Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
/*
 *	sd.c Copyright (C) 1992 Drew Eckhardt 
 *	Linux scsi disk driver by
 *		Drew Eckhardt 
 *
 *	<drew@colorado.edu>
 *
 *       Modified by Eric Youngdale eric@tantalus.nrl.navy.mil to
 *       add scatter-gather, multiple outstanding request, and other
 *       enhancements.
 */

#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <asm/system.h>


#define MAJOR_NR 8

#include "../blk.h"
#include "scsi.h"
#include "hosts.h"
#include "sd.h"
#include "scsi_ioctl.h"
#include "constants.h"

#include <linux/genhd.h>

/*
static const char RCSid[] = "$Header:";
*/

#define MAX_RETRIES 5

/*
 *	Time out in seconds
 */

#define SD_TIMEOUT 300

struct hd_struct * sd;

int NR_SD=0;
int MAX_SD=0;
Scsi_Disk * rscsi_disks;
static int * sd_sizes;
static int * sd_blocksizes;

/* used to re-read partitions. */
extern void resetup_one_dev(struct gendisk *, unsigned int);

extern int sd_ioctl(struct inode *, struct file *, unsigned int, unsigned long);

static sd_init_onedisk(int);

static void requeue_sd_request (Scsi_Cmnd * SCpnt);

static int sd_open(struct inode * inode, struct file * filp)
{
        int target;
	target =  DEVICE_NR(MINOR(inode->i_rdev));

	if(target >= NR_SD || !rscsi_disks[target].device)
	  return -ENODEV;   /* No such device */
	
/* Make sure that only one process can do a check_change_disk at one time.
 This is also used to lock out further access when the partition table is being re-read. */

	while (rscsi_disks[target].device->busy);

	if(rscsi_disks[target].device->removable) {
	  check_disk_change(inode->i_rdev);

	  if(!rscsi_disks[target].device->access_count)
	    sd_ioctl(inode, NULL, SCSI_IOCTL_DOORLOCK, 0);
	};
	rscsi_disks[target].device->access_count++;
	return 0;
}

static void sd_release(struct inode * inode, struct file * file)
{
        int target;
	sync_dev(inode->i_rdev);

	target =  DEVICE_NR(MINOR(inode->i_rdev));

	rscsi_disks[target].device->access_count--;

	if(rscsi_disks[target].device->removable) {
	  if(!rscsi_disks[target].device->access_count)
	    sd_ioctl(inode, NULL, SCSI_IOCTL_DOORUNLOCK, 0);
	};
}

static void sd_geninit(void);

static struct file_operations sd_fops = {
	NULL,			/* lseek - default */
	block_read,		/* read - general block-dev read */
	block_write,		/* write - general block-dev write */
	NULL,			/* readdir - bad */
	NULL,			/* select */
	sd_ioctl,		/* ioctl */
	NULL,			/* mmap */
	sd_open,		/* open code */
	sd_release,		/* release */
	block_fsync		/* fsync */
};

static struct gendisk sd_gendisk = {
	MAJOR_NR,		/* Major number */
	"sd",		/* Major name */
	4,		/* Bits to shift to get real from partition */
	1 << 4,		/* Number of partitions per real */
	0,		/* maximum number of real */
	sd_geninit,	/* init function */
	NULL,		/* hd struct */
	NULL,	/* block sizes */
	0,		/* number */
	NULL,	/* internal */
	NULL		/* next */
};

static void sd_geninit (void)
{
	for (int i = 0; i < NR_SD; ++i)
		sd[i << 4].nr_sects = rscsi_disks[i].capacity;
	sd_gendisk.nr_real = NR_SD;
}

/*
	rw_intr is the interrupt routine for the device driver.  It will
	be notified on the end of a SCSI read / write, and
	will take on of several actions based on success or failure.
*/

static void rw_intr (Scsi_Cmnd *SCpnt)
{
  int result = SCpnt->result;
  int this_count = SCpnt->bufflen >> 9;

#ifdef DEBUG
  printk("sd%d : rw_intr(%d, %x)\n", MINOR(SCpnt->request.dev), SCpnt->host, result);
#endif

/*
  First case : we assume that the command succeeded.  One of two things will
  happen here.  Either we will be finished, or there will be more
  sectors that we were unable to read last time.
*/

  if (!result) {

#ifdef DEBUG
    printk("sd%d : %d sectors remain.\n", MINOR(SCpnt->request.dev), SCpnt->request.nr_sectors);
    printk("use_sg is %d\n ",SCpnt->use_sg);
#endif
    if (SCpnt->use_sg) {
      struct scatterlist * sgpnt;
      int i;
      sgpnt = (struct scatterlist *) SCpnt->buffer;
      for(i=0; i<SCpnt->use_sg; i++) {
#ifdef DEBUG
	printk(":%x %x %d\n",sgpnt[i].alt_address, sgpnt[i].address, sgpnt[i].length);
#endif
	if (sgpnt[i].alt_address) {
	  if (SCpnt->request.cmd == READ)
	    memcpy(sgpnt[i].alt_address, sgpnt[i].address, sgpnt[i].length);
	  scsi_free(sgpnt[i].address, sgpnt[i].length);
	};
      };
      scsi_free(SCpnt->buffer, SCpnt->sglist_len);  /* Free list of scatter-gather pointers */
    } else {
      if (SCpnt->buffer != SCpnt->request.buffer) {
#ifdef DEBUG
	printk("nosg: %x %x %d\n",SCpnt->request.buffer, SCpnt->buffer,
		   SCpnt->bufflen);
#endif	
	  if (SCpnt->request.cmd == READ)
	    memcpy(SCpnt->request.buffer, SCpnt->buffer,
		   SCpnt->bufflen);
	  scsi_free(SCpnt->buffer, SCpnt->bufflen);
      };
    };
/*
 * 	If multiple sectors are requested in one buffer, then
 *	they will have been finished off by the first command.  If
 *	not, then we have a multi-buffer command.
 */
    if (SCpnt->request.nr_sectors > this_count)
      {
	SCpnt->request.errors = 0;
	
	if (!SCpnt->request.bh)
	  {
#ifdef DEBUG
	    printk("sd%d : handling page request, no buffer\n",
		   MINOR(SCpnt->request.dev));
#endif
/*
  The SCpnt->request.nr_sectors field is always done in 512 byte sectors,
  even if this really isn't the case.
*/
	    printk("sd.c: linked page request. (%x %x)",
		  SCpnt->request.sector, this_count);
	    panic("Aiiiiiiiiiiiieeeeeeeee");
	  }
      }
    end_scsi_request(SCpnt, 1, this_count);
    requeue_sd_request(SCpnt);
    return;
  }

/* Free up any indirection buffers we allocated for DMA purposes. */
    if (SCpnt->use_sg) {
      struct scatterlist * sgpnt;
      int i;
      sgpnt = (struct scatterlist *) SCpnt->buffer;
      for(i=0; i<SCpnt->use_sg; i++) {
#ifdef DEBUG
	printk("err: %x %x %d\n",SCpnt->request.buffer, SCpnt->buffer,
		   SCpnt->bufflen);
#endif
	if (sgpnt[i].alt_address) {
	  scsi_free(sgpnt[i].address, sgpnt[i].length);
	};
      };
      scsi_free(SCpnt->buffer, SCpnt->sglist_len);  /* Free list of scatter-gather pointers */
    } else {
#ifdef DEBUG
      printk("nosgerr: %x %x %d\n",SCpnt->request.buffer, SCpnt->buffer,
		   SCpnt->bufflen);
#endif
      if (SCpnt->buffer != SCpnt->request.buffer)
	scsi_free(SCpnt->buffer, SCpnt->bufflen);
    };

/*
	Now, if we were good little boys and girls, Santa left us a request
	sense buffer.  We can extract information from this, so we
	can choose a block to remap, etc.
*/

        if (driver_byte(result) != 0) {
	  if (sugestion(result) == SUGGEST_REMAP) {
#ifdef REMAP
/*
	Not yet implemented.  A read will fail after being remapped,
	a write will call the strategy routine again.
*/
	    if rscsi_disks[DEVICE_NR(SCpnt->request.dev)].remap
	      {
		result = 0;
	      }
	    else
	      
#endif
	    }

	  if ((SCpnt->sense_buffer[0] & 0x7f) == 0x70) {
	    if ((SCpnt->sense_buffer[2] & 0xf) == UNIT_ATTENTION) {
	      /* detected disc change.  set a bit and quietly refuse	*/
	      /* further access.					*/
	      
	      rscsi_disks[DEVICE_NR(SCpnt->request.dev)].device->changed = 1;
	      end_scsi_request(SCpnt, 0, this_count);
	      requeue_sd_request(SCpnt);
	      return;
	    }
	  }
	  

/* 	If we had an ILLEGAL REQUEST returned, then we may have
performed an unsupported command.  The only thing this should be would
be a ten byte read where only a six byte read was supportted.  Also,
on a system where READ CAPACITY failed, we mave have read past the end
of the 	disk. 
*/

	  if (SCpnt->sense_buffer[2] == ILLEGAL_REQUEST) {
	    if (rscsi_disks[DEVICE_NR(SCpnt->request.dev)].ten) {
	      rscsi_disks[DEVICE_NR(SCpnt->request.dev)].ten = 0;
	      requeue_sd_request(SCpnt);
	      result = 0;
	    } else {
	    }
	  }
	}  /* driver byte != 0 */
	if (result) {
		printk("SCSI disk error : host %d id %d lun %d return code = %x\n",
		       rscsi_disks[DEVICE_NR(SCpnt->request.dev)].device->host_no,
		       rscsi_disks[DEVICE_NR(SCpnt->request.dev)].device->id,
		       rscsi_disks[DEVICE_NR(SCpnt->request.dev)].device->lun, result);

		if (driver_byte(result) & DRIVER_SENSE)
			print_sense("sd", SCpnt);
		end_scsi_request(SCpnt, 0, SCpnt->request.current_nr_sectors);
		requeue_sd_request(SCpnt);
		return;
	}
}

/*
	requeue_sd_request() is the request handler function for the sd driver.
	Its function in life is to take block device requests, and translate
	them to SCSI commands.
*/

static void do_sd_request (void)
{
  Scsi_Cmnd * SCpnt = NULL;
  struct request * req = NULL;
  int flag = 0;
  while (1==1){
    cli();
    if (CURRENT != NULL && CURRENT->dev == -1) {
      sti();
      return;
    };

    INIT_SCSI_REQUEST;

/* We have to be careful here.  allocate_device will get a free pointer, but
   there is no guarantee that it is queueable.  In normal usage, we want to
   call this, because other types of devices may have the host all tied up,
   and we want to make sure that we have at least one request pending for this
   type of device.   We can also come through here while servicing an
   interrupt, because of the need to start another command.  If we call
   allocate_device more than once, then the system can wedge if the command
   is not queueable.  The request_queueable function is safe because it checks
   to make sure that the host is able to take another command before it returns
   a pointer.  */

    if (flag++ == 0)
      SCpnt = allocate_device(&CURRENT,
			      rscsi_disks[DEVICE_NR(MINOR(CURRENT->dev))].device->index, 0); 
    else SCpnt = NULL;
    sti();

/* This is a performance enhancement.  We dig down into the request list and
   try and find a queueable request (i.e. device not busy, and host able to
   accept another command.  If we find one, then we queue it. This can
   make a big difference on systems with more than one disk drive.  We want
   to have the interrupts off when monkeying with the request list, because
   otherwise the kernel might try and slip in a request inbetween somewhere. */

    if (!SCpnt && NR_SD > 1){
      struct request *req1;
      req1 = NULL;
      cli();
      req = CURRENT;
      while(req){
	SCpnt = request_queueable(req,
				  rscsi_disks[DEVICE_NR(MINOR(req->dev))].device->index);
	if(SCpnt) break;
	req1 = req;
	req = req->next;
      };
      if (SCpnt) {
	if (req == CURRENT) 
	  CURRENT = CURRENT->next;
	else
	  req1->next = req->next;
      };
      sti();
    };
    
    if (!SCpnt) return; /* Could not find anything to do */
    
    wake_up(&wait_for_request);
    
    /* Queue command */
    requeue_sd_request(SCpnt);
  };  /* While */
}    

static void requeue_sd_request (Scsi_Cmnd * SCpnt)
{
	int dev, block, this_count;
	unsigned char cmd[10];
	char * buff;

repeat:

	if(SCpnt->request.dev <= 0) {
	  do_sd_request();
	  return;
	}

	dev =  MINOR(SCpnt->request.dev);
	block = SCpnt->request.sector;
	this_count = 0;

#ifdef DEBUG
	printk("Doing sd request, dev = %d, block = %d\n", dev, block);
#endif

	if (dev >= (NR_SD << 4) || block + SCpnt->request.nr_sectors > sd[dev].nr_sects)
		{
		end_scsi_request(SCpnt, 0, SCpnt->request.nr_sectors);
		goto repeat;
		}

	block += sd[dev].start_sect;
	dev = DEVICE_NR(dev);

	if (rscsi_disks[dev].device->changed)
	        {
/*
 * quietly refuse to do anything to a changed disc until the changed bit has been reset
 */
		/* printk("SCSI disk has been changed.  Prohibiting further I/O.\n");	*/
		end_scsi_request(SCpnt, 0, SCpnt->request.nr_sectors);
		goto repeat;
		}

#ifdef DEBUG
	printk("sd%d : real dev = /dev/sd%d, block = %d\n", MINOR(SCpnt->request.dev), dev, block);
#endif

	switch (SCpnt->request.cmd)
		{
		case WRITE :
			if (!rscsi_disks[dev].device->writeable)
				{
				end_scsi_request(SCpnt, 0, SCpnt->request.nr_sectors);
				goto repeat;
				}
			cmd[0] = WRITE_6;
			break;
		case READ :
			cmd[0] = READ_6;
			break;
		default :
			printk ("Unknown sd command %d\n", SCpnt->request.cmd);
			panic("");
		      }

	SCpnt->this_count = 0;

	if (!SCpnt->request.bh || 
	    (SCpnt->request.nr_sectors == SCpnt->request.current_nr_sectors)) {

	  /* case of page request (i.e. raw device), or unlinked buffer */
	  this_count = SCpnt->request.nr_sectors;
	  buff = SCpnt->request.buffer;
	  SCpnt->use_sg = 0;

	} else if (scsi_hosts[SCpnt->host].sg_tablesize == 0 ||
		   (need_isa_buffer && 
		    dma_free_sectors < 10)) {

	  /* Case of host adapter that cannot scatter-gather.  We also
	   come here if we are running low on DMA buffer memory.  We set
	   a threshold higher than that we would need for this request so
	   we leave room for other requests.  Even though we would not need
	   it all, we need to be conservative, because if we run low enough
	   we have no choice but to panic. */

	  if (scsi_hosts[SCpnt->host].sg_tablesize != 0 &&
	      need_isa_buffer && 
	      dma_free_sectors < 10)
	    printk("Warning: SCSI DMA buffer space running low.  Using non scatter-gather I/O.\n");

	  this_count = SCpnt->request.current_nr_sectors;
	  buff = SCpnt->request.buffer;
	  SCpnt->use_sg = 0;

	} else {

	  /* Scatter-gather capable host adapter */
	  struct buffer_head * bh;
	  struct scatterlist * sgpnt;
	  int count, this_count_max;
	  bh = SCpnt->request.bh;
	  this_count = 0;
	  this_count_max = (rscsi_disks[dev].ten ? 0xffff : 0xff);
	  count = 0;
	  while(bh && count < scsi_hosts[SCpnt->host].sg_tablesize) {
	    if ((this_count + (bh->b_size >> 9)) > this_count_max) break;
	    this_count += (bh->b_size >> 9);
	    count++;
	    bh = bh->b_reqnext;
	  };
	  SCpnt->use_sg = count;  /* Number of chains */
	  count = 512;/* scsi_malloc can only allocate in chunks of 512 bytes*/
	  while( count < (SCpnt->use_sg * sizeof(struct scatterlist))) 
	    count = count << 1;
	  SCpnt->sglist_len = count;
	  sgpnt = (struct scatterlist * ) scsi_malloc(count);
	  if (!sgpnt) {
	    printk("Warning - running *really* short on DMA buffers\n");
	    SCpnt->use_sg = 0;  /* No memory left - bail out */
	    this_count = SCpnt->request.current_nr_sectors;
	    buff = SCpnt->request.buffer;
	  } else {
	    buff = (char *) sgpnt;
	    count = 0;
	    bh = SCpnt->request.bh;
	    for(count = 0, bh = SCpnt->request.bh; count < SCpnt->use_sg; 
		count++, bh = bh->b_reqnext) {
	      sgpnt[count].address = bh->b_data;
	      sgpnt[count].alt_address = NULL;
	      sgpnt[count].length = bh->b_size;
	      if (((int) sgpnt[count].address) + sgpnt[count].length > 
		  ISA_DMA_THRESHOLD & (scsi_hosts[SCpnt->host].unchecked_isa_dma)) {
		sgpnt[count].alt_address = sgpnt[count].address;
		/* We try and avoid exhausting the DMA pool, since it is easier
		   to control usage here.  In other places we might have a more
		   pressing need, and we would be screwed if we ran out */
		if(dma_free_sectors < (bh->b_size >> 9) + 5) {
		  sgpnt[count].address = NULL;
		} else {
		  sgpnt[count].address = (char *) scsi_malloc(sgpnt[count].length);
		};
/* If we start running low on DMA buffers, we abort the scatter-gather
   operation, and free all of the memory we have allocated.  We want to
   ensure that all scsi operations are able to do at least a non-scatter/gather
   operation */
		if(sgpnt[count].address == NULL){ /* Out of dma memory */
		  printk("Warning: Running low on SCSI DMA buffers");
		  /* Try switching back to a non scatter-gather operation. */
		  while(--count >= 0){
		    if(sgpnt[count].alt_address) 
		      scsi_free(sgpnt[count].address, sgpnt[count].length);
		  };
		  this_count = SCpnt->request.current_nr_sectors;
		  buff = SCpnt->request.buffer;
		  SCpnt->use_sg = 0;
		  scsi_free(buff, SCpnt->sglist_len);
		  break;
		};

		if (SCpnt->request.cmd == WRITE)
		  memcpy(sgpnt[count].address, sgpnt[count].alt_address, 
			 sgpnt[count].length);
	      };
	    }; /* for loop */
	  };  /* Able to malloc sgpnt */
	};  /* Host adapter capable of scatter-gather */

/* Now handle the possibility of DMA to addresses > 16Mb */

	if(SCpnt->use_sg == 0){
	  if (((int) buff) + (this_count << 9) > ISA_DMA_THRESHOLD && 
	    (scsi_hosts[SCpnt->host].unchecked_isa_dma)) {
	    buff = (char *) scsi_malloc(this_count << 9);
	    if(buff == NULL) panic("Ran out of DMA buffers.");
	    if (SCpnt->request.cmd == WRITE)
	      memcpy(buff, (char *)SCpnt->request.buffer, this_count << 9);
	  };
	};

#ifdef DEBUG
	printk("sd%d : %s %d/%d 512 byte blocks.\n", MINOR(SCpnt->request.dev),
		(SCpnt->request.cmd == WRITE) ? "writing" : "reading",
		this_count, SCpnt->request.nr_sectors);
#endif

	cmd[1] = (SCpnt->lun << 5) & 0xe0;

	if (rscsi_disks[dev].sector_size == 1024){
	  if(block & 1) panic("sd.c:Bad block number requested");
	  if(this_count & 1) panic("sd.c:Bad block number requested");
	  block = block >> 1;
	  this_count = this_count >> 1;
	};

	if (rscsi_disks[dev].sector_size == 256){
	  block = block << 1;
	  this_count = this_count << 1;
	};

	if (((this_count > 0xff) ||  (block > 0x1fffff)) && rscsi_disks[dev].ten)
		{
		if (this_count > 0xffff)
			this_count = 0xffff;

		cmd[0] += READ_10 - READ_6 ;
		cmd[2] = (unsigned char) (block >> 24) & 0xff;
		cmd[3] = (unsigned char) (block >> 16) & 0xff;
		cmd[4] = (unsigned char) (block >> 8) & 0xff;
		cmd[5] = (unsigned char) block & 0xff;
		cmd[6] = cmd[9] = 0;
		cmd[7] = (unsigned char) (this_count >> 8) & 0xff;
		cmd[8] = (unsigned char) this_count & 0xff;
		}
	else
		{
		if (this_count > 0xff)
			this_count = 0xff;

		cmd[1] |= (unsigned char) ((block >> 16) & 0x1f);
		cmd[2] = (unsigned char) ((block >> 8) & 0xff);
		cmd[3] = (unsigned char) block & 0xff;
		cmd[4] = (unsigned char) this_count;
		cmd[5] = 0;
		}

/*
 * We shouldn't disconnect in the middle of a sector, so with a dumb 
 * host adapter, it's safe to assume that we can at least transfer 
 * this many bytes between each connect / disconnect.  
 */

        SCpnt->transfersize = rscsi_disks[dev].sector_size;
        SCpnt->underflow = this_count << 9; 

	scsi_do_cmd (SCpnt, (void *) cmd, buff, 
		     this_count * rscsi_disks[dev].sector_size,
		     rw_intr, SD_TIMEOUT, MAX_RETRIES);
}

int check_scsidisk_media_change(int full_dev, int flag){
        int retval;
	int target;
	struct inode inode;

	target =  DEVICE_NR(MINOR(full_dev));

	if (target >= NR_SD) {
		printk("SCSI disk request error: invalid device.\n");
		return 0;
	};

	if(!rscsi_disks[target].device->removable) return 0;

	inode.i_rdev = full_dev;  /* This is all we really need here */
	retval = sd_ioctl(&inode, NULL, SCSI_IOCTL_TEST_UNIT_READY, 0);

	if(retval){ /* Unable to test, unit probably not ready.  This usually
		     means there is no disc in the drive.  Mark as changed,
		     and we will figure it out later once the drive is
		     available again.  */

	  rscsi_disks[target].device->changed = 1;
	  return 1; /* This will force a flush, if called from
		       check_disk_change */
	};

	retval = rscsi_disks[target].device->changed;
	if(!flag) rscsi_disks[target].device->changed = 0;
	return retval;
}

static void sd_init_done (Scsi_Cmnd * SCpnt)
{
  struct request * req;
  struct task_struct * p;
  
  req = &SCpnt->request;
  req->dev = 0xfffe; /* Busy, but indicate request done */
  
  if ((p = req->waiting) != NULL) {
    req->waiting = NULL;
    p->state = TASK_RUNNING;
    if (p->counter > current->counter)
      need_resched = 1;
  }
}

static int sd_init_onedisk(int i)
{
  int j = 0;
  unsigned char cmd[10];
  unsigned char *buffer;
  int the_result, retries;
  Scsi_Cmnd * SCpnt;

  /* We need to retry the READ_CAPACITY because a UNIT_ATTENTION is considered
     a fatal error, and many devices report such an error just after a scsi
     bus reset. */

  SCpnt = allocate_device(NULL, rscsi_disks[i].device->index, 1);
  buffer = (unsigned char *) scsi_malloc(512);

  retries = 3;
  do {
    cmd[0] = READ_CAPACITY;
    cmd[1] = (rscsi_disks[i].device->lun << 5) & 0xe0;
    memset ((void *) &cmd[2], 0, 8);
    memset ((void *) buffer, 0, 8);
    SCpnt->request.dev = 0xffff;  /* Mark as really busy again */
    SCpnt->sense_buffer[0] = 0;
    SCpnt->sense_buffer[2] = 0;
    
    scsi_do_cmd (SCpnt,
		 (void *) cmd, (void *) buffer,
		 8, sd_init_done,  SD_TIMEOUT,
		 MAX_RETRIES);
    
    if (current == task[0])
      while(SCpnt->request.dev != 0xfffe);
    else
      if (SCpnt->request.dev != 0xfffe){
	SCpnt->request.waiting = current;
	current->state = TASK_UNINTERRUPTIBLE;
	while (SCpnt->request.dev != 0xfffe) schedule();
      };
    
    the_result = SCpnt->result;
    retries--;

  } while(the_result && retries);

  SCpnt->request.dev = -1;  /* Mark as not busy */

  wake_up(&scsi_devices[SCpnt->index].device_wait); 

  /* Wake up a process waiting for device*/

  /*
   *	The SCSI standard says "READ CAPACITY is necessary for self confuring software"
   *	While not mandatory, support of READ CAPACITY is strongly encouraged.
   *	We used to die if we couldn't successfully do a READ CAPACITY.
   *	But, now we go on about our way.  The side effects of this are
   *
   *	1.  We can't know block size with certainty.  I have said "512 bytes is it"
   *	   	as this is most common.
   *
   *	2.  Recovery from when some one attempts to read past the end of the raw device will
   *	    be slower.
   */

  if (the_result)
    {
      printk ("sd%d : READ CAPACITY failed.\n"
	      "sd%d : status = %x, message = %02x, host = %02x, driver = %02x \n",
	      i,i,
	      rscsi_disks[i].device->host_no, rscsi_disks[i].device->id,
	      rscsi_disks[i].device->lun,
	      status_byte(the_result),
	      msg_byte(the_result),
	      host_byte(the_result),
	      driver_byte(the_result)
	      );
      if (driver_byte(the_result)  & DRIVER_SENSE)
	printk("sd%d : extended sense code = %1x \n", i, SCpnt->sense_buffer[2] & 0xf);
      else
	printk("sd%d : sense not available. \n", i);

      printk("sd%d : block size assumed to be 512 bytes, disk size 1GB.  \n", i);
      rscsi_disks[i].capacity = 0x1fffff;
      rscsi_disks[i].sector_size = 512;

      /* Set dirty bit for removable devices if not ready - sometimes drives
	 will not report this properly. */
      if(rscsi_disks[i].device->removable && 
	 SCpnt->sense_buffer[2] == NOT_READY)
	rscsi_disks[i].device->changed = 1;

    }
  else
    {
      rscsi_disks[i].capacity = (buffer[0] << 24) |
	(buffer[1] << 16) |
	  (buffer[2] << 8) |
	    buffer[3];

      rscsi_disks[i].sector_size = (buffer[4] << 24) |
	(buffer[5] << 16) | (buffer[6] << 8) | buffer[7];

      if (rscsi_disks[i].sector_size != 512 &&
	  rscsi_disks[i].sector_size != 1024 &&
	  rscsi_disks[i].sector_size != 256)
	{
	  printk ("sd%d : unsupported sector size %d.\n",
		  i, rscsi_disks[i].sector_size);
	  if(rscsi_disks[i].device->removable){
	    rscsi_disks[i].capacity = 0;
	  } else {
	    printk ("scsi : deleting disk entry.\n");
	    for  (j=i;  j < NR_SD - 1;)
	      rscsi_disks[j] = rscsi_disks[++j];
	    --i;
	    --NR_SD;
	    scsi_free(buffer, 512);
	    return i;
	  };
	}
      if(rscsi_disks[i].sector_size == 1024)
	rscsi_disks[i].capacity <<= 1;  /* Change this into 512 byte sectors */
      if(rscsi_disks[i].sector_size == 256)
	rscsi_disks[i].capacity >>= 1;  /* Change this into 512 byte sectors */
    }

  rscsi_disks[i].ten = 1;
  rscsi_disks[i].remap = 1;
  scsi_free(buffer, 512);
  return i;
}

/*
	The sd_init() function looks at all SCSI drives present, determines
	their size, and reads partition	table entries for them.
*/

unsigned long sd_init(unsigned long memory_start, unsigned long memory_end)
{
	int i;

	if (register_blkdev(MAJOR_NR,"sd",&sd_fops)) {
		printk("Unable to get major %d for SCSI disk\n",MAJOR_NR);
		return memory_start;
	}
	if (MAX_SD == 0) return memory_start;

	sd_sizes = (int *) memory_start;
	memory_start += (MAX_SD << 4) * sizeof(int);
	memset(sd_sizes, 0, (MAX_SD << 4) * sizeof(int));

	sd_blocksizes = (int *) memory_start;
	memory_start += (MAX_SD << 4) * sizeof(int);
	for(i=0;i<(MAX_SD << 4);i++) sd_blocksizes[i] = 1024;
	blksize_size[MAJOR_NR] = sd_blocksizes;

	sd = (struct hd_struct *) memory_start;
	memory_start += (MAX_SD << 4) * sizeof(struct hd_struct);

	sd_gendisk.max_nr = MAX_SD;
	sd_gendisk.part = sd;
	sd_gendisk.sizes = sd_sizes;
	sd_gendisk.real_devices = (void *) rscsi_disks;

	for (i = 0; i < NR_SD; ++i)
	  i = sd_init_onedisk(i);

	blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST;

	/* If our host adapter is capable of scatter-gather, then we increase
	   the read-ahead to 8 blocks (16 sectors).  If not, we use
	   a two block (4 sector) read ahead. */
	if(scsi_hosts[rscsi_disks[0].device->host_no].sg_tablesize)
	  read_ahead[MAJOR_NR] = 16;  /* 16 sector read-ahead */
	else
	  read_ahead[MAJOR_NR] = 4;  /* 4 sector read-ahead */
	
	sd_gendisk.next = gendisk_head;
	gendisk_head = &sd_gendisk;
	return memory_start;
}

unsigned long sd_init1(unsigned long mem_start, unsigned long mem_end){
  rscsi_disks = (Scsi_Disk *) mem_start;
  mem_start += MAX_SD * sizeof(Scsi_Disk);
  return mem_start;
};

void sd_attach(Scsi_Device * SDp){
  rscsi_disks[NR_SD++].device = SDp;
  if(NR_SD > MAX_SD) panic ("scsi_devices corrupt (sd)");
};

#define DEVICE_BUSY rscsi_disks[target].device->busy
#define USAGE rscsi_disks[target].device->access_count
#define CAPACITY rscsi_disks[target].capacity
#define MAYBE_REINIT  sd_init_onedisk(target)
#define GENDISK_STRUCT sd_gendisk

/* This routine is called to flush all partitions and partition tables
   for a changed scsi disk, and then re-read the new partition table.
   If we are revalidating a disk because of a media change, then we
   enter with usage == 0.  If we are using an ioctl, we automatically have
   usage == 1 (we need an open channel to use an ioctl :-), so this
   is our limit.
 */
int revalidate_scsidisk(int dev, int maxusage){
	  int target, major;
	  struct gendisk * gdev;
	  int max_p;
	  int start;
	  int i;

	  target =  DEVICE_NR(MINOR(dev));
	  gdev = &GENDISK_STRUCT;

	  cli();
	  if (DEVICE_BUSY || USAGE > maxusage) {
	    sti();
	    printk("Device busy for revalidation (usage=%d)\n", USAGE);
	    return -EBUSY;
	  };
	  DEVICE_BUSY = 1;
	  sti();

	  max_p = gdev->max_p;
	  start = target << gdev->minor_shift;
	  major = MAJOR_NR << 8;

	  for (i=max_p - 1; i >=0 ; i--) {
	    sync_dev(major | start | i);
	    invalidate_inodes(major | start | i);
	    invalidate_buffers(major | start | i);
	    gdev->part[start+i].start_sect = 0;
	    gdev->part[start+i].nr_sects = 0;
	  };

#ifdef MAYBE_REINIT
	  MAYBE_REINIT;
#endif

	  gdev->part[start].nr_sects = CAPACITY;
	  resetup_one_dev(gdev, target);

	  DEVICE_BUSY = 0;
	  return 0;
}