Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 | /* * linux/kernel/time.c * * Copyright (C) 1991, 1992 Linus Torvalds * * This file contains the interface functions for the various * time related system calls: time, stime, gettimeofday, settimeofday, * adjtime */ /* * Modification history kernel/time.c * * 1993-09-02 Philip Gladstone * Created file with time related functions from sched.c and adjtimex() * 1993-10-08 Torsten Duwe * adjtime interface update and CMOS clock write code * 1994-07-02 Alan Modra * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime * 1995-03-26 Markus Kuhn * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 * precision CMOS clock update * * to do: adjtimex() has to be updated to recent (1994-12-13) revision * of David Mill's kernel clock model. For more information, check * <ftp://louie.udel.edu/pub/ntp/kernel.tar.Z>. */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <asm/segment.h> #include <asm/io.h> #include <linux/mc146818rtc.h> #include <linux/timex.h> /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. * * [For the Julian calendar (which was used in Russia before 1917, * Britain & colonies before 1752, anywhere else before 1582, * and is still in use by some communities) leave out the * -year/100+year/400 terms, and add 10.] * * This algorithm was first published by Gauss (I think). * * WARNING: this function will overflow on 2106-02-07 06:28:16 on * machines were long is 32-bit! (However, as time_t is signed, we * will already get problems at other places on 2038-01-19 03:14:08) */ static inline unsigned long mktime(unsigned int year, unsigned int mon, unsigned int day, unsigned int hour, unsigned int min, unsigned int sec) { if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */ mon += 12; /* Puts Feb last since it has leap day */ year -= 1; } return ((( (unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) + year*365 - 719499 )*24 + hour /* now have hours */ )*60 + min /* now have minutes */ )*60 + sec; /* finally seconds */ } void time_init(void) { unsigned int year, mon, day, hour, min, sec; int i; /* The Linux interpretation of the CMOS clock register contents: * When the Update-In-Progress (UIP) flag goes from 1 to 0, the * RTC registers show the second which has precisely just started. * Let's hope other operating systems interpret the RTC the same way. */ /* read RTC exactly on falling edge of update flag */ for (i = 0 ; i < 1000000 ; i++) /* may take up to 1 second... */ if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) break; for (i = 0 ; i < 1000000 ; i++) /* must try at least 2.228 ms */ if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)) break; do { /* Isn't this overkill ? UIP above should guarantee consistency */ sec = CMOS_READ(RTC_SECONDS); min = CMOS_READ(RTC_MINUTES); hour = CMOS_READ(RTC_HOURS); day = CMOS_READ(RTC_DAY_OF_MONTH); mon = CMOS_READ(RTC_MONTH); year = CMOS_READ(RTC_YEAR); } while (sec != CMOS_READ(RTC_SECONDS)); if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(sec); BCD_TO_BIN(min); BCD_TO_BIN(hour); BCD_TO_BIN(day); BCD_TO_BIN(mon); BCD_TO_BIN(year); } if ((year += 1900) < 1970) year += 100; xtime.tv_sec = mktime(year, mon, day, hour, min, sec); xtime.tv_usec = 0; } /* * The timezone where the local system is located. Used as a default by some * programs who obtain this value by using gettimeofday. */ struct timezone sys_tz = { 0, 0}; asmlinkage int sys_time(long * tloc) { int i, error; i = CURRENT_TIME; if (tloc) { error = verify_area(VERIFY_WRITE, tloc, 4); if (error) return error; put_fs_long(i,(unsigned long *)tloc); } return i; } asmlinkage int sys_stime(unsigned long * tptr) { int error; unsigned long value; if (!suser()) return -EPERM; error = verify_area(VERIFY_READ, tptr, sizeof(*tptr)); if (error) return error; value = get_fs_long(tptr); cli(); xtime.tv_sec = value; xtime.tv_usec = 0; time_status = TIME_BAD; time_maxerror = 0x70000000; time_esterror = 0x70000000; sti(); return 0; } /* This function must be called with interrupts disabled * It was inspired by Steve McCanne's microtime-i386 for BSD. -- jrs * * However, the pc-audio speaker driver changes the divisor so that * it gets interrupted rather more often - it loads 64 into the * counter rather than 11932! This has an adverse impact on * do_gettimeoffset() -- it stops working! What is also not * good is that the interval that our timer function gets called * is no longer 10.0002 ms, but 9.9767 ms. To get around this * would require using a different timing source. Maybe someone * could use the RTC - I know that this can interrupt at frequencies * ranging from 8192Hz to 2Hz. If I had the energy, I'd somehow fix * it so that at startup, the timer code in sched.c would select * using either the RTC or the 8253 timer. The decision would be * based on whether there was any other device around that needed * to trample on the 8253. I'd set up the RTC to interrupt at 1024 Hz, * and then do some jiggery to have a version of do_timer that * advanced the clock by 1/1024 s. Every time that reached over 1/100 * of a second, then do all the old code. If the time was kept correct * then do_gettimeoffset could just return 0 - there is no low order * divider that can be accessed. * * Ideally, you would be able to use the RTC for the speaker driver, * but it appears that the speaker driver really needs interrupt more * often than every 120 us or so. * * Anyway, this needs more thought.... pjsg (1993-08-28) * * If you are really that interested, you should be reading * comp.protocols.time.ntp! */ #define TICK_SIZE tick static inline unsigned long do_gettimeoffset(void) { int count; unsigned long offset = 0; /* timer count may underflow right here */ outb_p(0x00, 0x43); /* latch the count ASAP */ count = inb_p(0x40); /* read the latched count */ count |= inb(0x40) << 8; /* we know probability of underflow is always MUCH less than 1% */ if (count > (LATCH - LATCH/100)) { /* check for pending timer interrupt */ outb_p(0x0a, 0x20); if (inb(0x20) & 1) offset = TICK_SIZE; } count = ((LATCH-1) - count) * TICK_SIZE; count = (count + LATCH/2) / LATCH; return offset + count; } /* * This version of gettimeofday has near microsecond resolution. */ void do_gettimeofday(struct timeval *tv) { unsigned long flags; save_flags(flags); cli(); *tv = xtime; #if defined (__i386__) || defined (__mips__) tv->tv_usec += do_gettimeoffset(); if (tv->tv_usec >= 1000000) { tv->tv_usec -= 1000000; tv->tv_sec++; } #endif /* !defined (__i386__) && !defined (__mips__) */ restore_flags(flags); } asmlinkage int sys_gettimeofday(struct timeval *tv, struct timezone *tz) { int error; if (tv) { struct timeval ktv; error = verify_area(VERIFY_WRITE, tv, sizeof *tv); if (error) return error; do_gettimeofday(&ktv); put_fs_long(ktv.tv_sec, (unsigned long *) &tv->tv_sec); put_fs_long(ktv.tv_usec, (unsigned long *) &tv->tv_usec); } if (tz) { error = verify_area(VERIFY_WRITE, tz, sizeof *tz); if (error) return error; put_fs_long(sys_tz.tz_minuteswest, (unsigned long *) tz); put_fs_long(sys_tz.tz_dsttime, ((unsigned long *) tz)+1); } return 0; } /* * Adjust the time obtained from the CMOS to be UTC time instead of * local time. * * This is ugly, but preferable to the alternatives. Otherwise we * would either need to write a program to do it in /etc/rc (and risk * confusion if the program gets run more than once; it would also be * hard to make the program warp the clock precisely n hours) or * compile in the timezone information into the kernel. Bad, bad.... * * - TYT, 1992-01-01 * * The best thing to do is to keep the CMOS clock in universal time (UTC) * as real UNIX machines always do it. This avoids all headaches about * daylight saving times and warping kernel clocks. */ inline static void warp_clock(void) { cli(); xtime.tv_sec += sys_tz.tz_minuteswest * 60; sti(); } /* * In case for some reason the CMOS clock has not already been running * in UTC, but in some local time: The first time we set the timezone, * we will warp the clock so that it is ticking UTC time instead of * local time. Presumably, if someone is setting the timezone then we * are running in an environment where the programs understand about * timezones. This should be done at boot time in the /etc/rc script, * as soon as possible, so that the clock can be set right. Otherwise, * various programs will get confused when the clock gets warped. */ asmlinkage int sys_settimeofday(struct timeval *tv, struct timezone *tz) { static int firsttime = 1; struct timeval new_tv; struct timezone new_tz; if (!suser()) return -EPERM; if (tv) { int error = verify_area(VERIFY_READ, tv, sizeof(*tv)); if (error) return error; memcpy_fromfs(&new_tv, tv, sizeof(*tv)); } if (tz) { int error = verify_area(VERIFY_READ, tz, sizeof(*tz)); if (error) return error; memcpy_fromfs(&new_tz, tz, sizeof(*tz)); } if (tz) { sys_tz = new_tz; if (firsttime) { firsttime = 0; if (!tv) warp_clock(); } } if (tv) { cli(); /* This is revolting. We need to set the xtime.tv_usec * correctly. However, the value in this location is * is value at the last tick. * Discover what correction gettimeofday * would have done, and then undo it! */ new_tv.tv_usec -= do_gettimeoffset(); if (new_tv.tv_usec < 0) { new_tv.tv_usec += 1000000; new_tv.tv_sec--; } xtime = new_tv; time_status = TIME_BAD; time_maxerror = 0x70000000; time_esterror = 0x70000000; sti(); } return 0; } /* adjtimex mainly allows reading (and writing, if superuser) of * kernel time-keeping variables. used by xntpd. */ asmlinkage int sys_adjtimex(struct timex *txc_p) { long ltemp, mtemp, save_adjust; int error; /* Local copy of parameter */ struct timex txc; error = verify_area(VERIFY_WRITE, txc_p, sizeof(struct timex)); if (error) return error; /* Copy the user data space into the kernel copy * structure. But bear in mind that the structures * may change */ memcpy_fromfs(&txc, txc_p, sizeof(struct timex)); /* In order to modify anything, you gotta be super-user! */ if (txc.mode && !suser()) return -EPERM; /* Now we validate the data before disabling interrupts */ if (txc.mode != ADJ_OFFSET_SINGLESHOT && (txc.mode & ADJ_OFFSET)) /* Microsec field limited to -131000 .. 131000 usecs */ if (txc.offset <= -(1 << (31 - SHIFT_UPDATE)) || txc.offset >= (1 << (31 - SHIFT_UPDATE))) return -EINVAL; /* time_status must be in a fairly small range */ if (txc.mode & ADJ_STATUS) if (txc.status < TIME_OK || txc.status > TIME_BAD) return -EINVAL; /* if the quartz is off by more than 10% something is VERY wrong ! */ if (txc.mode & ADJ_TICK) if (txc.tick < 900000/HZ || txc.tick > 1100000/HZ) return -EINVAL; cli(); /* Save for later - semantics of adjtime is to return old value */ save_adjust = time_adjust; /* If there are input parameters, then process them */ if (txc.mode) { if (time_status == TIME_BAD) time_status = TIME_OK; if (txc.mode & ADJ_STATUS) time_status = txc.status; if (txc.mode & ADJ_FREQUENCY) time_freq = txc.frequency << (SHIFT_KF - 16); if (txc.mode & ADJ_MAXERROR) time_maxerror = txc.maxerror; if (txc.mode & ADJ_ESTERROR) time_esterror = txc.esterror; if (txc.mode & ADJ_TIMECONST) time_constant = txc.time_constant; if (txc.mode & ADJ_OFFSET) if (txc.mode == ADJ_OFFSET_SINGLESHOT) { time_adjust = txc.offset; } else /* XXX should give an error if other bits set */ { time_offset = txc.offset << SHIFT_UPDATE; mtemp = xtime.tv_sec - time_reftime; time_reftime = xtime.tv_sec; if (mtemp > (MAXSEC+2) || mtemp < 0) mtemp = 0; if (txc.offset < 0) time_freq -= (-txc.offset * mtemp) >> (time_constant + time_constant); else time_freq += (txc.offset * mtemp) >> (time_constant + time_constant); ltemp = time_tolerance << SHIFT_KF; if (time_freq > ltemp) time_freq = ltemp; else if (time_freq < -ltemp) time_freq = -ltemp; } if (txc.mode & ADJ_TICK) tick = txc.tick; } txc.offset = save_adjust; txc.frequency = ((time_freq+1) >> (SHIFT_KF - 16)); txc.maxerror = time_maxerror; txc.esterror = time_esterror; txc.status = time_status; txc.time_constant = time_constant; txc.precision = time_precision; txc.tolerance = time_tolerance; txc.time = xtime; txc.tick = tick; sti(); memcpy_tofs(txc_p, &txc, sizeof(struct timex)); return time_status; } /* * In order to set the CMOS clock precisely, set_rtc_mmss has to be * called 500 ms after the second nowtime has started, because when * nowtime is written into the registers of the CMOS clock, it will * jump to the next second precisely 500 ms later. Check the Motorola * MC146818A or Dallas DS12887 data sheet for details. */ int set_rtc_mmss(unsigned long nowtime) { int retval = 0; int real_seconds, real_minutes, cmos_minutes; unsigned char save_control, save_freq_select; save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */ CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */ CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); cmos_minutes = CMOS_READ(RTC_MINUTES); if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) BCD_TO_BIN(cmos_minutes); /* since we're only adjusting minutes and seconds, * don't interfere with hour overflow. This avoids * messing with unknown time zones but requires your * RTC not to be off by more than 15 minutes */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) real_minutes += 30; /* correct for half hour time zone */ real_minutes %= 60; if (abs(real_minutes - cmos_minutes) < 30) { if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); } CMOS_WRITE(real_seconds,RTC_SECONDS); CMOS_WRITE(real_minutes,RTC_MINUTES); } else retval = -1; /* The following flags have to be released exactly in this order, * otherwise the DS12887 (popular MC146818A clone with integrated * battery and quartz) will not reset the oscillator and will not * update precisely 500 ms later. You won't find this mentioned in * the Dallas Semiconductor data sheets, but who believes data * sheets anyway ... -- Markus Kuhn */ CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); return retval; } |