Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 | // SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <drm/drm_drv.h> #include "amdgpu.h" #include "amdgpu_trace.h" #include "amdgpu_vm.h" /* * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt */ struct amdgpu_vm_pt_cursor { uint64_t pfn; struct amdgpu_vm_bo_base *parent; struct amdgpu_vm_bo_base *entry; unsigned int level; }; /** * amdgpu_vm_pt_level_shift - return the addr shift for each level * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The number of bits the pfn needs to be right shifted for a level. */ static unsigned int amdgpu_vm_pt_level_shift(struct amdgpu_device *adev, unsigned int level) { switch (level) { case AMDGPU_VM_PDB2: case AMDGPU_VM_PDB1: case AMDGPU_VM_PDB0: return 9 * (AMDGPU_VM_PDB0 - level) + adev->vm_manager.block_size; case AMDGPU_VM_PTB: return 0; default: return ~0; } } /** * amdgpu_vm_pt_num_entries - return the number of entries in a PD/PT * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The number of entries in a page directory or page table. */ static unsigned int amdgpu_vm_pt_num_entries(struct amdgpu_device *adev, unsigned int level) { unsigned int shift; shift = amdgpu_vm_pt_level_shift(adev, adev->vm_manager.root_level); if (level == adev->vm_manager.root_level) /* For the root directory */ return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; else if (level != AMDGPU_VM_PTB) /* Everything in between */ return 512; /* For the page tables on the leaves */ return AMDGPU_VM_PTE_COUNT(adev); } /** * amdgpu_vm_pt_entries_mask - the mask to get the entry number of a PD/PT * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The mask to extract the entry number of a PD/PT from an address. */ static uint32_t amdgpu_vm_pt_entries_mask(struct amdgpu_device *adev, unsigned int level) { if (level <= adev->vm_manager.root_level) return 0xffffffff; else if (level != AMDGPU_VM_PTB) return 0x1ff; else return AMDGPU_VM_PTE_COUNT(adev) - 1; } /** * amdgpu_vm_pt_size - returns the size of the page table in bytes * * @adev: amdgpu_device pointer * @level: VMPT level * * Returns: * The size of the BO for a page directory or page table in bytes. */ static unsigned int amdgpu_vm_pt_size(struct amdgpu_device *adev, unsigned int level) { return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_pt_num_entries(adev, level) * 8); } /** * amdgpu_vm_pt_parent - get the parent page directory * * @pt: child page table * * Helper to get the parent entry for the child page table. NULL if we are at * the root page directory. */ static struct amdgpu_vm_bo_base * amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) { struct amdgpu_bo *parent = pt->bo->parent; if (!parent) return NULL; return parent->vm_bo; } /** * amdgpu_vm_pt_start - start PD/PT walk * * @adev: amdgpu_device pointer * @vm: amdgpu_vm structure * @start: start address of the walk * @cursor: state to initialize * * Initialize a amdgpu_vm_pt_cursor to start a walk. */ static void amdgpu_vm_pt_start(struct amdgpu_device *adev, struct amdgpu_vm *vm, uint64_t start, struct amdgpu_vm_pt_cursor *cursor) { cursor->pfn = start; cursor->parent = NULL; cursor->entry = &vm->root; cursor->level = adev->vm_manager.root_level; } /** * amdgpu_vm_pt_descendant - go to child node * * @adev: amdgpu_device pointer * @cursor: current state * * Walk to the child node of the current node. * Returns: * True if the walk was possible, false otherwise. */ static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { unsigned int mask, shift, idx; if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || !cursor->entry->bo) return false; mask = amdgpu_vm_pt_entries_mask(adev, cursor->level); shift = amdgpu_vm_pt_level_shift(adev, cursor->level); ++cursor->level; idx = (cursor->pfn >> shift) & mask; cursor->parent = cursor->entry; cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; return true; } /** * amdgpu_vm_pt_sibling - go to sibling node * * @adev: amdgpu_device pointer * @cursor: current state * * Walk to the sibling node of the current node. * Returns: * True if the walk was possible, false otherwise. */ static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { unsigned int shift, num_entries; struct amdgpu_bo_vm *parent; /* Root doesn't have a sibling */ if (!cursor->parent) return false; /* Go to our parents and see if we got a sibling */ shift = amdgpu_vm_pt_level_shift(adev, cursor->level - 1); num_entries = amdgpu_vm_pt_num_entries(adev, cursor->level - 1); parent = to_amdgpu_bo_vm(cursor->parent->bo); if (cursor->entry == &parent->entries[num_entries - 1]) return false; cursor->pfn += 1ULL << shift; cursor->pfn &= ~((1ULL << shift) - 1); ++cursor->entry; return true; } /** * amdgpu_vm_pt_ancestor - go to parent node * * @cursor: current state * * Walk to the parent node of the current node. * Returns: * True if the walk was possible, false otherwise. */ static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) { if (!cursor->parent) return false; --cursor->level; cursor->entry = cursor->parent; cursor->parent = amdgpu_vm_pt_parent(cursor->parent); return true; } /** * amdgpu_vm_pt_next - get next PD/PT in hieratchy * * @adev: amdgpu_device pointer * @cursor: current state * * Walk the PD/PT tree to the next node. */ static void amdgpu_vm_pt_next(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { /* First try a newborn child */ if (amdgpu_vm_pt_descendant(adev, cursor)) return; /* If that didn't worked try to find a sibling */ while (!amdgpu_vm_pt_sibling(adev, cursor)) { /* No sibling, go to our parents and grandparents */ if (!amdgpu_vm_pt_ancestor(cursor)) { cursor->pfn = ~0ll; return; } } } /** * amdgpu_vm_pt_first_dfs - start a deep first search * * @adev: amdgpu_device structure * @vm: amdgpu_vm structure * @start: optional cursor to start with * @cursor: state to initialize * * Starts a deep first traversal of the PD/PT tree. */ static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt_cursor *start, struct amdgpu_vm_pt_cursor *cursor) { if (start) *cursor = *start; else amdgpu_vm_pt_start(adev, vm, 0, cursor); while (amdgpu_vm_pt_descendant(adev, cursor)) ; } /** * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue * * @start: starting point for the search * @entry: current entry * * Returns: * True when the search should continue, false otherwise. */ static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, struct amdgpu_vm_bo_base *entry) { return entry && (!start || entry != start->entry); } /** * amdgpu_vm_pt_next_dfs - get the next node for a deep first search * * @adev: amdgpu_device structure * @cursor: current state * * Move the cursor to the next node in a deep first search. */ static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, struct amdgpu_vm_pt_cursor *cursor) { if (!cursor->entry) return; if (!cursor->parent) cursor->entry = NULL; else if (amdgpu_vm_pt_sibling(adev, cursor)) while (amdgpu_vm_pt_descendant(adev, cursor)) ; else amdgpu_vm_pt_ancestor(cursor); } /* * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs */ #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ amdgpu_vm_pt_continue_dfs((start), (entry)); \ (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) /** * amdgpu_vm_pt_clear - initially clear the PDs/PTs * * @adev: amdgpu_device pointer * @vm: VM to clear BO from * @vmbo: BO to clear * @immediate: use an immediate update * * Root PD needs to be reserved when calling this. * * Returns: * 0 on success, errno otherwise. */ int amdgpu_vm_pt_clear(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo_vm *vmbo, bool immediate) { unsigned int level = adev->vm_manager.root_level; struct ttm_operation_ctx ctx = { true, false }; struct amdgpu_vm_update_params params; struct amdgpu_bo *ancestor = &vmbo->bo; unsigned int entries; struct amdgpu_bo *bo = &vmbo->bo; uint64_t addr; int r, idx; /* Figure out our place in the hierarchy */ if (ancestor->parent) { ++level; while (ancestor->parent->parent) { ++level; ancestor = ancestor->parent; } } entries = amdgpu_bo_size(bo) / 8; r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (r) return r; if (vmbo->shadow) { struct amdgpu_bo *shadow = vmbo->shadow; r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); if (r) return r; } if (!drm_dev_enter(adev_to_drm(adev), &idx)) return -ENODEV; r = vm->update_funcs->map_table(vmbo); if (r) goto exit; memset(¶ms, 0, sizeof(params)); params.adev = adev; params.vm = vm; params.immediate = immediate; r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); if (r) goto exit; addr = 0; uint64_t value = 0, flags = 0; if (adev->asic_type >= CHIP_VEGA10) { if (level != AMDGPU_VM_PTB) { /* Handle leaf PDEs as PTEs */ flags |= AMDGPU_PDE_PTE; amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); } else { /* Workaround for fault priority problem on GMC9 */ flags = AMDGPU_PTE_EXECUTABLE; } } r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, value, flags); if (r) goto exit; r = vm->update_funcs->commit(¶ms, NULL); exit: drm_dev_exit(idx); return r; } /** * amdgpu_vm_pt_create - create bo for PD/PT * * @adev: amdgpu_device pointer * @vm: requesting vm * @level: the page table level * @immediate: use a immediate update * @vmbo: pointer to the buffer object pointer * @xcp_id: GPU partition id */ int amdgpu_vm_pt_create(struct amdgpu_device *adev, struct amdgpu_vm *vm, int level, bool immediate, struct amdgpu_bo_vm **vmbo, int32_t xcp_id) { struct amdgpu_bo_param bp; struct amdgpu_bo *bo; struct dma_resv *resv; unsigned int num_entries; int r; memset(&bp, 0, sizeof(bp)); bp.size = amdgpu_vm_pt_size(adev, level); bp.byte_align = AMDGPU_GPU_PAGE_SIZE; if (!adev->gmc.is_app_apu) bp.domain = AMDGPU_GEM_DOMAIN_VRAM; else bp.domain = AMDGPU_GEM_DOMAIN_GTT; bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | AMDGPU_GEM_CREATE_CPU_GTT_USWC; if (level < AMDGPU_VM_PTB) num_entries = amdgpu_vm_pt_num_entries(adev, level); else num_entries = 0; bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); if (vm->use_cpu_for_update) bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; bp.type = ttm_bo_type_kernel; bp.no_wait_gpu = immediate; bp.xcp_id_plus1 = xcp_id + 1; if (vm->root.bo) bp.resv = vm->root.bo->tbo.base.resv; r = amdgpu_bo_create_vm(adev, &bp, vmbo); if (r) return r; bo = &(*vmbo)->bo; if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { (*vmbo)->shadow = NULL; return 0; } if (!bp.resv) WARN_ON(dma_resv_lock(bo->tbo.base.resv, NULL)); resv = bp.resv; memset(&bp, 0, sizeof(bp)); bp.size = amdgpu_vm_pt_size(adev, level); bp.domain = AMDGPU_GEM_DOMAIN_GTT; bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; bp.type = ttm_bo_type_kernel; bp.resv = bo->tbo.base.resv; bp.bo_ptr_size = sizeof(struct amdgpu_bo); bp.xcp_id_plus1 = xcp_id + 1; r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); if (!resv) dma_resv_unlock(bo->tbo.base.resv); if (r) { amdgpu_bo_unref(&bo); return r; } amdgpu_bo_add_to_shadow_list(*vmbo); return 0; } /** * amdgpu_vm_pt_alloc - Allocate a specific page table * * @adev: amdgpu_device pointer * @vm: VM to allocate page tables for * @cursor: Which page table to allocate * @immediate: use an immediate update * * Make sure a specific page table or directory is allocated. * * Returns: * 1 if page table needed to be allocated, 0 if page table was already * allocated, negative errno if an error occurred. */ static int amdgpu_vm_pt_alloc(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt_cursor *cursor, bool immediate) { struct amdgpu_vm_bo_base *entry = cursor->entry; struct amdgpu_bo *pt_bo; struct amdgpu_bo_vm *pt; int r; if (entry->bo) return 0; amdgpu_vm_eviction_unlock(vm); r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt, vm->root.bo->xcp_id); amdgpu_vm_eviction_lock(vm); if (r) return r; /* Keep a reference to the root directory to avoid * freeing them up in the wrong order. */ pt_bo = &pt->bo; pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); amdgpu_vm_bo_base_init(entry, vm, pt_bo); r = amdgpu_vm_pt_clear(adev, vm, pt, immediate); if (r) goto error_free_pt; return 0; error_free_pt: amdgpu_bo_unref(&pt->shadow); amdgpu_bo_unref(&pt_bo); return r; } /** * amdgpu_vm_pt_free - free one PD/PT * * @entry: PDE to free */ static void amdgpu_vm_pt_free(struct amdgpu_vm_bo_base *entry) { struct amdgpu_bo *shadow; if (!entry->bo) return; entry->bo->vm_bo = NULL; shadow = amdgpu_bo_shadowed(entry->bo); if (shadow) { ttm_bo_set_bulk_move(&shadow->tbo, NULL); amdgpu_bo_unref(&shadow); } ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); spin_lock(&entry->vm->status_lock); list_del(&entry->vm_status); spin_unlock(&entry->vm->status_lock); amdgpu_bo_unref(&entry->bo); } void amdgpu_vm_pt_free_work(struct work_struct *work) { struct amdgpu_vm_bo_base *entry, *next; struct amdgpu_vm *vm; LIST_HEAD(pt_freed); vm = container_of(work, struct amdgpu_vm, pt_free_work); spin_lock(&vm->status_lock); list_splice_init(&vm->pt_freed, &pt_freed); spin_unlock(&vm->status_lock); /* flush_work in amdgpu_vm_fini ensure vm->root.bo is valid. */ amdgpu_bo_reserve(vm->root.bo, true); list_for_each_entry_safe(entry, next, &pt_freed, vm_status) amdgpu_vm_pt_free(entry); amdgpu_bo_unreserve(vm->root.bo); } /** * amdgpu_vm_pt_free_dfs - free PD/PT levels * * @adev: amdgpu device structure * @vm: amdgpu vm structure * @start: optional cursor where to start freeing PDs/PTs * @unlocked: vm resv unlock status * * Free the page directory or page table level and all sub levels. */ static void amdgpu_vm_pt_free_dfs(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt_cursor *start, bool unlocked) { struct amdgpu_vm_pt_cursor cursor; struct amdgpu_vm_bo_base *entry; if (unlocked) { spin_lock(&vm->status_lock); for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) list_move(&entry->vm_status, &vm->pt_freed); if (start) list_move(&start->entry->vm_status, &vm->pt_freed); spin_unlock(&vm->status_lock); schedule_work(&vm->pt_free_work); return; } for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) amdgpu_vm_pt_free(entry); if (start) amdgpu_vm_pt_free(start->entry); } /** * amdgpu_vm_pt_free_root - free root PD * @adev: amdgpu device structure * @vm: amdgpu vm structure * * Free the root page directory and everything below it. */ void amdgpu_vm_pt_free_root(struct amdgpu_device *adev, struct amdgpu_vm *vm) { amdgpu_vm_pt_free_dfs(adev, vm, NULL, false); } /** * amdgpu_vm_pde_update - update a single level in the hierarchy * * @params: parameters for the update * @entry: entry to update * * Makes sure the requested entry in parent is up to date. */ int amdgpu_vm_pde_update(struct amdgpu_vm_update_params *params, struct amdgpu_vm_bo_base *entry) { struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); struct amdgpu_bo *bo = parent->bo, *pbo; struct amdgpu_vm *vm = params->vm; uint64_t pde, pt, flags; unsigned int level; for (level = 0, pbo = bo->parent; pbo; ++level) pbo = pbo->parent; level += params->adev->vm_manager.root_level; amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1, 0, flags); } /** * amdgpu_vm_pte_update_noretry_flags - Update PTE no-retry flags * * @adev: amdgpu_device pointer * @flags: pointer to PTE flags * * Update PTE no-retry flags when TF is enabled. */ static void amdgpu_vm_pte_update_noretry_flags(struct amdgpu_device *adev, uint64_t *flags) { /* * Update no-retry flags with the corresponding TF * no-retry combination. */ if ((*flags & AMDGPU_VM_NORETRY_FLAGS) == AMDGPU_VM_NORETRY_FLAGS) { *flags &= ~AMDGPU_VM_NORETRY_FLAGS; *flags |= adev->gmc.noretry_flags; } } /* * amdgpu_vm_pte_update_flags - figure out flags for PTE updates * * Make sure to set the right flags for the PTEs at the desired level. */ static void amdgpu_vm_pte_update_flags(struct amdgpu_vm_update_params *params, struct amdgpu_bo_vm *pt, unsigned int level, uint64_t pe, uint64_t addr, unsigned int count, uint32_t incr, uint64_t flags) { struct amdgpu_device *adev = params->adev; if (level != AMDGPU_VM_PTB) { flags |= AMDGPU_PDE_PTE; amdgpu_gmc_get_vm_pde(adev, level, &addr, &flags); } else if (adev->asic_type >= CHIP_VEGA10 && !(flags & AMDGPU_PTE_VALID) && !(flags & AMDGPU_PTE_PRT)) { /* Workaround for fault priority problem on GMC9 */ flags |= AMDGPU_PTE_EXECUTABLE; } /* * Update no-retry flags to use the no-retry flag combination * with TF enabled. The AMDGPU_VM_NORETRY_FLAGS flag combination * does not work when TF is enabled. So, replace them with * AMDGPU_VM_NORETRY_FLAGS_TF flag combination which works for * all cases. */ if (level == AMDGPU_VM_PTB) amdgpu_vm_pte_update_noretry_flags(adev, &flags); /* APUs mapping system memory may need different MTYPEs on different * NUMA nodes. Only do this for contiguous ranges that can be assumed * to be on the same NUMA node. */ if ((flags & AMDGPU_PTE_SYSTEM) && (adev->flags & AMD_IS_APU) && adev->gmc.gmc_funcs->override_vm_pte_flags && num_possible_nodes() > 1 && !params->pages_addr && params->allow_override) amdgpu_gmc_override_vm_pte_flags(adev, params->vm, addr, &flags); params->vm->update_funcs->update(params, pt, pe, addr, count, incr, flags); } /** * amdgpu_vm_pte_fragment - get fragment for PTEs * * @params: see amdgpu_vm_update_params definition * @start: first PTE to handle * @end: last PTE to handle * @flags: hw mapping flags * @frag: resulting fragment size * @frag_end: end of this fragment * * Returns the first possible fragment for the start and end address. */ static void amdgpu_vm_pte_fragment(struct amdgpu_vm_update_params *params, uint64_t start, uint64_t end, uint64_t flags, unsigned int *frag, uint64_t *frag_end) { /** * The MC L1 TLB supports variable sized pages, based on a fragment * field in the PTE. When this field is set to a non-zero value, page * granularity is increased from 4KB to (1 << (12 + frag)). The PTE * flags are considered valid for all PTEs within the fragment range * and corresponding mappings are assumed to be physically contiguous. * * The L1 TLB can store a single PTE for the whole fragment, * significantly increasing the space available for translation * caching. This leads to large improvements in throughput when the * TLB is under pressure. * * The L2 TLB distributes small and large fragments into two * asymmetric partitions. The large fragment cache is significantly * larger. Thus, we try to use large fragments wherever possible. * Userspace can support this by aligning virtual base address and * allocation size to the fragment size. * * Starting with Vega10 the fragment size only controls the L1. The L2 * is now directly feed with small/huge/giant pages from the walker. */ unsigned int max_frag; if (params->adev->asic_type < CHIP_VEGA10) max_frag = params->adev->vm_manager.fragment_size; else max_frag = 31; /* system pages are non continuously */ if (params->pages_addr) { *frag = 0; *frag_end = end; return; } /* This intentionally wraps around if no bit is set */ *frag = min_t(unsigned int, ffs(start) - 1, fls64(end - start) - 1); if (*frag >= max_frag) { *frag = max_frag; *frag_end = end & ~((1ULL << max_frag) - 1); } else { *frag_end = start + (1 << *frag); } } /** * amdgpu_vm_ptes_update - make sure that page tables are valid * * @params: see amdgpu_vm_update_params definition * @start: start of GPU address range * @end: end of GPU address range * @dst: destination address to map to, the next dst inside the function * @flags: mapping flags * * Update the page tables in the range @start - @end. * * Returns: * 0 for success, -EINVAL for failure. */ int amdgpu_vm_ptes_update(struct amdgpu_vm_update_params *params, uint64_t start, uint64_t end, uint64_t dst, uint64_t flags) { struct amdgpu_device *adev = params->adev; struct amdgpu_vm_pt_cursor cursor; uint64_t frag_start = start, frag_end; unsigned int frag; int r; /* figure out the initial fragment */ amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, &frag_end); /* walk over the address space and update the PTs */ amdgpu_vm_pt_start(adev, params->vm, start, &cursor); while (cursor.pfn < end) { unsigned int shift, parent_shift, mask; uint64_t incr, entry_end, pe_start; struct amdgpu_bo *pt; if (!params->unlocked) { /* make sure that the page tables covering the * address range are actually allocated */ r = amdgpu_vm_pt_alloc(params->adev, params->vm, &cursor, params->immediate); if (r) return r; } shift = amdgpu_vm_pt_level_shift(adev, cursor.level); parent_shift = amdgpu_vm_pt_level_shift(adev, cursor.level - 1); if (params->unlocked) { /* Unlocked updates are only allowed on the leaves */ if (amdgpu_vm_pt_descendant(adev, &cursor)) continue; } else if (adev->asic_type < CHIP_VEGA10 && (flags & AMDGPU_PTE_VALID)) { /* No huge page support before GMC v9 */ if (cursor.level != AMDGPU_VM_PTB) { if (!amdgpu_vm_pt_descendant(adev, &cursor)) return -ENOENT; continue; } } else if (frag < shift) { /* We can't use this level when the fragment size is * smaller than the address shift. Go to the next * child entry and try again. */ if (amdgpu_vm_pt_descendant(adev, &cursor)) continue; } else if (frag >= parent_shift) { /* If the fragment size is even larger than the parent * shift we should go up one level and check it again. */ if (!amdgpu_vm_pt_ancestor(&cursor)) return -EINVAL; continue; } pt = cursor.entry->bo; if (!pt) { /* We need all PDs and PTs for mapping something, */ if (flags & AMDGPU_PTE_VALID) return -ENOENT; /* but unmapping something can happen at a higher * level. */ if (!amdgpu_vm_pt_ancestor(&cursor)) return -EINVAL; pt = cursor.entry->bo; shift = parent_shift; frag_end = max(frag_end, ALIGN(frag_start + 1, 1ULL << shift)); } /* Looks good so far, calculate parameters for the update */ incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; mask = amdgpu_vm_pt_entries_mask(adev, cursor.level); pe_start = ((cursor.pfn >> shift) & mask) * 8; entry_end = ((uint64_t)mask + 1) << shift; entry_end += cursor.pfn & ~(entry_end - 1); entry_end = min(entry_end, end); do { struct amdgpu_vm *vm = params->vm; uint64_t upd_end = min(entry_end, frag_end); unsigned int nptes = (upd_end - frag_start) >> shift; uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); /* This can happen when we set higher level PDs to * silent to stop fault floods. */ nptes = max(nptes, 1u); trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, min(nptes, 32u), dst, incr, upd_flags, vm->task_info ? vm->task_info->tgid : 0, vm->immediate.fence_context); amdgpu_vm_pte_update_flags(params, to_amdgpu_bo_vm(pt), cursor.level, pe_start, dst, nptes, incr, upd_flags); pe_start += nptes * 8; dst += nptes * incr; frag_start = upd_end; if (frag_start >= frag_end) { /* figure out the next fragment */ amdgpu_vm_pte_fragment(params, frag_start, end, flags, &frag, &frag_end); if (frag < shift) break; } } while (frag_start < entry_end); if (amdgpu_vm_pt_descendant(adev, &cursor)) { /* Free all child entries. * Update the tables with the flags and addresses and free up subsequent * tables in the case of huge pages or freed up areas. * This is the maximum you can free, because all other page tables are not * completely covered by the range and so potentially still in use. */ while (cursor.pfn < frag_start) { /* Make sure previous mapping is freed */ if (cursor.entry->bo) { params->table_freed = true; amdgpu_vm_pt_free_dfs(adev, params->vm, &cursor, params->unlocked); } amdgpu_vm_pt_next(adev, &cursor); } } else if (frag >= shift) { /* or just move on to the next on the same level. */ amdgpu_vm_pt_next(adev, &cursor); } } return 0; } /** * amdgpu_vm_pt_map_tables - have bo of root PD cpu accessible * @adev: amdgpu device structure * @vm: amdgpu vm structure * * make root page directory and everything below it cpu accessible. */ int amdgpu_vm_pt_map_tables(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_vm_pt_cursor cursor; struct amdgpu_vm_bo_base *entry; for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) { struct amdgpu_bo_vm *bo; int r; if (entry->bo) { bo = to_amdgpu_bo_vm(entry->bo); r = vm->update_funcs->map_table(bo); if (r) return r; } } return 0; } |