SMC EtherPower series.


II. Board-specific settings

PCI bus devices are configured by the system at boot time, so no jumpers
need to be set on the board.  The system BIOS preferably should assign the
PCI INTA signal to an otherwise unused system IRQ line.
Note: Kernel versions earlier than 1.3.73 do not support shared PCI
interrupt lines.

III. Driver operation

IIIa. Ring buffers

The Tulip can use either ring buffers or lists of Tx and Rx descriptors.
This driver uses statically allocated rings of Rx and Tx descriptors, set at
compile time by RX/TX_RING_SIZE.  This version of the driver allocates skbuffs
for the Rx ring buffers at open() time and passes the skb->data field to the
Tulip as receive data buffers.  When an incoming frame is less than
RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is
copied to the new skbuff.  When the incoming frame is larger, the skbuff is
passed directly up the protocol stack and replaced by a newly allocated
skbuff.

The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames.  For small frames the copying cost is negligible (esp. considering
that we are pre-loading the cache with immediately useful header
information).  For large frames the copying cost is non-trivial, and the
larger copy might flush the cache of useful data.  A subtle aspect of this
choice is that the Tulip only receives into longword aligned buffers, thus
the IP header at offset 14 isn't longword aligned for further processing.
Copied frames are put into the new skbuff at an offset of "+2", thus copying
has the beneficial effect of aligning the IP header and preloading the
cache.

IIIC. Synchronization
The driver runs as two independent, single-threaded flows of control.  One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag.  The other thread is the interrupt handler, which is single
threaded by the hardware and other software.

The send packet thread has partial control over the Tx ring and 'dev->tbusy'
flag.  It sets the tbusy flag whenever it's queuing a Tx packet. If the next
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
the 'tp->tx_full' flag.

The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring.  (The Tx-done interrupt can't be selectively turned off, so
we can't avoid the interrupt overhead by having the Tx routine reap the Tx
stats.)	 After reaping the stats, it marks the queue entry as empty by setting
the 'base' to zero.	 Iff the 'tp->tx_full' flag is set, it clears both the
tx_full and tbusy flags.

IV. Notes

Thanks to Duke Kamstra of SMC for providing an EtherPower board.

IVb. References

http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
http://www.digital.com  (search for current 21*4* datasheets and "21X4 SROM")
http://www.national.com/pf/DP/DP83840.html

IVc. Errata

The DEC databook doesn't document which Rx filter settings accept broadcast
packets.  Nor does it document how to configure the part to configure the
serial subsystem for normal (vs. loopback) operation or how to have it
autoswitch between internal 10baseT, SIA and AUI transceivers.

The 21040 databook claims that CSR13, CSR14, and CSR15 should each be the last
register of the set CSR12-15 written.  Hmmm, now how is that possible?  */


/* A few values that may be tweaked. */
#define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/

/* This is a mysterious value that can be written to CSR11 in the 21040 (only)
   to support a pre-NWay full-duplex signaling mechanism using short frames.
   No one knows what it should be, but if left at its default value some
   10base2(!) packets trigger a full-duplex-request interrupt. */
#define FULL_DUPLEX_MAGIC	0x6969

#ifndef PCI_VENDOR_ID_DEC		/* Now defined in linux/pci.h */
#define PCI_VENDOR_ID_DEC			0x1011
#define PCI_DEVICE_ID_TULIP			0x0002		/* 21040. */
#define PCI_DEVICE_ID_TULIP_FAST	0x0009		/* 21140. */
#endif

#ifndef PCI_DEVICE_ID_DEC_TULIP_PLUS
#define PCI_DEVICE_ID_DEC_TULIP_PLUS	0x0014		/* 21041. */
#endif

#ifndef PCI_DEVICE_ID_DEC_TULIP_21142
#define PCI_DEVICE_ID_DEC_TULIP_21142	0x0019
#endif

/* The rest of these values should never change. */

static void tulip_timer(unsigned long data);

/* A table describing the chip types. */
static struct tulip_chip_table {
  int device_id;
  char *chip_name;
  int flags;
  void (*media_timer)(unsigned long data);
} tulip_tbl[] = {
  { PCI_DEVICE_ID_DEC_TULIP, "DS21040 Tulip", 0, tulip_timer },
  { PCI_DEVICE_ID_DEC_TULIP_PLUS, "DS21041 Tulip", 0, tulip_timer },
  { PCI_DEVICE_ID_DEC_TULIP_FAST, "DS21140 Tulip", 0, tulip_timer }, /* + 21140A*/
  { PCI_DEVICE_ID_DEC_TULIP_21142, "DS21142 Tulip", 0, tulip_timer }, /* + 21143 */
  {0, 0, 0, 0},
};
/* This matches the table above. */
enum chips { DC21040=0, DC21041=1, DC21140=2, DC21142=3, };

static const char * const medianame[] = {
  "10baseT", "10base2", "AUI", "100baseTx",
  "10baseT-FD", "100baseTx-FD", "100baseT4", "100baseFx",
  "100baseFx-FD", "MII 10baseT", "MII 10baseT-FD", "MII",
  "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FD", "MII 100baseT4",
};
/* A full-duplex map for above. */
static const char media_fd[] =
{0,0,0,0,  0xff,0xff,0,0,  0xff,0,0xff,0x01, 0,0,0xff,0 };
/* 21041 transceiver register settings: 10-T, 10-2, AUI, 10-T, 10T-FD*/
static u16 t21041_csr13[] = { 0xEF05, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
static u16 t21041_csr14[] = { 0x7F3F, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };

static u16 t21142_csr13[] = { 0x0001, 0x0009, 0x0009, 0x0001, 0x0001, };
static u16 t21142_csr14[] = { 0xFFFF, 0x0705, 0x0705, 0x7F3F, 0x7F3D, };
static u16 t21142_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };

/* Offsets to the Command and Status Registers, "CSRs".  All accesses
   must be longword instructions and quadword aligned. */
enum tulip_offsets {
	CSR0=0,    CSR1=0x08, CSR2=0x10, CSR3=0x18, CSR4=0x20, CSR5=0x28,
	CSR6=0x30, CSR7=0x38, CSR8=0x40, CSR9=0x48, CSR10=0x50, CSR11=0x58,
	CSR12=0x60, CSR13=0x68, CSR14=0x70, CSR15=0x78 };

/* The bits in the CSR5 status registers, mostly interrupt sources. */
enum status_bits {
	TimerInt=0x800, TPLnkFail=0x1000, TPLnkPass=0x10,
	RxJabber=0x200, RxDied=0x100, RxNoBuf=0x80, RxIntr=0x40,
	TxFIFOUnderflow=0x20, TxJabber=0x08, TxNoBuf=0x04, TxDied=0x02,
	TxIntr=0x01,
};

/* The Tulip Rx and Tx buffer descriptors. */
struct tulip_rx_desc {
	s32 status;
	s32 length;
	u32 buffer1, buffer2;
};

struct tulip_tx_desc {
	s32 status;
	s32 length;
	u32 buffer1, buffer2;				/* We use only buffer 1.  */
};

struct medialeaf {
	u8 type;
	u8 media;
	unsigned char *leafdata;
};

struct mediatable {
	u16 defaultmedia;
	u8 leafcount, csr12dir;				/* General purpose pin directions. */
	unsigned has_mii:1;
	struct medialeaf mleaf[0];
};

struct mediainfo {
	struct mediainfo *next;
	int info_type;
	int index;
	struct non_mii { char media; unsigned char csr12val; char bitnum, flags;}  non_mii;
	unsigned char *info;
};

struct tulip_private {
	char devname[8];			/* Used only for kernel debugging. */
	const char *product_name;
	struct device *next_module;
	struct tulip_rx_desc rx_ring[RX_RING_SIZE];
	struct tulip_tx_desc tx_ring[TX_RING_SIZE];
	/* The saved address of a sent-in-place packet/buffer, for skfree(). */
	struct sk_buff* tx_skbuff[TX_RING_SIZE];
	/* The addresses of receive-in-place skbuffs. */
	struct sk_buff* rx_skbuff[RX_RING_SIZE];
	char *rx_buffs;				/* Address of temporary Rx buffers. */
	int setup_frame[48];		/* Pseudo-Tx frame to init address table. */
	int chip_id;
	int revision;
#if LINUX_VERSION_CODE > 0x20139
	struct net_device_stats stats;
#else
	struct enet_statistics stats;
#endif
	struct timer_list timer;	/* Media selection timer. */
	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
	unsigned int tx_full:1;				/* The Tx queue is full. */
	unsigned int full_duplex:1;			/* Full-duplex operation requested. */
	unsigned int default_port:4;		/* Last dev->if_port value. */
	unsigned int media2:4;				/* Secondary monitored media port. */
	unsigned int medialock:1;			/* Don't sense media type. */
	unsigned int mediasense:1;			/* Media sensing in progress. */
	unsigned int csr6;					/* Current CSR6 control settings. */
	unsigned char eeprom[128];			/* Serial EEPROM contents. */
	signed char phys[4];				/* MII device addresses. */
	struct mediatable *mtable;
	int cur_index;						/* Current media index. */
	unsigned char pci_bus, pci_device_fn;
	int pad0, pad1;						/* Used for 8-byte alignment */
};

/* Used to pass the full-duplex flag, etc. */
static int full_duplex[8] = {0, };
static int options[8] = {0, };

static struct device *tulip_probe1(struct device *dev, int ioaddr, int irq,
								   int chip_id, int options);
static void parse_eeprom(struct device *dev);
static int read_eeprom(int ioaddr, int location);
static int mdio_read(int ioaddr, int phy_id, int location);
static void select_media(struct device *dev, int startup);
static int tulip_open(struct device *dev);
static void tulip_timer(unsigned long data);
static void tulip_tx_timeout(struct device *dev);
static void tulip_init_ring(struct device *dev);
static int tulip_start_xmit(struct sk_buff *skb, struct device *dev);
static int tulip_rx(struct device *dev);
static void tulip_interrupt IRQ(int irq, void *dev_instance, struct pt_regs *regs);
static int tulip_close(struct device *dev);
static struct enet_statistics *tulip_get_stats(struct device *dev);
#ifdef NEW_MULTICAST
static void set_multicast_list(struct device *dev);
#else
static void set_multicast_list(struct device *dev, int num_addrs, void *addrs);
#endif



#ifdef MODULE
/* A list of all installed Tulip devices, for removing the driver module. */
static struct device *root_tulip_dev = NULL;
#endif

/* This 21040 probe no longer uses a large fixed contiguous Rx buffer region,
   but now receives directly into full-sized skbuffs that are allocated
   at open() time.
   This allows the probe routine to use the old driver initialization
   interface. */

int tulip_probe(struct device *dev)
{
	int cards_found = 0;
	static int pci_index = 0;	/* Static, for multiple probe calls. */

	/* Ideally we would detect all network cards in slot order.  That would
	   be best done a central PCI probe dispatch, which wouldn't work
	   well with the current structure.  So instead we detect just the
	   Tulip cards in slot order. */

	if (pcibios_present()) {
		unsigned char pci_bus, pci_device_fn;

		for (;pci_index < 0xff; pci_index++) {
			unsigned char pci_irq_line, pci_latency;
			unsigned short pci_command, vendor, device;
			unsigned int pci_ioaddr, chip_idx = 0;

			if (pcibios_find_class
				(PCI_CLASS_NETWORK_ETHERNET << 8,
				 reverse_probe ? 0xfe - pci_index : pci_index,
				 &pci_bus, &pci_device_fn) != PCIBIOS_SUCCESSFUL)
				if (reverse_probe)
					continue;
				else
					break;
			pcibios_read_config_word(pci_bus, pci_device_fn,
									 PCI_VENDOR_ID, &vendor);
			pcibios_read_config_word(pci_bus, pci_device_fn,
									 PCI_DEVICE_ID, &device);
			pcibios_read_config_byte(pci_bus, pci_device_fn,
									 PCI_INTERRUPT_LINE, &pci_irq_line);
			pcibios_read_config_dword(pci_bus, pci_device_fn,
									  PCI_BASE_ADDRESS_0, &pci_ioaddr);
			/* Remove I/O space marker in bit 0. */
			pci_ioaddr &= ~3;

			if (vendor != PCI_VENDOR_ID_DEC)
				continue;

			for (chip_idx = 0; tulip_tbl[chip_idx].chip_name; chip_idx++)
				if (device == tulip_tbl[chip_idx].device_id)
					break;
			if (tulip_tbl[chip_idx].chip_name == 0) {
				printk(KERN_INFO "Unknown Digital PCI ethernet chip type"
					   " %4.4x"" detected: not configured.\n", device);
				continue;
			}
			if (tulip_debug > 2)
				printk(KERN_DEBUG "Found DEC PCI Tulip at I/O %#x, IRQ %d.\n",
					   pci_ioaddr, pci_irq_line);

			if (check_region(pci_ioaddr, TULIP_TOTAL_SIZE))
				continue;

#ifdef MODULE
			dev = tulip_probe1(dev, pci_ioaddr, pci_irq_line, chip_idx,
						 cards_found);
#else
			dev = tulip_probe1(dev, pci_ioaddr, pci_irq_line, chip_idx, -1);
#endif

			if (dev) {
			  /* Get and check the bus-master and latency values. */
			  pcibios_read_config_word(pci_bus, pci_device_fn,
									   PCI_COMMAND, &pci_command);
			  if ( ! (pci_command & PCI_COMMAND_MASTER)) {
				printk(KERN_INFO "  PCI Master Bit has not been set! Setting...\n");
				pci_command |= PCI_COMMAND_MASTER;
				pcibios_write_config_word(pci_bus, pci_device_fn,
										  PCI_COMMAND, pci_command);
			  }
			  pcibios_read_config_byte(pci_bus, pci_device_fn,
									   PCI_LATENCY_TIMER, &pci_latency);
			  if (pci_latency < 10) {
				printk(KERN_INFO "  PCI latency timer (CFLT) is unreasonably"
					   " low at %d.  Setting to 64 clocks.\n", pci_latency);
				pcibios_write_config_byte(pci_bus, pci_device_fn,
										  PCI_LATENCY_TIMER, 64);
			  } else if (tulip_debug > 1)
				printk(KERN_INFO "  PCI latency timer (CFLT) is %#x.\n",
					   pci_latency);
			  /* Bring the 21143 out power-down mode. */
			  if (device == PCI_DEVICE_ID_DEC_TULIP_21142)
				pcibios_write_config_dword(pci_bus, pci_device_fn,
										  	0x40, 0x40000000);
			  dev = 0;
			  cards_found++;
			}
		}
	}

	return cards_found ? 0 : -ENODEV;
}

static struct device *tulip_probe1(struct device *dev, int ioaddr, int irq,
								   int chip_id, int board_idx)
{
	static int did_version = 0;			/* Already printed version info. */
	struct tulip_private *tp;
	/* See note below on the multiport cards. */
	static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
	static int last_irq = 0;
	int i;
	unsigned short sum;

	if (tulip_debug > 0  &&  did_version++ == 0)
		printk(KERN_INFO "%s", version);

	dev = init_etherdev(dev, 0);

	printk(KERN_INFO "%s: DEC %s at %#3x,",
		   dev->name, tulip_tbl[chip_id].chip_name, ioaddr);

	/* Stop the chip's Tx and Rx processes. */
	outl(inl(ioaddr + CSR6) & ~0x2002, ioaddr + CSR6);
	/* Clear the missed-packet counter. */
	(volatile)inl(ioaddr + CSR8);

	if (chip_id == DC21041) {
		if (inl(ioaddr + CSR9) & 0x8000) {
			printk(" 21040 compatible mode,");
			chip_id = DC21040;
		} else {
			printk(" 21041 mode,");
		}
	}

	/* The station address ROM is read byte serially.  The register must
	   be polled, waiting for the value to be read bit serially from the
	   EEPROM.
	   */
	sum = 0;
	if (chip_id == DC21040) {
		outl(0, ioaddr + CSR9);		/* Reset the pointer with a dummy write. */
		for (i = 0; i < 6; i++) {
			int value, boguscnt = 100000;
			do
				value = inl(ioaddr + CSR9);
			while (value < 0  && --boguscnt > 0);
			dev->dev_addr[i] = value;
			sum += value & 0xff;
		}
	} else {	/* Must be a new chip, with a serial EEPROM interface. */
		/* We read the whole EEPROM, and sort it out later.  DEC has a
		   specification _Digital Semiconductor 21X4 Serial ROM Format_
		   but early vendor boards just put the address in the first six
		   EEPROM locations. */
		unsigned char ee_data[128];
		int sa_offset = 0;

		for (i = 0; i < sizeof(ee_data)/2; i++)
			((u16 *)ee_data)[i] = read_eeprom(ioaddr, i);

		/* Detect the simple EEPROM format by the duplicated station addr. */
		for (i = 0; i < 8; i ++)
			if (ee_data[i] != ee_data[16+i])
				sa_offset = 20;
		for (i = 0; i < 6; i ++) {
			dev->dev_addr[i] = ee_data[i + sa_offset];
			sum += ee_data[i + sa_offset];
		}
	}
	/* On the Zynx 315 Etherarray and other multiport boards only the
	   first Tulip has an EEPROM.
	   The addresses of the subsequent ports are derived from the first.
	   Many PCI BIOSes also incorrectly report the IRQ line, so we correct
	   that here as well. */
	if (sum == 0  || sum == 6*0xff) {
		printk(" EEPROM not present,");
		for (i = 0; i < 5; i++)
			dev->dev_addr[i] = last_phys_addr[i];
		dev->dev_addr[i] = last_phys_addr[i] + 1;
		irq = last_irq;
	}
	for (i = 0; i < 6; i++)
		printk(" %2.2x", last_phys_addr[i] = dev->dev_addr[i]);
	printk(", IRQ %d.\n", irq);
	last_irq = irq;

	/* We do a request_region() only to register /proc/ioports info. */
	request_region(ioaddr, TULIP_TOTAL_SIZE, tulip_tbl[chip_id].chip_name);

	dev->base_addr = ioaddr;
	dev->irq = irq;

	/* Make certain the data structures are quadword aligned. */
	tp = (void *)(((long)kmalloc(sizeof(*tp), GFP_KERNEL | GFP_DMA) + 7) & ~7);
	memset(tp, 0, sizeof(*tp));
	dev->priv = tp;

#ifdef MODULE
	tp->next_module = root_tulip_dev;
	root_tulip_dev = dev;
#endif

	tp->chip_id = chip_id;

#ifdef TULIP_FULL_DUPLEX
	tp->full_duplex = 1;
#endif
#ifdef TULIP_DEFAULT_MEDIA
	tp->default_port = TULIP_DEFAULT_MEDIA;
#endif
#ifdef TULIP_NO_MEDIA_SWITCH
	tp->medialock = 1;
#endif

	/* The lower four bits are the media type. */
	if (board_idx >= 0) {
		tp->full_duplex = (options[board_idx]&16) || full_duplex[board_idx]>0;
		tp->default_port = options[board_idx] & 15;
		if (tp->default_port)
			tp->medialock = 1;
	}

	/* This is logically part of probe1(), but too complex to write inline. */
	if (chip_id != DC21040)
		parse_eeprom(dev);

	if (tp->mtable  &&  tp->mtable->has_mii) {
		int phy, phy_idx;
		/* Find the connected MII xcvrs.
		   Doing this in open() would allow detecting external xcvrs later,
		   but takes much time. */
		for (phy = 0, phy_idx = 0; phy < 32 && phy_idx < sizeof(tp->phys);
			 phy++) {
			int mii_status = mdio_read(ioaddr, phy, 0);
			if (mii_status != 0xffff  && mii_status != 0x0000) {
				tp->phys[phy_idx++] = phy;
				printk(KERN_INFO "%s:  MII transceiver found at MDIO address %d.\n",
					   dev->name, phy);
			}
		}
		if (phy_idx == 0) {
			printk(KERN_INFO "%s: ***WARNING***: No MII transceiver found!\n",
				   dev->name);
			tp->phys[0] = 1;
		}
	}

	/* The Tulip-specific entries in the device structure. */
	dev->open = &tulip_open;
	dev->hard_start_xmit = &tulip_start_xmit;
	dev->stop = &tulip_close;
	dev->get_stats = &tulip_get_stats;
#ifdef HAVE_MULTICAST
	dev->set_multicast_list = &set_multicast_list;
#endif

	/* Reset the xcvr interface and turn on heartbeat. */
	switch (chip_id) {
	case DC21041:
		outl(0x00000000, ioaddr + CSR13);
		outl(0xFFFFFFFF, ioaddr + CSR14);
		outl(0x00000008, ioaddr + CSR15); /* Listen on AUI also. */
		outl(inl(ioaddr + CSR6) | 0x200, ioaddr + CSR6);
		outl(0x0000EF05, ioaddr + CSR13);
		break;
	case DC21140:  case DC21142:
		if (tp->mtable)
			outl(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
		break;
	case DC21040:
		outl(0x00000000, ioaddr + CSR13);
		outl(0x00000004, ioaddr + CSR13);
		break;
	}

	return dev;
}

/* Serial EEPROM section. */
/* The main routine to parse the very complicated SROM structure.
   Search www.digital.com for "21X4 SROM" to get details.
   This code is very complex, and will require changes to support
   additional cards, so I'll be verbose about what is going on.
   */

/* Known cards that have old-style EEPROMs. */
static struct fixups {
  char *name;
  unsigned char addr0, addr1, addr2;
  u16 newtable[32];				/* Max length below. */
} eeprom_fixups[] = {
  {"Asante", 0, 0, 0x94, {0x1e00, 0x0000, 0x0800, 0x0100, 0x018c,
						  0x0000, 0x0000, 0xe078, 0x0001, 0x0050, 0x0018 }},
  {"SMC9332DST", 0, 0, 0xC0, { 0x1e00, 0x0000, 0x0800, 0x021f,
							   0x0000, 0x009E, /* 10baseT */
							   0x0903, 0x006D, /* 100baseTx */ }},
  {"Cogent EM100", 0, 0, 0x92, { 0x1e00, 0x0000, 0x0800, 0x013f,
								 0x0103, 0x006D, /* 100baseTx */ }},
  {"Maxtech NX-110", 0, 0, 0xE8, { 0x1e00, 0x0000, 0x0800, 0x0313,
							   0x1001, 0x009E, /* 10base2, CSR12 0x10*/
							   0x0000, 0x009E, /* 10baseT */
							   0x0303, 0x006D, /* 100baseTx, CSR12 0x03 */ }},
  {"Accton EN1207", 0, 0, 0xE8, { 0x1e00, 0x0000, 0x0800, 0x031F,
							0x1B01, 0x0000, /* 10base2,   CSR12 0x1B */
							0x1B03, 0x006D, /* 100baseTx, CSR12 0x1B */ 
							0x0B00, 0x009E, /* 10baseT,   CSR12 0x0B */
   }},
  {0, 0, 0, 0, {}}};

static const char * block_name[] = {"21140 non-MII", "21140 MII PHY",
 "21142 non-MII PHY", "21142 MII PHY", };

#define EEPROM_SIZE 128
static void parse_eeprom(struct device *dev)
{
	/* The last media info list parsed, for multiport boards.  */
	static struct mediatable *last_mediatable = NULL;
	static unsigned char *last_ee_data = NULL;
	static controller_index = 0;
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	int ioaddr = dev->base_addr;
	unsigned char *ee_data = tp->eeprom;
	int i;

	{
	  static int done_did_that = 0;
	  if (done_did_that++ == 0)
		printk(KERN_INFO"  The following verbose information is emitted for\n"
			   KERN_INFO"  bug reports on media selection.\n");
	}
	tp->mtable = 0;
	for (i = 0; i < EEPROM_SIZE/2; i++)
	  ((u16 *)ee_data)[i] = read_eeprom(ioaddr, i);

	/* Detect an old-style (SA only) EEPROM layout:
	   memcmp(eedata, eedata+16, 8). */
	for (i = 0; i < 8; i ++)
	  if (ee_data[i] != ee_data[16+i])
		break;
	if (i >= 8) {
	  if (ee_data[0] == 0xff) {
		if (last_mediatable) {
		  controller_index++;
		  printk(KERN_INFO "%s:  Controller %d of multiport board.\n",
				 dev->name, controller_index);
		  tp->mtable = last_mediatable;
		  ee_data = last_ee_data;
		  goto subsequent_board;
		} else
		printk(KERN_INFO "%s:  Missing EEPROM, this device may not work correctly!\n",
			   dev->name);
		return;
	  }
	  /* Do a fix-up based on the vendor half of the station address prefix. */
	  for (i = 0; eeprom_fixups[i].name; i++) {
		if (dev->dev_addr[0] == eeprom_fixups[i].addr0
			&&  dev->dev_addr[1] == eeprom_fixups[i].addr1
			&&  dev->dev_addr[2] == eeprom_fixups[i].addr2) {
		  if (dev->dev_addr[2] == 0xE8  &&  ee_data[0x1a] == 0x55)
			  i++;			/* An Accton EN1207, not an outlaw Maxtech. */
		  memcpy(ee_data + 26, eeprom_fixups[i].newtable,
				 sizeof(eeprom_fixups[i].newtable));
		  printk(KERN_INFO "%s: Old format EEPROM on '%s' board.  Using"
				 " substitute media control info.\n",
				 dev->name, eeprom_fixups[i].name);
		  break;
		}
	  }
	  if (eeprom_fixups[i].name == NULL) { /* No fixup found. */
		printk(KERN_INFO "%s: Old style EEPROM -- no media selection information.\n",
			   dev->name);
		return;
	  }
	}
	if (tulip_debug > 1) {
	  printk(KERN_DEBUG "\nread_eeprom:");
	  for (i = 0; i < 64; i++) {
		printk("%s%4.4x", (i & 7) == 0 ? "\n" KERN_DEBUG : " ",
			   read_eeprom(ioaddr, i));
	  }
	  printk("\n");
	}
	
	controller_index = 0;
	if (ee_data[19] > 1) {		/* Multiport board. */
		last_ee_data = ee_data;
	}
subsequent_board:

	if (tp->chip_id == DC21041) {
		unsigned char *p = (void *)ee_data + ee_data[27 + controller_index*3];
		short media = *(u16 *)p;
		int count = p[2];

		printk(KERN_INFO "%s:21041 Media information at %d, default media "
			   "%4.4x (%s).\n", dev->name, ee_data[27], media,
			   media & 0x0800 ? "Autosense" : medianame[media & 15]);
		for (i = 0; i < count; i++) {
			unsigned char media_code = p[3 + i*7];
			unsigned short *csrvals = (unsigned short *)&p[3 + i*7 + 1];
			printk(KERN_INFO "%s:  21041 media %2.2x (%s),"
				   " csr13 %4.4x csr14 %4.4x csr15 %4.4x.\n",
				   dev->name, media_code & 15, medianame[media_code & 15],
				   csrvals[0], csrvals[1], csrvals[2]);
		}
	} else {
		unsigned char *p = (void *)ee_data + ee_data[27];
		unsigned char csr12dir = 0;
		int count;
		struct mediatable *mtable;
		short media = *((u16 *)p)++;

		if (tp->chip_id == DC21140)
			csr12dir = *p++;
		count = *p++;
		mtable = (struct mediatable *)
			kmalloc(sizeof(struct mediatable) + count*sizeof(struct medialeaf),
					GFP_KERNEL);
		if (mtable == NULL)
			return;				/* Horrible, impossible failure. */
		last_mediatable = tp->mtable = mtable;
		mtable->defaultmedia = media;
		mtable->leafcount = count;
		mtable->csr12dir = csr12dir;
		mtable->has_mii = 0;

		printk(KERN_INFO "%s:  EEPROM default media type %s.\n", dev->name,
			   media & 0x0800 ? "Autosense" : medianame[media & 15]);
		for (i = 0; i < count; i++) {
			struct medialeaf *leaf = &mtable->mleaf[i];
			
			if ((p[0] & 0x80) == 0) { /* 21140 Compact block. */
				leaf->type = 0;
				leaf->media = p[0] & 0x3f;
				leaf->leafdata = p;
				p += 4;
			} else {
				leaf->type = p[1];
				if (p[1] & 1) {
					mtable->has_mii = 1;
					leaf->media = 11;
				} else
					leaf->media = p[2] & 0x0f;
				leaf->leafdata = p + 2;
				p += (p[0] & 0x3f) + 1;
			}
			if (tulip_debug > 1  &&  leaf->media == 11) {
				unsigned char *bp = leaf->leafdata;
				printk(KERN_INFO "%s:  MII interface PHY %d, setup/reset "
					   "sequences %d/%d long, capabilities %2.2x %2.2x.\n",
					   dev->name, bp[0], bp[1], bp[1 + bp[1]*2],
					   bp[5 + bp[2 + bp[1]*2]*2], bp[4 + bp[2 + bp[1]*2]*2]);
				if (tulip_debug > 2) {
					int mii_reg;
					printk(KERN_DEBUG "%s:  MII xcvr control registers:",
						   dev->name);
					for (mii_reg = 0; mii_reg < 32; mii_reg++)
						printk(" %4.4x", mdio_read(ioaddr,bp[0], mii_reg));
					printk(".\n");
				}
			}

			printk(KERN_INFO "%s:  Index #%d - Media %s (#%d) described "
				   "by a %s (%d) block.\n",
				   dev->name, i, medianame[leaf->media], leaf->media,
				   block_name[leaf->type], leaf->type);
		}
	}
}
/* Reading a serial EEPROM is a "bit" grungy, but we work our way through:->.*/

/*  EEPROM_Ctrl bits. */
#define EE_SHIFT_CLK	0x02	/* EEPROM shift clock. */
#define EE_CS			0x01	/* EEPROM chip select. */
#define EE_DATA_WRITE	0x04	/* EEPROM chip data in. */
#define EE_WRITE_0		0x01
#define EE_WRITE_1		0x05
#define EE_DATA_READ	0x08	/* EEPROM chip data out. */
#define EE_ENB			(0x4800 | EE_CS)

/* Delay between EEPROM clock transitions.
   The 1.2 code is a "nasty" timing loop, but PC compatible machines are
   *supposed* to delay an ISA-compatible period for the SLOW_DOWN_IO macro.  */
#ifdef _LINUX_DELAY_H
#define eeprom_delay(nanosec)	udelay((nanosec + 999)/1000)
#else
#define eeprom_delay(nanosec)	do { int _i = 3; while (--_i > 0) { __SLOW_DOWN_IO; }} while (0)
#endif

/* The EEPROM commands include the alway-set leading bit. */
#define EE_WRITE_CMD	(5 << 6)
#define EE_READ_CMD		(6 << 6)
#define EE_ERASE_CMD	(7 << 6)

static int read_eeprom(int ioaddr, int location)
{
	int i;
	unsigned short retval = 0;
	int ee_addr = ioaddr + CSR9;
	int read_cmd = location | EE_READ_CMD;
	
	outl(EE_ENB & ~EE_CS, ee_addr);
	outl(EE_ENB, ee_addr);
	
	/* Shift the read command bits out. */
	for (i = 10; i >= 0; i--) {
		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
		outl(EE_ENB | dataval, ee_addr);
		eeprom_delay(100);
		outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
		eeprom_delay(150);
		outl(EE_ENB | dataval, ee_addr);	/* Finish EEPROM a clock tick. */
		eeprom_delay(250);
	}
	outl(EE_ENB, ee_addr);
	
	for (i = 16; i > 0; i--) {
		outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
		eeprom_delay(100);
		retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
		outl(EE_ENB, ee_addr);
		eeprom_delay(100);
	}

	/* Terminate the EEPROM access. */
	outl(EE_ENB & ~EE_CS, ee_addr);
	return retval;
}

/* Read and write the MII registers using software-generated serial
   MDIO protocol.  It is just different enough from the EEPROM protocol
   to not share code.  The maxium data clock rate is 2.5 Mhz. */
#define MDIO_SHIFT_CLK	0x10000
#define MDIO_DATA_WRITE0 0x00000
#define MDIO_DATA_WRITE1 0x20000
#define MDIO_ENB		0x00000		/* Ignore the 0x02000 databook setting. */
#define MDIO_ENB_IN		0x40000
#define MDIO_DATA_READ	0x80000
#ifdef _LINUX_DELAY_H
#define mdio_delay()	udelay(1)
#else
#define mdio_delay()	__SLOW_DOWN_IO
#endif

static int mdio_read(int ioaddr, int phy_id, int location)
{
	int i;
	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
	unsigned short retval = 0;
	int mdio_addr = ioaddr + CSR9;

	/* Establish sync by sending at least 32 logic ones. */ 
	for (i = 32; i >= 0; i--) {
		outl(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr);
		mdio_delay();
		outl(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
		mdio_delay();
	}
	/* Shift the read command bits out. */
	for (i = 17; i >= 0; i--) {
		int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0;

		outl(dataval, mdio_addr);
		mdio_delay();
		outl(dataval | MDIO_SHIFT_CLK, mdio_addr);
		mdio_delay();
		outl(dataval, mdio_addr);
		mdio_delay();
	}
	outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
	mdio_delay();
	outl(MDIO_ENB_IN, mdio_addr);

	for (i = 16; i > 0; i--) {
		outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
		mdio_delay();
		retval = (retval << 1) | ((inl(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
		outl(MDIO_ENB_IN, mdio_addr);
		mdio_delay();
	}
	/* Clear out extra bits. */
	for (i = 16; i > 0; i--) {
		outl(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
		mdio_delay();
		outl(MDIO_ENB_IN, mdio_addr);
		mdio_delay();
	}
	return retval;
}


static int
tulip_open(struct device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	int ioaddr = dev->base_addr;
	int i = 0;

	/* On some chip revs we must set the MII/SYM port before the reset!? */
	if (tp->mtable  &&  tp->mtable->has_mii)
		outl(0x00040000, ioaddr + CSR6);

	/* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
	outl(0x00000001, ioaddr + CSR0);
#ifdef _LINUX_DELAY_H
	udelay(2);
#else
	SLOW_DOWN_IO;
#endif
	/* Deassert reset.
	   486: Set 8 longword cache alignment, 8 longword burst.
	   586: Set 16 longword cache alignment, no burst limit.
	   Cache alignment bits 15:14	     Burst length 13:8
		0000	No alignment  0x00000000 unlimited		0800 8 longwords
		4000	8  longwords		0100 1 longword		1000 16 longwords
		8000	16 longwords		0200 2 longwords	2000 32 longwords
		C000	32  longwords		0400 4 longwords
	   Wait the specified 50 PCI cycles after a reset by initializing
	   Tx and Rx queues and the address filter list. */
#if defined(__alpha__)
	/* ToDo: Alpha setting could be better. */
	outl(0x00200000 | 0xE000, ioaddr + CSR0);
#else
#if defined(MODULE)
	/* When a module we don't have 'x86' to check. */
	outl(0x00200000 | 0x4800, ioaddr + CSR0);
#else
	outl(0x00200000 | (x86 <= 4 ? 0x4800 : 0x8000), ioaddr + CSR0);
	if (x86 <= 4)
	  printk(KERN_INFO "%s: This is a 386/486 PCI system, setting cache "
			 "alignment to %x.\n", dev->name,
			 0x00200000 | (x86 <= 4 ? 0x4800 : 0x8000));
#endif
#endif

#ifdef SA_SHIRQ
	if (request_irq(dev->irq, &tulip_interrupt, SA_SHIRQ,
					tulip_tbl[tp->chip_id].chip_name, dev)) {
		return -EAGAIN;
	}
#else
	if (irq2dev_map[dev->irq] != NULL
		|| (irq2dev_map[dev->irq] = dev) == NULL
		|| dev->irq == 0
		|| request_irq(dev->irq, &tulip_interrupt, 0,
					   tulip_tbl[tp->chip_id].chip_name)) {
		return -EAGAIN;
	}
#endif

	if (tulip_debug > 1)
		printk(KERN_DEBUG "%s: tulip_open() irq %d.\n", dev->name, dev->irq);

	MOD_INC_USE_COUNT;

	tulip_init_ring(dev);

	/* This is set_rx_mode(), but without starting the transmitter. */
	/* Fill the whole address filter table with our physical address. */
	{
		u16 *eaddrs = (u16 *)dev->dev_addr;
		int *setup_frm = tp->setup_frame, i;

		/* You must add the broadcast address when doing perfect filtering! */
		*setup_frm++ = 0xffff;
		*setup_frm++ = 0xffff;
		*setup_frm++ = 0xffff;
		/* Fill the rest of the accept table with our physical address. */
		for (i = 1; i < 16; i++) {
			*setup_frm++ = eaddrs[0];
			*setup_frm++ = eaddrs[1];
			*setup_frm++ = eaddrs[2];
		}
		/* Put the setup frame on the Tx list. */
		tp->tx_ring[0].length = 0x08000000 | 192;
		tp->tx_ring[0].buffer1 = virt_to_bus(tp->setup_frame);
		tp->tx_ring[0].status = 0x80000000;

		tp->cur_tx++;
	}

	outl(virt_to_bus(tp->rx_ring), ioaddr + CSR3);
	outl(virt_to_bus(tp->tx_ring), ioaddr + CSR4);

	if (dev->if_port == 0)
	  dev->if_port = tp->default_port;
	if (tp->chip_id == DC21041  &&  dev->if_port > 4)
		/* Invalid: Select initial TP, autosense, autonegotiate.  */
		dev->if_port = 4;

	/* Allow selecting a default media. */
	if (tp->mtable == NULL)
		goto media_picked;
	if (dev->if_port)
		for (i = 0; i < tp->mtable->leafcount; i++)
		  if (tp->mtable->mleaf[i].media ==
			  (dev->if_port == 12 ? 0 : dev->if_port)) {
			printk(KERN_INFO "%s: Using user-specified media %s.\n",
				   dev->name, medianame[dev->if_port]);
			goto media_picked;
		  }
	if ((tp->mtable->defaultmedia & 0x0800) == 0)
		for (i = 0; i < tp->mtable->leafcount; i++)
		  if (tp->mtable->mleaf[i].media == (tp->mtable->defaultmedia & 15)) {
			printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
				   dev->name, medianame[tp->mtable->mleaf[i].media]);
			goto media_picked;
		  }
	for (i = tp->mtable->leafcount - 1;
		 (media_fd[tp->mtable->mleaf[i].media] & 2) && i > 0; i--)
	  ;
media_picked:

	tp->cur_index = i;
	tp->csr6 = 0;
	select_media(dev, 1);

	/* Start the chip's Tx to process setup frame. */
	outl(tp->csr6, ioaddr + CSR6);
	outl(tp->csr6 | 0x2000, ioaddr + CSR6);

	dev->tbusy = 0;
	dev->interrupt = 0;
	dev->start = 1;


	/* Enable interrupts by setting the interrupt mask. */
	outl(0x0001fbff, ioaddr + CSR7);
	outl(tp->csr6 | 0x2002, ioaddr + CSR6);
	outl(0, ioaddr + CSR2);		/* Rx poll demand */

	if (tulip_debug > 2) {
		printk(KERN_DEBUG "%s: Done tulip_open(), CSR0 %8.8x, CSR5 %8.8x CSR13 %8.8x.\n",
			   dev->name, inl(ioaddr + CSR0), inl(ioaddr + CSR5),
			   inl(ioaddr + CSR13));
	}
	/* Set the timer to switch to check for link beat and perhaps switch
	   to an alternate media type. */
	init_timer(&tp->timer);
	tp->timer.expires = RUN_AT((24*HZ)/10);			/* 2.4 sec. */
	tp->timer.data = (unsigned long)dev;
	tp->timer.function = &tulip_timer;				/* timer handler */
	add_timer(&tp->timer);

	return 0;
}

/* Set up the transceiver control registers for the selected media type. */
static void select_media(struct device *dev, int startup)
{
	int ioaddr = dev->base_addr;
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	struct mediatable *mtable = tp->mtable;
	u32 new_csr6;
	int check_mii =0, i;

	if (mtable) {
		struct medialeaf *mleaf = &mtable->mleaf[tp->cur_index];
		unsigned char *p = mleaf->leafdata;
		switch (mleaf->type) {
		case 0:					/* 21140 non-MII xcvr. */
			if (tulip_debug > 1)
				printk(KERN_DEBUG "%s: Using a 21140 non-MII transceiver with control"
					   " setting %2.2x.\n",
					   dev->name, p[1]);
			dev->if_port = p[0];
			if (startup)
				outl(mtable->csr12dir | 0x100, ioaddr + CSR12);
			outl(p[1], ioaddr + CSR12);
			new_csr6 = 0x02000000 | ((p[2] & 0x71) << 18);
			break;
		case 1:
			if (startup) {
				outl(mtable->csr12dir | 0x100, ioaddr + CSR12);
				dev->if_port = 11;
				if (tulip_debug > 2)
					printk(KERN_DEBUG "%s:  Doing a reset sequence of length %d.\n",
						   dev->name, p[2 + p[1]]);
				for (i = 0; i < p[2 + p[1]]; i++)
					outl(p[3 + p[1] + i], ioaddr + CSR12);
				if (tulip_debug > 2)
					printk(KERN_DEBUG "%s  Doing a transceiver setup sequence of length %d.\n",
						   dev->name, p[1]);
				for (i = 0; i < p[1]; i++)
					outl(p[2 + i], ioaddr + CSR12);
			}
			check_mii = 1;
			new_csr6 = 0x020C0000;
			break;
		case 2: case 4: {
			u16 *setup = (u16*)&p[1];
			dev->if_port = p[0] & 15;
			if (tulip_debug > 1)
				printk(KERN_DEBUG "%s: 21142 non-MII %s transceiver control %4.4x/%4.4x.\n",
					   dev->name, medianame[dev->if_port], setup[0], setup[1]);
			if (p[0] & 0x40) {	/* SIA (CSR13-15) setup values are provided. */
				outl(0, ioaddr + CSR13);
				outl(setup[1], ioaddr + CSR14);
				outl(setup[2], ioaddr + CSR15);
				outl(setup[0], ioaddr + CSR13);
				setup += 3;
			} else {
				outl(0, ioaddr + CSR13);
				outl(t21142_csr14[dev->if_port], ioaddr + CSR14);
				outl(t21142_csr15[dev->if_port], ioaddr + CSR15);
				outl(t21142_csr13[dev->if_port], ioaddr + CSR13);
			}
			outl(setup[0]<<16, ioaddr + CSR15);	/* Direction */
			outl(setup[1]<<16, ioaddr + CSR15);	/* Data */
			new_csr6 = 0x02000000;
			break;
		}
		case 3: {
			int init_length = p[1];
			u16 * init_sequence = (u16*)(p + 2);
			int reset_length = p[2 + init_length*2];
			u16 * reset_sequence = (u16*)&p[3 + init_length*2];

			dev->if_port = 11;
			if (startup) {
				if (tulip_debug > 2)
					printk(KERN_DEBUG "%s:  Doing a 21142 reset sequence of length %d.\n",
						   dev->name, reset_length);
				for (i = 0; i < reset_length; i++)
					outl(reset_sequence[i] << 16, ioaddr + CSR15);
			}
			if (tulip_debug > 2)
				printk(KERN_DEBUG "%s: Doing a 21142 xcvr setup sequence of length %d.\n",
					   dev->name, init_length);
			for (i = 0; i < init_length; i++)
				outl(init_sequence[i] << 16, ioaddr + CSR15);
			check_mii = 1;
			new_csr6 = 0x020C0000;
			break;
		}
		default:
		  new_csr6 = 0x020C0000;
		}
		if (tulip_debug > 1)
			printk(KERN_DEBUG "%s: Using media type %s, CSR12 is %2.2x.\n",
				   dev->name, medianame[dev->if_port],
				   inl(ioaddr + CSR12) & 0xff);
	} else if (tp->chip_id == DC21140) {
		/* Set media type to MII @ 100mbps: 0x020C0000 */
		new_csr6 = 0x020C0000;
		dev->if_port = 11;
		if (tulip_debug > 1) {
			printk(KERN_DEBUG "%s: Unknown media control, assuming MII, CSR12 %2.2x.\n",
				   dev->name, inl(ioaddr + CSR12) & 0xff);
		}
	} else if (tp->chip_id == DC21041) {
		if (tulip_debug > 1)
			printk(KERN_DEBUG "%s: 21041 using media %s, CSR12 is %4.4x.\n",
				   dev->name, medianame[dev->if_port & 15],
				   inl(ioaddr + CSR12) & 0xffff);
		outl(0x00000000, ioaddr + CSR13); /* Reset the serial interface */
		outl(t21041_csr14[dev->if_port], ioaddr + CSR14);
		outl(t21041_csr15[dev->if_port], ioaddr + CSR15);
		outl(t21041_csr13[dev->if_port], ioaddr + CSR13);
		new_csr6 = 0x80020000;
	} else {					/* 21040 */
		/* Turn on the xcvr interface. */
		int csr12 = inl(ioaddr + CSR12);
		if (tulip_debug > 1)
			printk(KERN_DEBUG "%s: 21040 media type is %s, CSR12 is %2.2x.\n",
				   dev->name, dev->if_port ? "AUI" : "10baseT", csr12);
		new_csr6 = (dev->if_port ? 0x01860000 : 0x00420000);
		/* Set the full duplux match frame. */
		outl(FULL_DUPLEX_MAGIC, ioaddr + CSR11);
		outl(0x00000000, ioaddr + CSR13); /* Reset the serial interface */
		outl(dev->if_port ? 0x0000000C : 0x00000004, ioaddr + CSR13);
	}

	tp->csr6 = new_csr6 | (tp->csr6 & 0xfdff) | (tp->full_duplex ? 0x0200 : 0);
	return;
}

static void tulip_timer(unsigned long data)
{
	struct device *dev = (struct device *)data;
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	int ioaddr = dev->base_addr;
	u32 csr12 = inl(ioaddr + CSR12);
	int next_tick = 0;

	if (tulip_debug > 3) {
		printk(KERN_DEBUG "%s: Media selection tick, status %8.8x mode %8.8x "
			   "SIA %8.8x %8.8x %8.8x %8.8x.\n",
			   dev->name, inl(ioaddr + CSR5), inl(ioaddr + CSR6),
			   csr12, inl(ioaddr + CSR13),
			   inl(ioaddr + CSR14), inl(ioaddr + CSR15));
	}
	switch (tp->chip_id) {
	case DC21040:
		if (csr12 & 0x0002) { /* Network error */
			printk(KERN_INFO "%s: No 10baseT link beat found, switching to %s media.\n",
				   dev->name, dev->if_port ? "10baseT" : "AUI");
			dev->if_port ^= 1;
			outl(dev->if_port ? 0x0000000C : 0x00000004, ioaddr + CSR13);
			dev->trans_start = jiffies;
		}
		break;
	case DC21041:
		if (tulip_debug > 2)
			printk(KERN_DEBUG "%s: 21041 media tick  CSR12 %8.8x.\n",
				   dev->name, csr12);
		switch (dev->if_port) {
		case 0: case 3: case 4:
		  if (csr12 & 0x0004) { /*LnkFail */
			/* 10baseT is dead.  Check for activity on alternate port. */
			tp->mediasense = 1;
			if (csr12 & 0x0200)
				dev->if_port = 2;
			else
				dev->if_port = 1;
			printk(KERN_INFO "%s: No 21041 10baseT link beat, Media switched to %s.\n",
				   dev->name, medianame[dev->if_port]);
			outl(0, ioaddr + CSR13); /* Reset */
			outl(t21041_csr14[dev->if_port], ioaddr + CSR14);
			outl(t21041_csr15[dev->if_port], ioaddr + CSR15);
			outl(t21041_csr13[dev->if_port], ioaddr + CSR13);
			next_tick = 10*HZ;			/* 2.4 sec. */
		  } else
			next_tick = 30*HZ;
		  break;
		case 1:					/* 10base2 */
		case 2:					/* AUI */
		  if (csr12 & 0x0100) {
			next_tick = (30*HZ);			/* 30 sec. */
			tp->mediasense = 0;
		  } else if ((csr12 & 0x0004) == 0) {
			printk(KERN_INFO "%s: 21041 media switched to 10baseT.\n", dev->name);
			dev->if_port = 0;
			select_media(dev, 0);
			next_tick = (24*HZ)/10;				/* 2.4 sec. */
		  } else if (tp->mediasense || (csr12 & 0x0002)) {
			dev->if_port = 3 - dev->if_port; /* Swap ports. */
			select_media(dev, 0);
			next_tick = 20*HZ;
		  } else {
			next_tick = 20*HZ;
		  }
		  break;
		}
		break;
	case DC21140:  case DC21142: {
		struct medialeaf *mleaf;
		unsigned char *p;
		if (tp->mtable == NULL) {	/* No EEPROM info, use generic code. */
			/* Assume this is like a SMC card, and check its link beat bit. */
			if ((dev->if_port == 0 && (csr12 & 0x0080)) ||
				(dev->if_port == 1 && (csr12 & 0x0040) == 0)) {
				dev->if_port ^= 1;
				/* Stop the transmit process. */
				tp->csr6 = (dev->if_port ? 0x03860000 : 0x02420000);
				outl(tp->csr6 | 0x0002, ioaddr + CSR6);
				printk(KERN_INFO "%s: link beat timed out, CSR12 is 0x%2.2x, switching to"
					   " %s media.\n", dev->name,
					   csr12 & 0xff,
					   dev->if_port ? "100baseTx" : "10baseT");
				outl(tp->csr6 | 0xA002, ioaddr + CSR6);
				dev->trans_start = jiffies;
				next_tick = (24*HZ)/10;
			} else {
				next_tick = 10*HZ;
				if (tulip_debug > 2)
					printk(KERN_DEBUG "%s: network media monitor 0x%2.2x, link"
						   " beat detected as %s.\n", dev->name,
						   csr12 & 0xff,
						   dev->if_port ? "100baseTx" : "10baseT");
			}
			break;
		}
	  mleaf = &tp->mtable->mleaf[tp->cur_index];
	  p = mleaf->leafdata;
	  switch (mleaf->type) {
	  case 0: case 4: {
		/* Type 0 non-MII or #4 SYM transceiver.  Check the link beat bit. */
		  s8 bitnum = p[mleaf->type == 4 ? 5 : 2];
		  if (tulip_debug > 2)
			  printk(KERN_DEBUG "%s: Transceiver monitor tick: CSR12=%#2.2x bit %d is"
					 " %d, expecting %d.\n",
					 dev->name, csr12, (bitnum >> 1) & 7,
					 (csr12 & (1 << ((bitnum >> 1) & 7))) != 0,
					 (bitnum >= 0));
		  /* Check that the specified bit has the proper value. */
		  if ((bitnum < 0) !=
			  ((csr12 & (1 << ((bitnum >> 1) & 7))) != 0)) {
			  if (tulip_debug > 1)
				  printk(KERN_DEBUG "%s: Link beat detected for %s.\n", dev->name,
						 medianame[mleaf->media]);
			  break;
		  }
		  if (tp->medialock)
			break;
	  select_next_media:
		  if (--tp->cur_index < 0) {
			/* We start again, but should instead look for default. */
			tp->cur_index = tp->mtable->leafcount - 1;
		  }
		  dev->if_port = tp->mtable->mleaf[tp->cur_index].media;
		  if (media_fd[dev->if_port])
			goto select_next_media; /* Skip FD entries. */
		  if (tulip_debug > 1)
			  printk(KERN_DEBUG "%s: No link beat on media %s,"
					 " trying transceiver type %s.\n",
					 dev->name, medianame[mleaf->media & 15],
					 medianame[tp->mtable->mleaf[tp->cur_index].media]);
		  select_media(dev, 0);
		  /* Restart the transmit process. */
		  outl(tp->csr6 | 0x0002, ioaddr + CSR6);
		  outl(tp->csr6 | 0x2002, ioaddr + CSR6);
		  next_tick = (24*HZ)/10;
		  break;
	  }
	  case 1:
		  {
			  int mii_reg5 = mdio_read(ioaddr, tp->phys[0], 5);
			  printk(KERN_INFO "%s: MII monitoring tick: CSR12 %2.2x, "
					 "Link partner report %4.4x.\n",
					 dev->name, csr12, mii_reg5);
			  if (mii_reg5 != 0xffff
				  && mdio_read(ioaddr, tp->phys[0], 1) & 0x0020) {
				  int full_duplex = mii_reg5 & 0x0100 ? 1 : 0;
				  if (full_duplex != tp->full_duplex) {
					  tp->full_duplex = full_duplex;
					  tp->csr6 ^= 0x0200;
					  outl(tp->csr6 | 0x0002, ioaddr + CSR6);
					  outl(tp->csr6 | 0x2002, ioaddr + CSR6);
				  }
				  if (tulip_debug > 0) /* Gurppp, should be >1 */
					  printk(KERN_INFO "%s: Setting %s-duplex based on MII"
							 " Xcvr #%d partner capability of %4.4x.\n",
							 dev->name, full_duplex ? "full" : "half",
							 tp->phys[0], mii_reg5);
			  }
		  }

		  /* Hack for D-Link: Full duplex indication is on bit 3. */
		  if (dev->dev_addr[0] == 0  &&  dev->dev_addr[1] == 0x80
			  && dev->dev_addr[2] == 0xC8) {
			  if (csr12 & 0x08) {
				  tp->full_duplex = 0;
				  tp->csr6 &= ~0x0200;
				  outl(tp->csr6 | 0x0002, ioaddr + CSR6);
				  outl(tp->csr6 | 0x2002, ioaddr + CSR6);
			  } else {
				  tp->full_duplex = 1;
				  tp->csr6 |= 0x0200;
				  outl(tp->csr6 | 0x0002, ioaddr + CSR6);
				  outl(tp->csr6 | 0x2002, ioaddr + CSR6);
			  }
		  }
		  break;
	  case 2:					/* 21142 non-MII */
	  case 3:					/* 21142 MII */
		  next_tick = (24*HZ)/10;
		  break;
	  default:
		  break;
	  }
	}
	default:					/* Invalid chip type. */
	  break;
	}
	if (next_tick) {
		tp->timer.expires = RUN_AT(next_tick);
		add_timer(&tp->timer);
	}
}

static void tulip_tx_timeout(struct device *dev)
{
  struct tulip_private *tp = (struct tulip_private *)dev->priv;
  int ioaddr = dev->base_addr;

  if (tp->mtable && tp->mtable->has_mii) {
	/* Do nothing -- the media monitor should handle this. */
	if (tulip_debug > 1)
	  printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
			 dev->name);
  } else if (tp->chip_id == DC21040) {
	  if (inl(ioaddr + CSR12) & 0x0002) {
		  printk(KERN_INFO "%s: transmit timed out, switching to %s media.\n",
				 dev->name, dev->if_port ? "10baseT" : "AUI");
		  dev->if_port ^= 1;
		  outl(dev->if_port ? 0x0000000C : 0x00000004, ioaddr + CSR13);
	  }
	  dev->trans_start = jiffies;
	  return;
  } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142) {
	/* Stop the transmit process. */
	outl(tp->csr6 | 0x0002, ioaddr + CSR6);
	dev->if_port ^= 1;
	printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
		   "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
		   dev->name, inl(ioaddr + CSR5), inl(ioaddr + CSR12),
		   inl(ioaddr + CSR13), inl(ioaddr + CSR14), inl(ioaddr + CSR15));
	printk(KERN_WARNING "%s: transmit timed out, switching to %s media.\n",
		   dev->name, dev->if_port ? "100baseTx" : "10baseT");
	outl(tp->csr6 | 0x2002, ioaddr + CSR6);
	tp->stats.tx_errors++;
	dev->trans_start = jiffies;
	return;
  } else if (tp->chip_id == DC21041) {
	u32 csr12 = inl(ioaddr + CSR12);

	printk(KERN_WARNING "%s: 21041 transmit timed out, status %8.8x, CSR12 %8.8x,"
		   " CSR13 %8.8x, CSR14 %8.8x, resetting...\n",
		   dev->name, inl(ioaddr + CSR5), csr12,
		   inl(ioaddr + CSR13), inl(ioaddr + CSR14));
	tp->mediasense = 1;
	if (dev->if_port == 1 || dev->if_port == 2)
		if (csr12 & 0x0004) {
			dev->if_port = 2 - dev->if_port;
		} else
			dev->if_port = 0;
	else
		dev->if_port = 1;
	select_media(dev, 0);
	tp->stats.tx_errors++;
	dev->trans_start = jiffies;
	return;
  } else
	printk(KERN_WARNING "%s: transmit timed out, status %8.8x, CSR12 %8.8x,"
		   " resetting...\n",
		   dev->name, inl(ioaddr + CSR5), inl(ioaddr + CSR12));
#ifdef way_too_many_messages
  printk("  Rx ring %8.8x: ", (int)tp->rx_ring);
  for (i = 0; i < RX_RING_SIZE; i++)
	printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
  printk("\n  Tx ring %8.8x: ", (int)tp->tx_ring);
  for (i = 0; i < TX_RING_SIZE; i++)
	printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
  printk("\n");
#endif

  /* Perhaps we should reinitialize the hardware here. */
  dev->if_port = 0;
  /* Stop and restart the chip's Tx processes . */
  outl(tp->csr6 | 0x0002, ioaddr + CSR6);
  outl(tp->csr6 | 0x2002, ioaddr + CSR6);
  /* Trigger an immediate transmit demand. */
  outl(0, ioaddr + CSR1);

  dev->trans_start = jiffies;
  tp->stats.tx_errors++;
  return;
}


/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void
tulip_init_ring(struct device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	int i;

	tp->tx_full = 0;
	tp->cur_rx = tp->cur_tx = 0;
	tp->dirty_rx = tp->dirty_tx = 0;

	for (i = 0; i < RX_RING_SIZE; i++) {
		tp->rx_ring[i].status = 0x80000000;	/* Owned by Tulip chip */
		tp->rx_ring[i].length = PKT_BUF_SZ;
		{
			/* Note the receive buffer must be longword aligned.
			   dev_alloc_skb() provides 16 byte alignment.  But do *not*
			   use skb_reserve() to align the IP header! */
			struct sk_buff *skb;
			skb = DEV_ALLOC_SKB(PKT_BUF_SZ);
			tp->rx_skbuff[i] = skb;
			if (skb == NULL)
				break;			/* Bad news!  */
			skb->dev = dev;			/* Mark as being used by this device. */
#if LINUX_VERSION_CODE > 0x10300
			tp->rx_ring[i].buffer1 = virt_to_bus(skb->tail);
#else
			tp->rx_ring[i].buffer1 = virt_to_bus(skb->data);
#endif
		}
		tp->rx_ring[i].buffer2 = virt_to_bus(&tp->rx_ring[i+1]);
	}
	/* Mark the last entry as wrapping the ring. */
	tp->rx_ring[i-1].length = PKT_BUF_SZ | 0x02000000;
	tp->rx_ring[i-1].buffer2 = virt_to_bus(&tp->rx_ring[0]);

	/* The Tx buffer descriptor is filled in as needed, but we
	   do need to clear the ownership bit. */
	for (i = 0; i < TX_RING_SIZE; i++) {
		tp->tx_skbuff[i] = 0;
		tp->tx_ring[i].status = 0x00000000;
		tp->tx_ring[i].buffer2 = virt_to_bus(&tp->tx_ring[i+1]);
	}
	tp->tx_ring[i-1].buffer2 = virt_to_bus(&tp->tx_ring[0]);
}

static int
tulip_start_xmit(struct sk_buff *skb, struct device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	int entry;
	u32 flag;

#ifndef final_version
	if (skb == NULL || skb->len <= 0) {
		printk(KERN_ERR "%s: Obsolete driver layer request made: skbuff==NULL.\n",
			   dev->name);
		dev_tint(dev);
		return 0;
	}
#endif

	/* Block a timer-based transmit from overlapping.  This could better be
	   done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */
	if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) {
		if (jiffies - dev->trans_start < TX_TIMEOUT)
			return 1;
		tulip_tx_timeout(dev);
		return 1;
	}

	/* Caution: the write order is important here, set the base address
	   with the "ownership" bits last. */

	/* Calculate the next Tx descriptor entry. */
	entry = tp->cur_tx % TX_RING_SIZE;

	tp->tx_skbuff[entry] = skb;
	tp->tx_ring[entry].buffer1 = virt_to_bus(skb->data);

	if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
	  flag = 0x60000000; /* No interrupt */
	  dev->tbusy = 0;
	} else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
	  flag = 0xe0000000; /* Tx-done intr. */
	  dev->tbusy = 0;
	} else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
	  flag = 0x60000000; /* No Tx-done intr. */
	  dev->tbusy = 0;
	} else {
	  /* Leave room for set_rx_mode() to fill entries. */
	  flag = 0xe0000000; /* Tx-done intr. */
	  tp->tx_full = 1;
	}
	if (entry == TX_RING_SIZE-1)
		flag |= 0xe2000000;

	tp->tx_ring[entry].length = skb->len | flag;
	tp->tx_ring[entry].status = 0x80000000;	/* Pass ownership to the chip. */
	tp->cur_tx++;
	/* Trigger an immediate transmit demand. */
	outl(0, dev->base_addr + CSR1);

	dev->trans_start = jiffies;

	return 0;
}

/* The interrupt handler does all of the Rx thread work and cleans up
   after the Tx thread. */
static void tulip_interrupt IRQ(int irq, void *dev_instance, struct pt_regs *regs)
{
#ifdef SA_SHIRQ		/* Use the now-standard shared IRQ implementation. */
	struct device *dev = (struct device *)dev_instance;
#else
	struct device *dev = (struct device *)(irq2dev_map[irq]);
#endif

	struct tulip_private *lp;
	int csr5, ioaddr, boguscnt = 12;

	if (dev == NULL) {
		printk ("tulip_interrupt(): irq %d for unknown device.\n", irq);
		return;
	}

	ioaddr = dev->base_addr;
	lp = (struct tulip_private *)dev->priv;
	if (dev->interrupt)
		printk(KERN_ERR "%s: Re-entering the interrupt handler.\n", dev->name);

	dev->interrupt = 1;

	do {
		csr5 = inl(ioaddr + CSR5);
		/* Acknowledge all of the current interrupt sources ASAP. */
		outl(csr5 & 0x0001ffff, ioaddr + CSR5);

		if (tulip_debug > 4)
			printk(KERN_DEBUG "%s: interrupt  csr5=%#8.8x new csr5=%#8.8x.\n",
				   dev->name, csr5, inl(dev->base_addr + CSR5));

		if ((csr5 & 0x00018000) == 0)
			break;

		if (csr5 & 0x0040)			/* Rx interrupt */
			tulip_rx(dev);

		if (csr5 & 0x0007) {		/* Tx-done interrupt */
			int dirty_tx;

			for (dirty_tx = lp->dirty_tx; dirty_tx < lp->cur_tx; dirty_tx++) {
				int entry = dirty_tx % TX_RING_SIZE;
				int status = lp->tx_ring[entry].status;

				if (status < 0)
					break;			/* It still hasn't been Txed */
				/* Check for Rx filter setup frames. */
				if (lp->tx_skbuff[entry] == NULL)
				  continue;

				if (status & 0x8000) {
					/* There was an major error, log it. */
#ifndef final_version
					if (tulip_debug > 1)
						printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
							   dev->name, status);
#endif
					lp->stats.tx_errors++;
					if (status & 0x4104) lp->stats.tx_aborted_errors++;
					if (status & 0x0C00) lp->stats.tx_carrier_errors++;
					if (status & 0x0200) lp->stats.tx_window_errors++;
					if (status & 0x0002) lp->stats.tx_fifo_errors++;
					if ((status & 0x0080) && lp->full_duplex == 0)
						lp->stats.tx_heartbeat_errors++;
#ifdef ETHER_STATS
					if (status & 0x0100) lp->stats.collisions16++;
#endif
				} else {
#ifdef ETHER_STATS
					if (status & 0x0001) lp->stats.tx_deferred++;
#endif
					lp->stats.collisions += (status >> 3) & 15;
					lp->stats.tx_packets++;
				}

				/* Free the original skb. */
				dev_kfree_skb(lp->tx_skbuff[entry], FREE_WRITE);
				lp->tx_skbuff[entry] = 0;
			}

#ifndef final_version
			if (lp->cur_tx - dirty_tx > TX_RING_SIZE) {
				printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
					   dev->name, dirty_tx, lp->cur_tx, lp->tx_full);
				dirty_tx += TX_RING_SIZE;
			}
#endif

			if (lp->tx_full && dev->tbusy
				&& dirty_tx > lp->cur_tx - TX_RING_SIZE + 2) {
				/* The ring is no longer full, clear tbusy. */
				lp->tx_full = 0;
				dev->tbusy = 0;
				mark_bh(NET_BH);
			}

			lp->dirty_tx = dirty_tx;
		}

		/* Log errors. */
		if (csr5 & 0x8000) {	/* Abnormal error summary bit. */
			if (csr5 & 0x0008) lp->stats.tx_errors++; /* Tx babble. */
			if (csr5 & 0x0020) { /* Tx FIFO underflow. */
			  lp->csr6 |= 0x00200000;  /* Reconfigure to store-n-forward. */
			  /* Restart the transmit process. */
			  outl(lp->csr6 | 0x0002, ioaddr + CSR6);
			  outl(lp->csr6 | 0x2002, ioaddr + CSR6);
			}
			if (csr5 & 0x0100) {		/* Missed a Rx frame. */
				lp->stats.rx_errors++;
				lp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;
			}
			if (csr5 & 0x0800) {
				printk(KERN_ERR "%s: Something Wicked happened! %8.8x.\n",
					   dev->name, csr5);
				/* Hmmmmm, it's not clear what to do here. */
			}
			/* Clear all error sources, included undocumented ones! */
			outl(0x000f7ba, ioaddr + CSR5);
		}
		if (--boguscnt < 0) {
			printk(KERN_WARNING "%s: Too much work at interrupt, csr5=0x%8.8x.\n",
				   dev->name, csr5);
			/* Clear all interrupt sources. */
			outl(0x0001ffff, ioaddr + CSR5);
			break;
		}
	} while (1);

	if (tulip_debug > 3)
		printk(KERN_DEBUG "%s: exiting interrupt, csr5=%#4.4x.\n",
			   dev->name, inl(ioaddr + CSR5));

	/* Code that should never be run!  Perhaps remove after testing.. */
	{
		static int stopit = 10;
		if (dev->start == 0  &&  --stopit < 0) {
			printk(KERN_ERR "%s: Emergency stop, looping startup interrupt.\n"
				   KERN_ERR "%s: Disabling interrupt handler %d to avoid "
				   "locking up the machine.\n",
				   dev->name, dev->name, dev->irq);
#ifdef SA_SHIRQ
			free_irq(irq, dev);
#else
			free_irq(irq);
#endif
		}
	}

	dev->interrupt = 0;
	return;
}

static int
tulip_rx(struct device *dev)
{
	struct tulip_private *lp = (struct tulip_private *)dev->priv;
	int entry = lp->cur_rx % RX_RING_SIZE;

	if (tulip_debug > 4)
		printk(KERN_DEBUG " In tulip_rx(), entry %d %8.8x.\n", entry,
			   lp->rx_ring[entry].status);
	/* If we own the next entry, it's a new packet. Send it up. */
	while (lp->rx_ring[entry].status >= 0) {
		int status = lp->rx_ring[entry].status;

		if ((status & 0x0300) != 0x0300) {
			if ((status & 0xffff) != 0x7fff) { /* Ingore earlier buffers. */
			  printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
					 "multiple buffers, status %8.8x!\n", dev->name, status);
			  lp->stats.rx_length_errors++;
			}
		} else if (status & 0x8000) {
			/* There was a fatal error. */
			lp->stats.rx_errors++; /* end of a packet.*/
			if (status & 0x0890) lp->stats.rx_length_errors++;
			if (status & 0x0004) lp->stats.rx_frame_errors++;
			if (status & 0x0002) lp->stats.rx_crc_errors++;
			if (status & 0x0001) lp->stats.rx_fifo_errors++;
		} else {
			/* Malloc up new buffer, compatible with net-2e. */
			/* Omit the four octet CRC from the length. */
			short pkt_len = (lp->rx_ring[entry].status >> 16) - 4;
			struct sk_buff *skb;
			int rx_in_place = 0;

			/* Check if the packet is long enough to just accept without
			   copying to a properly sized skbuff. */
			if (pkt_len > rx_copybreak) {
				struct sk_buff *newskb;
				char *temp;

				/* Get a fresh skbuff to replace the filled one. */
				newskb = DEV_ALLOC_SKB(PKT_BUF_SZ);
				if (newskb == NULL) {
					skb = 0;		/* No memory, drop the packet. */
					goto memory_squeeze;
				}
				/* Pass up the skb already on the Rx ring. */
				skb = lp->rx_skbuff[entry];
				temp = skb_put(skb, pkt_len);
				if (bus_to_virt(lp->rx_ring[entry].buffer1) != temp)
					printk(KERN_ERR "%s: Internal consistency error -- the "
						   "skbuff addresses do not match"
						   " in tulip_rx: %p vs. %p / %p.\n", dev->name,
						   bus_to_virt(lp->rx_ring[entry].buffer1),
						   skb->head, temp);
				rx_in_place = 1;
				lp->rx_skbuff[entry] = newskb;
				newskb->dev = dev;
				/* Longword alignment required: do not skb_reserve(2)! */
				lp->rx_ring[entry].buffer1 = virt_to_bus(newskb->tail);
			} else
				skb = DEV_ALLOC_SKB(pkt_len + 2);
			memory_squeeze:
			if (skb == NULL) {
				int i;
				printk(KERN_WARNING "%s: Memory squeeze, deferring packet.\n",
					   dev->name);
				/* Check that at least two ring entries are free.
				   If not, free one and mark stats->rx_dropped++. */
				for (i = 0; i < RX_RING_SIZE; i++)
					if (lp->rx_ring[(entry+i) % RX_RING_SIZE].status < 0)
						break;

				if (i > RX_RING_SIZE -2) {
					lp->stats.rx_dropped++;
					lp->rx_ring[entry].status = 0x80000000;
					lp->cur_rx++;
				}
				break;
			}
			skb->dev = dev;
			if (! rx_in_place) {
				skb_reserve(skb, 2);	/* 16 byte align the data fields */
				memcpy(skb_put(skb, pkt_len),
					   bus_to_virt(lp->rx_ring[entry].buffer1), pkt_len);
			}
#if LINUX_VERSION_CODE > 0x10300
			skb->protocol = eth_type_trans(skb, dev);
#else
			skb->len = pkt_len;
#endif
			netif_rx(skb);
			lp->stats.rx_packets++;
		}

		lp->rx_ring[entry].status = 0x80000000;
		entry = (++lp->cur_rx) % RX_RING_SIZE;
	}

	return 0;
}

static int
tulip_close(struct device *dev)
{
	int ioaddr = dev->base_addr;
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	int i;

	dev->start = 0;
	dev->tbusy = 1;

	if (tulip_debug > 1)
		printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
			   dev->name, inl(ioaddr + CSR5));

	/* Disable interrupts by clearing the interrupt mask. */
	outl(0x00000000, ioaddr + CSR7);
	/* Stop the chip's Tx and Rx processes. */
	outl(inl(ioaddr + CSR6) & ~0x2002, ioaddr + CSR6);
	/* 21040 -- Leave the card in 10baseT state. */
	if (tp->chip_id == DC21040)
		outl(0x00000004, ioaddr + CSR13);

	tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;

	del_timer(&tp->timer);

#ifdef SA_SHIRQ
	free_irq(dev->irq, dev);
#else
	free_irq(dev->irq);
	irq2dev_map[dev->irq] = 0;
#endif

	/* Free all the skbuffs in the Rx queue. */
	for (i = 0; i < RX_RING_SIZE; i++) {
		struct sk_buff *skb = tp->rx_skbuff[i];
		tp->rx_skbuff[i] = 0;
		tp->rx_ring[i].status = 0;		/* Not owned by Tulip chip. */
		tp->rx_ring[i].length = 0;
		tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
		if (skb) {
#if LINUX_VERSION_CODE < 0x20100
			skb->free = 1;
#endif
			dev_kfree_skb(skb, FREE_WRITE);
		}
	}
	for (i = 0; i < TX_RING_SIZE; i++) {
		if (tp->tx_skbuff[i])
			dev_kfree_skb(tp->tx_skbuff[i], FREE_WRITE);
		tp->tx_skbuff[i] = 0;
	}


	MOD_DEC_USE_COUNT;

	return 0;
}

static struct enet_statistics *
tulip_get_stats(struct device *dev)
{
	struct tulip_private *tp = (struct tulip_private *)dev->priv;
	int ioaddr = dev->base_addr;

	if (dev->start)
		tp->stats.rx_missed_errors += inl(ioaddr + CSR8) & 0xffff;

	return &tp->stats;
}

/* Set or clear the multicast filter for this adaptor.
   Note that we only use exclusion around actually queueing the
   new frame, not around filling tp->setup_frame.  This is non-deterministic
   when re-entered but still correct. */

/* The little-endian AUTODIN32 ethernet CRC calculation.
   N.B. Do not use for bulk data, use a table-based routine instead.
   This is common code and should be moved to net/core/crc.c */
static unsigned const ethernet_polynomial_le = 0xedb88320U;
static inline unsigned ether_crc_le(int length, unsigned char *data)
{
	unsigned int crc = 0xffffffff;	/* Initial value. */
	while(--length >= 0) {
		unsigned char current_octet = *data++;
		int bit;
		for (bit = 8; --bit >= 0; current_octet >>= 1) {
			if ((crc ^ current_octet) & 1) {
				crc >>= 1;
				crc ^= ethernet_polynomial_le;
			} else
				crc >>= 1;
		}
	}
	return crc;
}


static void
#ifdef NEW_MULTICAST
set_multicast_list(struct device *dev)
#else
static void set_multicast_list(struct device *dev, int num_addrs, void *addrs);
#endif
{
	int ioaddr = dev->base_addr;
	int csr6 = inl(ioaddr + CSR6) & ~0x00D5;
	struct tulip_private *tp = (struct tulip_private *)dev->priv;

	tp->csr6 &= ~0x00D5;
	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
		outl(csr6 | 0x00C0, ioaddr + CSR6);
		/* Unconditionally log net taps. */
		printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
		tp->csr6 |= 0xC0;
	} else if ((dev->mc_count > 1000)  ||  (dev->flags & IFF_ALLMULTI)) {
		/* Too many to filter perfectly -- accept all multicasts. */
		outl(csr6 | 0x0080, ioaddr + CSR6);
		tp->csr6 |= 0x80;
	} else {
		u32 *setup_frm = tp->setup_frame;
		struct dev_mc_list *mclist;
		u16 *eaddrs;
		u32 tx_flags;
		int i;

		if (dev->mc_count > 14) { /* Must use a multicast hash table. */
		  u16 hash_table[32];
		  memset(hash_table, 0, sizeof(hash_table));
		  for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
			   i++, mclist = mclist->next)
			set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff,
					hash_table);
		  /* Copy the hash table to the setup frame.
			 NOTE that only the LOW SHORTWORD of setup_frame[] is valid!
			 This code may require tweaking for non-x86 architectures!  */
		  for (i = 0; i < 32; i++)
			*setup_frm++ = hash_table[i];
		  setup_frm += 7;
		  tx_flags = 0x08400000 | 192;
		  /* Too clever: i > 15 for fall-though. */
		} else {
		  /* We have <= 15 addresses so we can use the wonderful
			 16 address perfect filtering of the Tulip. */
		  for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
			   i++, mclist = mclist->next) {
			/* Note that only the low shortword of setup_frame[] is valid!
			   This code may require tweaking for non-x86 architectures! */
			eaddrs = (u16 *)mclist->dmi_addr;
			*setup_frm++ = *eaddrs++;
			*setup_frm++ = *eaddrs++;
			*setup_frm++ = *eaddrs++;
		  }
		  /* Fill the rest of the table with our physical address.
			 Once again, only the low shortword or setup_frame[] is valid! */
		  *setup_frm++ = 0xffff;
		  *setup_frm++ = 0xffff;
		  *setup_frm++ = 0xffff;
		  tx_flags = 0x08000000 | 192;
		}
		eaddrs = (u16 *)dev->dev_addr;
		do {
		  *setup_frm++ = eaddrs[0];
		  *setup_frm++ = eaddrs[1];
		  *setup_frm++ = eaddrs[2];
		} while (++i < 15);
		/* Now add this frame to the Tx list. */
		if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
			/* Same setup recently queued, we need not add it. */
		} else {
			unsigned long flags;
			unsigned int entry;
			
			save_flags(flags); cli();
			entry = tp->cur_tx++ % TX_RING_SIZE;

			if (entry != 0) {
			  /* Avoid a chip errata by prefixing a dummy entry. */
			  tp->tx_skbuff[entry] = 0;
			  tp->tx_ring[entry].length =
				(entry == TX_RING_SIZE-1) ? 0x02000000 : 0;
			  tp->tx_ring[entry].buffer1 = 0;
			  tp->tx_ring[entry].status = 0x80000000;
			  entry = tp->cur_tx++ % TX_RING_SIZE;
			}

			tp->tx_skbuff[entry] = 0;
			/* Put the setup frame on the Tx list. */
			if (entry == TX_RING_SIZE-1)
			  tx_flags |= 0x02000000;		/* Wrap ring. */
			tp->tx_ring[entry].length = tx_flags;
			tp->tx_ring[entry].buffer1 = virt_to_bus(tp->setup_frame);
			tp->tx_ring[entry].status = 0x80000000;
			if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) {
				dev->tbusy = 1;
				tp->tx_full = 1;
			}
			restore_flags(flags);
			/* Trigger an immediate transmit demand. */
			outl(0, ioaddr + CSR1);
		}
		outl(csr6 | 0x0000, ioaddr + CSR6);
	}
}

#ifdef MODULE
#if LINUX_VERSION_CODE > 0x20118
MODULE_PARM(debug, "i");
MODULE_PARM(reverse_probe, "i");
MODULE_PARM(rx_copybreak, "i");
MODULE_PARM(options, "1-" __MODULE_STRING(8) "i");
MODULE_PARM(full_duplex, "1-" __MODULE_STRING(8) "i");
#endif

/* An additional parameter that may be passed in... */
static int debug = -1;

int
init_module(void)
{
	if (debug >= 0)
		tulip_debug = debug;

	root_tulip_dev = NULL;
	return tulip_probe(NULL);
}

void
cleanup_module(void)
{
	struct device *next_dev;

	/* No need to check MOD_IN_USE, as sys_delete_module() checks. */
	while (root_tulip_dev) {
		next_dev = ((struct tulip_private *)root_tulip_dev->priv)->next_module;
		unregister_netdev(root_tulip_dev);
		release_region(root_tulip_dev->base_addr, TULIP_TOTAL_SIZE);
		kfree(root_tulip_dev);
		root_tulip_dev = next_dev;
	}
}

#endif  /* MODULE */

/*
 * Local variables:
 *  compile-command: "gcc -DMODVERSIONS -DMODULE -D__KERNEL__ -I/usr/src/linux/net/inet -Wall -Wstrict-prototypes -O6 -c tulip.c"
 *  c-indent-level: 4
 *  c-basic-offset: 4
 *  tab-width: 4
 * End:
 */