Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

/*
   md.c : Multiple Devices driver for Linux
          Copyright (C) 1994-96 Marc ZYNGIER
	  <zyngier@ufr-info-p7.ibp.fr> or
	  <maz@gloups.fdn.fr>

   A lot of inspiration came from hd.c ...

   kerneld support by Boris Tobotras <boris@xtalk.msk.su>

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.
   
   You should have received a copy of the GNU General Public License
   (for example /usr/src/linux/COPYING); if not, write to the Free
   Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  
*/

#include <linux/config.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/malloc.h>
#include <linux/mm.h>
#include <linux/md.h>
#include <linux/hdreg.h>
#include <linux/stat.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/blkdev.h>
#include <linux/genhd.h>
#ifdef CONFIG_KERNELD
#include <linux/kerneld.h>
#endif
#include <linux/errno.h>

#define MAJOR_NR MD_MAJOR
#define MD_DRIVER

#include <linux/blk.h>

static struct hd_struct md_hd_struct[MAX_MD_DEV];
static int md_blocksizes[MAX_MD_DEV];

int md_size[MAX_MD_DEV]={0, };

static void md_geninit (struct gendisk *);

static struct gendisk md_gendisk=
{
  MD_MAJOR,
  "md",
  0,
  1,
  MAX_MD_DEV,
  md_geninit,
  md_hd_struct,
  md_size,
  MAX_MD_DEV,
  NULL,
  NULL
};

static struct md_personality *pers[MAX_PERSONALITY]={NULL, };

struct md_dev md_dev[MAX_MD_DEV];

static struct gendisk *find_gendisk (kdev_t dev)
{
  struct gendisk *tmp=gendisk_head;

  while (tmp != NULL)
  {
    if (tmp->major==MAJOR(dev))
      return (tmp);
    
    tmp=tmp->next;
  }

  return (NULL);
}


char *partition_name (kdev_t dev)
{
  static char name[40];		/* This should be long
				   enough for a device name ! */
  struct gendisk *hd = find_gendisk (dev);

  if (!hd)
  {
    printk ("No gendisk entry for dev %s\n", kdevname(dev));
    sprintf (name, "dev %s", kdevname(dev));
    return (name);
  }

  return disk_name (hd, MINOR(dev), name);  /* routine in genhd.c */
}


static void set_ra (void)
{
  int i, j, minra=INT_MAX;

  for (i=0; i<MAX_MD_DEV; i++)
  {
    if (!md_dev[i].pers)
      continue;
    
    for (j=0; j<md_dev[i].nb_dev; j++)
      if (read_ahead[MAJOR(md_dev[i].devices[j].dev)]<minra)
	minra=read_ahead[MAJOR(md_dev[i].devices[j].dev)];
  }
  
  read_ahead[MD_MAJOR]=minra;
}


static int do_md_run (int minor, int repart)
{
  int pnum, i, min, current_ra, err;
  
  if (!md_dev[minor].nb_dev)
    return -EINVAL;
  
  if (md_dev[minor].pers)
    return -EBUSY;
  
  md_dev[minor].repartition=repart;
  
  if ((pnum=PERSONALITY(md_dev+minor) >> (PERSONALITY_SHIFT))
      >= MAX_PERSONALITY)
    return -EINVAL;
  
  if (!pers[pnum])
  {
#ifdef CONFIG_KERNELD
    char module_name[80];
    sprintf (module_name, "md-personality-%d", pnum);
    request_module (module_name);
    if (!pers[pnum])
#endif
      return -EINVAL;
  }
  
  min=1 << FACTOR_SHIFT(FACTOR((md_dev+minor)));
  
  for (i=0; i<md_dev[minor].nb_dev; i++)
    if (md_dev[minor].devices[i].size<min)
    {
      printk ("Dev %s smaller than %dk, cannot shrink\n",
	      partition_name (md_dev[minor].devices[i].dev), min);
      return -EINVAL;
    }
  
  /* Resize devices according to the factor. It is used to align
     partitions size on a given chunk size. */
  md_size[minor]=0;
  
  for (i=0; i<md_dev[minor].nb_dev; i++)
  {
    md_dev[minor].devices[i].size &= ~(min - 1);
    md_size[minor] += md_dev[minor].devices[i].size;
    md_dev[minor].devices[i].offset=i ? (md_dev[minor].devices[i-1].offset + md_dev[minor].devices[i-1].size) : 0;
  }

  md_dev[minor].pers=pers[pnum];
  
  if ((err=md_dev[minor].pers->run (minor, md_dev+minor)))
  {
    md_dev[minor].pers=NULL;
    return (err);
  }
  
  /* FIXME : We assume here we have blocks
     that are twice as large as sectors.
     THIS MAY NOT BE TRUE !!! */
  md_hd_struct[minor].start_sect=0;
  md_hd_struct[minor].nr_sects=md_size[minor]<<1;
  
  /* It would be better to have a per-md-dev read_ahead. Currently,
     we only use the smallest read_ahead among md-attached devices */
  
  current_ra=read_ahead[MD_MAJOR];
  
  for (i=0; i<md_dev[minor].nb_dev; i++)
    if (current_ra>read_ahead[MAJOR(md_dev[minor].devices[i].dev)])
      current_ra=read_ahead[MAJOR(md_dev[minor].devices[i].dev)];
  
  read_ahead[MD_MAJOR]=current_ra;
  
  printk ("START_DEV md%x %s\n", minor, md_dev[minor].pers->name);
  return (0);
}


static int do_md_stop (int minor, struct inode *inode)
{
  int i;
  
  if (inode->i_count>1 || md_dev[minor].busy>1) /* ioctl : one open channel */
  {
    printk ("STOP_MD md%x failed : i_count=%d, busy=%d\n", minor, inode->i_count, md_dev[minor].busy);
    return -EBUSY;
  }
  
  if (md_dev[minor].pers)
  {
    /*  The device won't exist anymore -> flush it now */
    fsync_dev (inode->i_rdev);
    invalidate_buffers (inode->i_rdev);
    md_dev[minor].pers->stop (minor, md_dev+minor);
  }
  
  /* Remove locks. */
  for (i=0; i<md_dev[minor].nb_dev; i++)
    clear_inode (md_dev[minor].devices[i].inode);
  
  md_dev[minor].nb_dev=md_size[minor]=0;
  md_hd_struct[minor].nr_sects=0;
  md_dev[minor].pers=NULL;
  
  set_ra ();			/* calculate new read_ahead */
  
  printk ("STOP_DEV md%x\n", minor);
  return (0);
}


static int do_md_add (int minor, kdev_t dev)
{
  struct gendisk *gen_real;
  int i;
  
  if (MAJOR(dev)==MD_MAJOR || md_dev[minor].nb_dev==MAX_REAL)
    return -EINVAL;
  
  if (!fs_may_mount (dev) || md_dev[minor].pers)
    return -EBUSY;
  
  if (!(gen_real=find_gendisk (dev)))
    return -ENOENT;
  
  i=md_dev[minor].nb_dev++;
  md_dev[minor].devices[i].dev=dev;
  
  /* Lock the device by inserting a dummy inode. This doesn't
     smell very good, but I need to be consistent with the
     mount stuff, specially with fs_may_mount. If someone have
     a better idea, please help ! */
  
  md_dev[minor].devices[i].inode=get_empty_inode ();
  md_dev[minor].devices[i].inode->i_dev=dev; /* don't care about
						other fields */
  insert_inode_hash (md_dev[minor].devices[i].inode);
  
  /* Sizes are now rounded at run time */
  
  md_dev[minor].devices[i].size=gen_real->sizes[MINOR(dev)];

  printk ("REGISTER_DEV %s to md%x done\n", partition_name(dev), minor);
  return (0);
}


static int md_ioctl (struct inode *inode, struct file *file,
                     unsigned int cmd, unsigned long arg)
{
  int minor, err;
  struct hd_geometry *loc = (struct hd_geometry *) arg;

  if (!suser())
    return -EACCES;

  if (((minor=MINOR(inode->i_rdev)) & 0x80) &&
      (minor & 0x7f) < MAX_PERSONALITY &&
      pers[minor & 0x7f] &&
      pers[minor & 0x7f]->ioctl)
    return (pers[minor & 0x7f]->ioctl (inode, file, cmd, arg));
  
  if (minor >= MAX_MD_DEV)
    return -EINVAL;

  switch (cmd)
  {
    case REGISTER_DEV:
      return do_md_add (minor, to_kdev_t ((dev_t) arg));

    case START_MD:
      return do_md_run (minor, (int) arg);

    case STOP_MD:
      return do_md_stop (minor, inode);
      
    case BLKGETSIZE:   /* Return device size */
    if  (!arg)  return -EINVAL;
    err=verify_area (VERIFY_WRITE, (long *) arg, sizeof(long));
    if (err)
      return err;
    put_user (md_hd_struct[MINOR(inode->i_rdev)].nr_sects, (long *) arg);
    break;

    case BLKFLSBUF:
    fsync_dev (inode->i_rdev);
    invalidate_buffers (inode->i_rdev);
    break;

    case BLKRASET:
    if (arg > 0xff)
      return -EINVAL;
    read_ahead[MAJOR(inode->i_rdev)] = arg;
    return 0;
    
    case BLKRAGET:
    if  (!arg)  return -EINVAL;
    err=verify_area (VERIFY_WRITE, (long *) arg, sizeof(long));
    if (err)
      return err;
    put_user (read_ahead[MAJOR(inode->i_rdev)], (long *) arg);
    break;

    /* We have a problem here : there is no easy way to give a CHS
       virtual geometry. We currently pretend that we have a 2 heads
       4 sectors (with a BIG number of cylinders...). This drives dosfs
       just mad... ;-) */
    
    case HDIO_GETGEO:
    if (!loc)  return -EINVAL;
    err = verify_area(VERIFY_WRITE, loc, sizeof(*loc));
    if (err)
      return err;
    put_user (2, (char *) &loc->heads);
    put_user (4, (char *) &loc->sectors);
    put_user (md_hd_struct[minor].nr_sects/8, (short *) &loc->cylinders);
    put_user (md_hd_struct[MINOR(inode->i_rdev)].start_sect,
		(long *) &loc->start);
    break;
    
    RO_IOCTLS(inode->i_rdev,arg);
    
    default:
    printk ("Unknown md_ioctl %d\n", cmd);
    return -EINVAL;
  }

  return (0);
}


static int md_open (struct inode *inode, struct file *file)
{
  int minor=MINOR(inode->i_rdev);

  md_dev[minor].busy++;
  return (0);			/* Always succeed */
}


static void md_release (struct inode *inode, struct file *file)
{
  int minor=MINOR(inode->i_rdev);

  sync_dev (inode->i_rdev);
  md_dev[minor].busy--;
}


static int md_read (struct inode *inode, struct file *file,
		    char *buf, int count)
{
  int minor=MINOR(inode->i_rdev);

  if (!md_dev[minor].pers)	/* Check if device is being run */
    return -ENXIO;

  return block_read (inode, file, buf, count);
}

static int md_write (struct inode *inode, struct file *file,
		     const char *buf, int count)
{
  int minor=MINOR(inode->i_rdev);

  if (!md_dev[minor].pers)	/* Check if device is being run */
    return -ENXIO;

  return block_write (inode, file, buf, count);
}

static struct file_operations md_fops=
{
  NULL,
  md_read,
  md_write,
  NULL,
  NULL,
  md_ioctl,
  NULL,
  md_open,
  md_release,
  block_fsync
};

int md_map (int minor, kdev_t *rdev, unsigned long *rsector, unsigned long size)
{
  if ((unsigned int) minor >= MAX_MD_DEV)
  {
    printk ("Bad md device %d\n", minor);
    return (-1);
  }
  
  if (!md_dev[minor].pers)
  {
    printk ("Oops ! md%d not running, giving up !\n", minor);
    return (-1);
  }

  return (md_dev[minor].pers->map(md_dev+minor, rdev, rsector, size));
}
  

static void do_md_request (void)
{
  printk ("Got md request, not good...");
  return;
}  

static struct symbol_table md_symbol_table=
{
#include <linux/symtab_begin.h>

  X(md_size),
  X(register_md_personality),
  X(unregister_md_personality),
  X(partition_name),

#include <linux/symtab_end.h>
};


static void md_geninit (struct gendisk *gdisk)
{
  int i;
  
  for(i=0;i<MAX_MD_DEV;i++)
  {
    md_blocksizes[i] = 1024;
    md_gendisk.part[i].start_sect=-1; /* avoid partition check */
    md_gendisk.part[i].nr_sects=0;
    md_dev[i].pers=NULL;
  }

  blksize_size[MAJOR_NR] = md_blocksizes;
  register_symtab (&md_symbol_table);

  proc_register(&proc_root,
		&(struct proc_dir_entry)
	      {
		PROC_MD, 6, "mdstat",
		S_IFREG | S_IRUGO, 1, 0, 0,
	      });
}


int get_md_status (char *page)
{
  int sz=0, i, j, size;

  sz+=sprintf( page+sz, "Personalities : ");
  for (i=0; i<MAX_PERSONALITY; i++)
    if (pers[i])
      sz+=sprintf (page+sz, "[%d %s] ", i, pers[i]->name);

  page[sz-1]='\n';

  sz+=sprintf (page+sz, "read_ahead ");
  if (read_ahead[MD_MAJOR]==INT_MAX)
    sz+=sprintf (page+sz, "not set\n");
  else
    sz+=sprintf (page+sz, "%d sectors\n", read_ahead[MD_MAJOR]);
  
  for (i=0; i<MAX_MD_DEV; i++)
  {
    sz+=sprintf (page+sz, "md%d : %sactive", i, md_dev[i].pers ? "" : "in");

    if (md_dev[i].pers)
      sz+=sprintf (page+sz, " %s", md_dev[i].pers->name);

    size=0;
    for (j=0; j<md_dev[i].nb_dev; j++)
    {
      sz+=sprintf (page+sz, " %s",
		   partition_name(md_dev[i].devices[j].dev));
      size+=md_dev[i].devices[j].size;
    }
    
    if (md_dev[i].nb_dev)
      sz+=sprintf (page+sz, " %d blocks", size);

    if (!md_dev[i].pers)
    {
      sz+=sprintf (page+sz, "\n");
      continue;
    }

    if (md_dev[i].pers->max_invalid_dev)
      sz+=sprintf (page+sz, " maxfault=%ld", MAX_FAULT(md_dev+i));

    sz+=sprintf (page+sz, " %dk %s\n", 1<<FACTOR_SHIFT(FACTOR(md_dev+i)),
		 md_dev[i].pers == pers[LINEAR>>PERSONALITY_SHIFT] ?
		 "rounding" : "chunks");

    sz+=md_dev[i].pers->status (page+sz, i, md_dev+i);
  }

  return (sz);
}

int register_md_personality (int p_num, struct md_personality *p)
{
  int i=(p_num >> PERSONALITY_SHIFT);

  if (i >= MAX_PERSONALITY)
    return -EINVAL;

  if (pers[i])
    return -EBUSY;
  
  pers[i]=p;
  printk ("%s personality registered\n", p->name);
  return 0;
}

int unregister_md_personality (int p_num)
{
  int i=(p_num >> PERSONALITY_SHIFT);

  if (i >= MAX_PERSONALITY)
    return -EINVAL;

  printk ("%s personality unregistered\n", pers[i]->name);
  pers[i]=NULL;
  return 0;
} 

void linear_init (void);
void raid0_init (void);
void raid1_init (void);
void raid5_init (void);

int md_init (void)
{
  printk ("md driver %s MAX_MD_DEV=%d, MAX_REAL=%d\n", MD_VERSION, MAX_MD_DEV, MAX_REAL);

  if (register_blkdev (MD_MAJOR, "md", &md_fops))
  {
    printk ("Unable to get major %d for md\n", MD_MAJOR);
    return (-1);
  }

  blk_dev[MD_MAJOR].request_fn=DEVICE_REQUEST;
  blk_dev[MD_MAJOR].current_request=NULL;
  read_ahead[MD_MAJOR]=INT_MAX;
  md_gendisk.next=gendisk_head;

  gendisk_head=&md_gendisk;

#ifdef CONFIG_MD_LINEAR
  linear_init ();
#endif
#ifdef CONFIG_MD_STRIPED
  raid0_init ();
#endif
  
  return (0);
}