Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 | // SPDX-License-Identifier: GPL-2.0-only /* * Driver for mt2063 Micronas tuner * * Copyright (c) 2011 Mauro Carvalho Chehab * * This driver came from a driver originally written by: * Henry Wang <Henry.wang@AzureWave.com> * Made publicly available by Terratec, at: * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/string.h> #include <linux/videodev2.h> #include <linux/gcd.h> #include "mt2063.h" static unsigned int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Set Verbosity level"); #define dprintk(level, fmt, arg...) do { \ if (debug >= level) \ printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \ } while (0) /* positive error codes used internally */ /* Info: Unavoidable LO-related spur may be present in the output */ #define MT2063_SPUR_PRESENT_ERR (0x00800000) /* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */ #define MT2063_SPUR_CNT_MASK (0x001f0000) #define MT2063_SPUR_SHIFT (16) /* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */ #define MT2063_UPC_RANGE (0x04000000) /* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */ #define MT2063_DNC_RANGE (0x08000000) /* * Constant defining the version of the following structure * and therefore the API for this code. * * When compiling the tuner driver, the preprocessor will * check against this version number to make sure that * it matches the version that the tuner driver knows about. */ /* DECT Frequency Avoidance */ #define MT2063_DECT_AVOID_US_FREQS 0x00000001 #define MT2063_DECT_AVOID_EURO_FREQS 0x00000002 #define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0) #define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0) enum MT2063_DECT_Avoid_Type { MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */ MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */ MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */ MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */ }; #define MT2063_MAX_ZONES 48 struct MT2063_ExclZone_t { u32 min_; u32 max_; struct MT2063_ExclZone_t *next_; }; /* * Structure of data needed for Spur Avoidance */ struct MT2063_AvoidSpursData_t { u32 f_ref; u32 f_in; u32 f_LO1; u32 f_if1_Center; u32 f_if1_Request; u32 f_if1_bw; u32 f_LO2; u32 f_out; u32 f_out_bw; u32 f_LO1_Step; u32 f_LO2_Step; u32 f_LO1_FracN_Avoid; u32 f_LO2_FracN_Avoid; u32 f_zif_bw; u32 f_min_LO_Separation; u32 maxH1; u32 maxH2; enum MT2063_DECT_Avoid_Type avoidDECT; u32 bSpurPresent; u32 bSpurAvoided; u32 nSpursFound; u32 nZones; struct MT2063_ExclZone_t *freeZones; struct MT2063_ExclZone_t *usedZones; struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES]; }; /* * Parameter for function MT2063_SetPowerMask that specifies the power down * of various sections of the MT2063. */ enum MT2063_Mask_Bits { MT2063_REG_SD = 0x0040, /* Shutdown regulator */ MT2063_SRO_SD = 0x0020, /* Shutdown SRO */ MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */ MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */ MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */ MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */ MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */ MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */ MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */ MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */ MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */ MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */ MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */ MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */ MT2063_NONE_SD = 0x0000 /* No shutdown bits */ }; /* * Possible values for MT2063_DNC_OUTPUT */ enum MT2063_DNC_Output_Enable { MT2063_DNC_NONE = 0, MT2063_DNC_1, MT2063_DNC_2, MT2063_DNC_BOTH }; /* * Two-wire serial bus subaddresses of the tuner registers. * Also known as the tuner's register addresses. */ enum MT2063_Register_Offsets { MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */ MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */ MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */ MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */ MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */ MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */ MT2063_REG_RSVD_06, /* 0x06: Reserved */ MT2063_REG_LO_STATUS, /* 0x07: LO Status */ MT2063_REG_FIFFC, /* 0x08: FIFF Center */ MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */ MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */ MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */ MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */ MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */ MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */ MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */ MT2063_REG_RSVD_10, /* 0x10: Reserved */ MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */ MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */ MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */ MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */ MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */ MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */ MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */ MT2063_REG_RF_OV, /* 0x18: RF Attn Override */ MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */ MT2063_REG_LNA_TGT, /* 0x1A: Reserved */ MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */ MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */ MT2063_REG_RSVD_1D, /* 0x1D: Reserved */ MT2063_REG_RSVD_1E, /* 0x1E: Reserved */ MT2063_REG_RSVD_1F, /* 0x1F: Reserved */ MT2063_REG_RSVD_20, /* 0x20: Reserved */ MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */ MT2063_REG_RSVD_22, /* 0x22: Reserved */ MT2063_REG_RSVD_23, /* 0x23: Reserved */ MT2063_REG_RSVD_24, /* 0x24: Reserved */ MT2063_REG_RSVD_25, /* 0x25: Reserved */ MT2063_REG_RSVD_26, /* 0x26: Reserved */ MT2063_REG_RSVD_27, /* 0x27: Reserved */ MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */ MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */ MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */ MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */ MT2063_REG_CTRL_2C, /* 0x2C: Reserved */ MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */ MT2063_REG_RSVD_2E, /* 0x2E: Reserved */ MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */ MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */ MT2063_REG_RSVD_31, /* 0x31: Reserved */ MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */ MT2063_REG_RSVD_33, /* 0x33: Reserved */ MT2063_REG_RSVD_34, /* 0x34: Reserved */ MT2063_REG_RSVD_35, /* 0x35: Reserved */ MT2063_REG_RSVD_36, /* 0x36: Reserved */ MT2063_REG_RSVD_37, /* 0x37: Reserved */ MT2063_REG_RSVD_38, /* 0x38: Reserved */ MT2063_REG_RSVD_39, /* 0x39: Reserved */ MT2063_REG_RSVD_3A, /* 0x3A: Reserved */ MT2063_REG_RSVD_3B, /* 0x3B: Reserved */ MT2063_REG_RSVD_3C, /* 0x3C: Reserved */ MT2063_REG_END_REGS }; struct mt2063_state { struct i2c_adapter *i2c; bool init; const struct mt2063_config *config; struct dvb_tuner_ops ops; struct dvb_frontend *frontend; u32 frequency; u32 srate; u32 bandwidth; u32 reference; u32 tuner_id; struct MT2063_AvoidSpursData_t AS_Data; u32 f_IF1_actual; u32 rcvr_mode; u32 ctfilt_sw; u32 CTFiltMax[31]; u32 num_regs; u8 reg[MT2063_REG_END_REGS]; }; /* * mt2063_write - Write data into the I2C bus */ static int mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len) { struct dvb_frontend *fe = state->frontend; int ret; u8 buf[60]; struct i2c_msg msg = { .addr = state->config->tuner_address, .flags = 0, .buf = buf, .len = len + 1 }; dprintk(2, "\n"); msg.buf[0] = reg; memcpy(msg.buf + 1, data, len); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); ret = i2c_transfer(state->i2c, &msg, 1); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); if (ret < 0) printk(KERN_ERR "%s error ret=%d\n", __func__, ret); return ret; } /* * mt2063_write - Write register data into the I2C bus, caching the value */ static int mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val) { int status; dprintk(2, "\n"); if (reg >= MT2063_REG_END_REGS) return -ERANGE; status = mt2063_write(state, reg, &val, 1); if (status < 0) return status; state->reg[reg] = val; return 0; } /* * mt2063_read - Read data from the I2C bus */ static int mt2063_read(struct mt2063_state *state, u8 subAddress, u8 *pData, u32 cnt) { int status = 0; /* Status to be returned */ struct dvb_frontend *fe = state->frontend; u32 i = 0; dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); for (i = 0; i < cnt; i++) { u8 b0[] = { subAddress + i }; struct i2c_msg msg[] = { { .addr = state->config->tuner_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->tuner_address, .flags = I2C_M_RD, .buf = pData + i, .len = 1 } }; status = i2c_transfer(state->i2c, msg, 2); dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n", subAddress + i, status, *(pData + i)); if (status < 0) break; } if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); if (status < 0) printk(KERN_ERR "Can't read from address 0x%02x,\n", subAddress + i); return status; } /* * FIXME: Is this really needed? */ static int MT2063_Sleep(struct dvb_frontend *fe) { /* * ToDo: Add code here to implement a OS blocking */ msleep(100); return 0; } /* * Microtune spur avoidance */ /* Implement ceiling, floor functions. */ #define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0)) #define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d)) struct MT2063_FIFZone_t { s32 min_; s32 max_; }; static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t *pAS_Info, struct MT2063_ExclZone_t *pPrevNode) { struct MT2063_ExclZone_t *pNode; dprintk(2, "\n"); /* Check for a node in the free list */ if (pAS_Info->freeZones != NULL) { /* Use one from the free list */ pNode = pAS_Info->freeZones; pAS_Info->freeZones = pNode->next_; } else { /* Grab a node from the array */ pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones]; } if (pPrevNode != NULL) { pNode->next_ = pPrevNode->next_; pPrevNode->next_ = pNode; } else { /* insert at the beginning of the list */ pNode->next_ = pAS_Info->usedZones; pAS_Info->usedZones = pNode; } pAS_Info->nZones++; return pNode; } static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t *pAS_Info, struct MT2063_ExclZone_t *pPrevNode, struct MT2063_ExclZone_t *pNodeToRemove) { struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_; dprintk(2, "\n"); /* Make previous node point to the subsequent node */ if (pPrevNode != NULL) pPrevNode->next_ = pNext; /* Add pNodeToRemove to the beginning of the freeZones */ pNodeToRemove->next_ = pAS_Info->freeZones; pAS_Info->freeZones = pNodeToRemove; /* Decrement node count */ pAS_Info->nZones--; return pNext; } /* * MT_AddExclZone() * * Add (and merge) an exclusion zone into the list. * If the range (f_min, f_max) is totally outside the * 1st IF BW, ignore the entry. * If the range (f_min, f_max) is negative, ignore the entry. */ static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info, u32 f_min, u32 f_max) { struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; struct MT2063_ExclZone_t *pPrev = NULL; struct MT2063_ExclZone_t *pNext = NULL; dprintk(2, "\n"); /* Check to see if this overlaps the 1st IF filter */ if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2))) && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2))) && (f_min < f_max)) { /* * 1 2 3 4 5 6 * * New entry: |---| |--| |--| |-| |---| |--| * or or or or or * Existing: |--| |--| |--| |---| |-| |--| */ /* Check for our place in the list */ while ((pNode != NULL) && (pNode->max_ < f_min)) { pPrev = pNode; pNode = pNode->next_; } if ((pNode != NULL) && (pNode->min_ < f_max)) { /* Combine me with pNode */ if (f_min < pNode->min_) pNode->min_ = f_min; if (f_max > pNode->max_) pNode->max_ = f_max; } else { pNode = InsertNode(pAS_Info, pPrev); pNode->min_ = f_min; pNode->max_ = f_max; } /* Look for merging possibilities */ pNext = pNode->next_; while ((pNext != NULL) && (pNext->min_ < pNode->max_)) { if (pNext->max_ > pNode->max_) pNode->max_ = pNext->max_; /* Remove pNext, return ptr to pNext->next */ pNext = RemoveNode(pAS_Info, pNode, pNext); } } } /* * Reset all exclusion zones. * Add zones to protect the PLL FracN regions near zero */ static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info) { u32 center; dprintk(2, "\n"); pAS_Info->nZones = 0; /* this clears the used list */ pAS_Info->usedZones = NULL; /* reset ptr */ pAS_Info->freeZones = NULL; /* reset ptr */ center = pAS_Info->f_ref * ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 + pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in; while (center < pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + pAS_Info->f_LO1_FracN_Avoid) { /* Exclude LO1 FracN */ MT2063_AddExclZone(pAS_Info, center - pAS_Info->f_LO1_FracN_Avoid, center - 1); MT2063_AddExclZone(pAS_Info, center + 1, center + pAS_Info->f_LO1_FracN_Avoid); center += pAS_Info->f_ref; } center = pAS_Info->f_ref * ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 - pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out; while (center < pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + pAS_Info->f_LO2_FracN_Avoid) { /* Exclude LO2 FracN */ MT2063_AddExclZone(pAS_Info, center - pAS_Info->f_LO2_FracN_Avoid, center - 1); MT2063_AddExclZone(pAS_Info, center + 1, center + pAS_Info->f_LO2_FracN_Avoid); center += pAS_Info->f_ref; } if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { /* Exclude LO1 values that conflict with DECT channels */ MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */ MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */ MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */ MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */ MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */ } if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */ MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */ MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */ MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */ MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */ MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */ MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */ MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */ MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */ MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */ } } /* * MT_ChooseFirstIF - Choose the best available 1st IF * If f_Desired is not excluded, choose that first. * Otherwise, return the value closest to f_Center that is * not excluded */ static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info) { /* * Update "f_Desired" to be the nearest "combinational-multiple" of * "f_LO1_Step". * The resulting number, F_LO1 must be a multiple of f_LO1_Step. * And F_LO1 is the arithmetic sum of f_in + f_Center. * Neither f_in, nor f_Center must be a multiple of f_LO1_Step. * However, the sum must be. */ const u32 f_Desired = pAS_Info->f_LO1_Step * ((pAS_Info->f_if1_Request + pAS_Info->f_in + pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) - pAS_Info->f_in; const u32 f_Step = (pAS_Info->f_LO1_Step > pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info-> f_LO2_Step; u32 f_Center; s32 i; s32 j = 0; u32 bDesiredExcluded = 0; u32 bZeroExcluded = 0; s32 tmpMin, tmpMax; s32 bestDiff; struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES]; dprintk(2, "\n"); if (pAS_Info->nZones == 0) return f_Desired; /* * f_Center needs to be an integer multiple of f_Step away * from f_Desired */ if (pAS_Info->f_if1_Center > f_Desired) f_Center = f_Desired + f_Step * ((pAS_Info->f_if1_Center - f_Desired + f_Step / 2) / f_Step); else f_Center = f_Desired - f_Step * ((f_Desired - pAS_Info->f_if1_Center + f_Step / 2) / f_Step); /* * Take MT_ExclZones, center around f_Center and change the * resolution to f_Step */ while (pNode != NULL) { /* floor function */ tmpMin = floor((s32) (pNode->min_ - f_Center), (s32) f_Step); /* ceil function */ tmpMax = ceil((s32) (pNode->max_ - f_Center), (s32) f_Step); if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired)) bDesiredExcluded = 1; if ((tmpMin < 0) && (tmpMax > 0)) bZeroExcluded = 1; /* See if this zone overlaps the previous */ if ((j > 0) && (tmpMin < zones[j - 1].max_)) zones[j - 1].max_ = tmpMax; else { /* Add new zone */ zones[j].min_ = tmpMin; zones[j].max_ = tmpMax; j++; } pNode = pNode->next_; } /* * If the desired is okay, return with it */ if (bDesiredExcluded == 0) return f_Desired; /* * If the desired is excluded and the center is okay, return with it */ if (bZeroExcluded == 0) return f_Center; /* Find the value closest to 0 (f_Center) */ bestDiff = zones[0].min_; for (i = 0; i < j; i++) { if (abs(zones[i].min_) < abs(bestDiff)) bestDiff = zones[i].min_; if (abs(zones[i].max_) < abs(bestDiff)) bestDiff = zones[i].max_; } if (bestDiff < 0) return f_Center - ((u32) (-bestDiff) * f_Step); return f_Center + (bestDiff * f_Step); } /** * IsSpurInBand() - Checks to see if a spur will be present within the IF's * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW) * * ma mb mc md * <--+-+-+-------------------+-------------------+-+-+--> * | ^ 0 ^ | * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^ * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2 * * Note that some equations are doubled to prevent round-off * problems when calculating fIFBW/2 * * @pAS_Info: Avoid Spurs information block * @fm: If spur, amount f_IF1 has to move negative * @fp: If spur, amount f_IF1 has to move positive * * Returns 1 if an LO spur would be present, otherwise 0. */ static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info, u32 *fm, u32 * fp) { /* ** Calculate LO frequency settings. */ u32 n, n0; const u32 f_LO1 = pAS_Info->f_LO1; const u32 f_LO2 = pAS_Info->f_LO2; const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2; const u32 c = d - pAS_Info->f_out_bw; const u32 f = pAS_Info->f_zif_bw / 2; const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1; s32 f_nsLO1, f_nsLO2; s32 f_Spur; u32 ma, mb, mc, md, me, mf; u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs; dprintk(2, "\n"); *fm = 0; /* ** For each edge (d, c & f), calculate a scale, based on the gcd ** of f_LO1, f_LO2 and the edge value. Use the larger of this ** gcd-based scale factor or f_Scale. */ lo_gcd = gcd(f_LO1, f_LO2); gd_Scale = max((u32) gcd(lo_gcd, d), f_Scale); hgds = gd_Scale / 2; gc_Scale = max((u32) gcd(lo_gcd, c), f_Scale); hgcs = gc_Scale / 2; gf_Scale = max((u32) gcd(lo_gcd, f), f_Scale); hgfs = gf_Scale / 2; n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2); /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */ for (n = n0; n <= pAS_Info->maxH1; ++n) { md = (n * ((f_LO1 + hgds) / gd_Scale) - ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */ if (md >= pAS_Info->maxH1) break; ma = (n * ((f_LO1 + hgds) / gd_Scale) + ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */ if (md == ma) continue; mc = (n * ((f_LO1 + hgcs) / gc_Scale) - ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); if (mc != md) { f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale)); f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale)); f_Spur = (gc_Scale * (f_nsLO1 - f_nsLO2)) + n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale); *fp = ((f_Spur - (s32) c) / (mc - n)) + 1; *fm = (((s32) d - f_Spur) / (mc - n)) + 1; return 1; } /* Location of Zero-IF-spur to be checked */ me = (n * ((f_LO1 + hgfs) / gf_Scale) + ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); mf = (n * ((f_LO1 + hgfs) / gf_Scale) - ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); if (me != mf) { f_nsLO1 = n * (f_LO1 / gf_Scale); f_nsLO2 = me * (f_LO2 / gf_Scale); f_Spur = (gf_Scale * (f_nsLO1 - f_nsLO2)) + n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale); *fp = ((f_Spur + (s32) f) / (me - n)) + 1; *fm = (((s32) f - f_Spur) / (me - n)) + 1; return 1; } mb = (n * ((f_LO1 + hgcs) / gc_Scale) + ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); if (ma != mb) { f_nsLO1 = n * (f_LO1 / gc_Scale); f_nsLO2 = ma * (f_LO2 / gc_Scale); f_Spur = (gc_Scale * (f_nsLO1 - f_nsLO2)) + n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale); *fp = (((s32) d + f_Spur) / (ma - n)) + 1; *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1; return 1; } } /* No spurs found */ return 0; } /* * MT_AvoidSpurs() - Main entry point to avoid spurs. * Checks for existing spurs in present LO1, LO2 freqs * and if present, chooses spur-free LO1, LO2 combination * that tunes the same input/output frequencies. */ static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info) { int status = 0; u32 fm, fp; /* restricted range on LO's */ pAS_Info->bSpurAvoided = 0; pAS_Info->nSpursFound = 0; dprintk(2, "\n"); if (pAS_Info->maxH1 == 0) return 0; /* * Avoid LO Generated Spurs * * Make sure that have no LO-related spurs within the IF output * bandwidth. * * If there is an LO spur in this band, start at the current IF1 frequency * and work out until we find a spur-free frequency or run up against the * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they * will be unchanged if a spur-free setting is not found. */ pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); if (pAS_Info->bSpurPresent) { u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */ u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */ u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */ u32 delta_IF1; u32 new_IF1; /* ** Spur was found, attempt to find a spur-free 1st IF */ do { pAS_Info->nSpursFound++; /* Raise f_IF1_upper, if needed */ MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp); /* Choose next IF1 that is closest to f_IF1_CENTER */ new_IF1 = MT2063_ChooseFirstIF(pAS_Info); if (new_IF1 > zfIF1) { pAS_Info->f_LO1 += (new_IF1 - zfIF1); pAS_Info->f_LO2 += (new_IF1 - zfIF1); } else { pAS_Info->f_LO1 -= (zfIF1 - new_IF1); pAS_Info->f_LO2 -= (zfIF1 - new_IF1); } zfIF1 = new_IF1; if (zfIF1 > pAS_Info->f_if1_Center) delta_IF1 = zfIF1 - pAS_Info->f_if1_Center; else delta_IF1 = pAS_Info->f_if1_Center - zfIF1; pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); /* * Continue while the new 1st IF is still within the 1st IF bandwidth * and there is a spur in the band (again) */ } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent); /* * Use the LO-spur free values found. If the search went all * the way to the 1st IF band edge and always found spurs, just * leave the original choice. It's as "good" as any other. */ if (pAS_Info->bSpurPresent == 1) { status |= MT2063_SPUR_PRESENT_ERR; pAS_Info->f_LO1 = zfLO1; pAS_Info->f_LO2 = zfLO2; } else pAS_Info->bSpurAvoided = 1; } status |= ((pAS_Info-> nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK); return status; } /* * Constants used by the tuning algorithm */ #define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */ #define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */ #define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */ #define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */ #define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */ #define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */ #define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */ #define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */ #define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */ #define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */ #define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */ #define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */ #define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */ #define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */ #define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */ #define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */ #define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */ #define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */ /* * Define the supported Part/Rev codes for the MT2063 */ #define MT2063_B0 (0x9B) #define MT2063_B1 (0x9C) #define MT2063_B2 (0x9D) #define MT2063_B3 (0x9E) /** * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked * * @state: struct mt2063_state pointer * * This function returns 0, if no lock, 1 if locked and a value < 1 if error */ static int mt2063_lockStatus(struct mt2063_state *state) { const u32 nMaxWait = 100; /* wait a maximum of 100 msec */ const u32 nPollRate = 2; /* poll status bits every 2 ms */ const u32 nMaxLoops = nMaxWait / nPollRate; const u8 LO1LK = 0x80; u8 LO2LK = 0x08; int status; u32 nDelays = 0; dprintk(2, "\n"); /* LO2 Lock bit was in a different place for B0 version */ if (state->tuner_id == MT2063_B0) LO2LK = 0x40; do { status = mt2063_read(state, MT2063_REG_LO_STATUS, &state->reg[MT2063_REG_LO_STATUS], 1); if (status < 0) return status; if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) == (LO1LK | LO2LK)) { return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO; } msleep(nPollRate); /* Wait between retries */ } while (++nDelays < nMaxLoops); /* * Got no lock or partial lock */ return 0; } /* * Constants for setting receiver modes. * (6 modes defined at this time, enumerated by mt2063_delivery_sys) * (DNC1GC & DNC2GC are the values, which are used, when the specific * DNC Output is selected, the other is always off) * * enum mt2063_delivery_sys * -------------+---------------------------------------------- * Mode 0 : | MT2063_CABLE_QAM * Mode 1 : | MT2063_CABLE_ANALOG * Mode 2 : | MT2063_OFFAIR_COFDM * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS * Mode 4 : | MT2063_OFFAIR_ANALOG * Mode 5 : | MT2063_OFFAIR_8VSB * --------------+---------------------------------------------- * * |<---------- Mode -------------->| * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 | * ------------+-----+-----+-----+-----+-----+-----+ * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF * LNARin | 0 | 0 | 3 | 3 | 3 | 3 * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1 * FIFFq | 0 | 0 | 0 | 0 | 0 | 0 * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0 * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0 * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1 * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31 * LNA Target | 44 | 43 | 43 | 43 | 43 | 43 * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0 * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31 * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38 * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0 * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5 * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42 */ enum mt2063_delivery_sys { MT2063_CABLE_QAM = 0, MT2063_CABLE_ANALOG, MT2063_OFFAIR_COFDM, MT2063_OFFAIR_COFDM_SAWLESS, MT2063_OFFAIR_ANALOG, MT2063_OFFAIR_8VSB, MT2063_NUM_RCVR_MODES }; static const char *mt2063_mode_name[] = { [MT2063_CABLE_QAM] = "digital cable", [MT2063_CABLE_ANALOG] = "analog cable", [MT2063_OFFAIR_COFDM] = "digital offair", [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW", [MT2063_OFFAIR_ANALOG] = "analog offair", [MT2063_OFFAIR_8VSB] = "analog offair 8vsb", }; static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 }; static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 }; static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 }; static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 }; static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 }; static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 }; static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 }; static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 }; static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 }; static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 }; static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 }; static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 }; /* * mt2063_set_dnc_output_enable() */ static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state, enum MT2063_DNC_Output_Enable *pValue) { dprintk(2, "\n"); if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */ if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ *pValue = MT2063_DNC_NONE; else *pValue = MT2063_DNC_2; } else { /* DNC1 is on */ if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ *pValue = MT2063_DNC_1; else *pValue = MT2063_DNC_BOTH; } return 0; } /* * mt2063_set_dnc_output_enable() */ static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state, enum MT2063_DNC_Output_Enable nValue) { int status = 0; /* Status to be returned */ u8 val = 0; dprintk(2, "\n"); /* selects, which DNC output is used */ switch (nValue) { case MT2063_DNC_NONE: val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ if (state->reg[MT2063_REG_DNC_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_DNC_GAIN, val); val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ if (state->reg[MT2063_REG_VGA_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_VGA_GAIN, val); val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ if (state->reg[MT2063_REG_RSVD_20] != val) status |= mt2063_setreg(state, MT2063_REG_RSVD_20, val); break; case MT2063_DNC_1: val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ if (state->reg[MT2063_REG_DNC_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_DNC_GAIN, val); val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ if (state->reg[MT2063_REG_VGA_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_VGA_GAIN, val); val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ if (state->reg[MT2063_REG_RSVD_20] != val) status |= mt2063_setreg(state, MT2063_REG_RSVD_20, val); break; case MT2063_DNC_2: val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ if (state->reg[MT2063_REG_DNC_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_DNC_GAIN, val); val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ if (state->reg[MT2063_REG_VGA_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_VGA_GAIN, val); val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ if (state->reg[MT2063_REG_RSVD_20] != val) status |= mt2063_setreg(state, MT2063_REG_RSVD_20, val); break; case MT2063_DNC_BOTH: val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ if (state->reg[MT2063_REG_DNC_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_DNC_GAIN, val); val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ if (state->reg[MT2063_REG_VGA_GAIN] != val) status |= mt2063_setreg(state, MT2063_REG_VGA_GAIN, val); val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ if (state->reg[MT2063_REG_RSVD_20] != val) status |= mt2063_setreg(state, MT2063_REG_RSVD_20, val); break; default: break; } return status; } /* * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with * the selected enum mt2063_delivery_sys type. * * (DNC1GC & DNC2GC are the values, which are used, when the specific * DNC Output is selected, the other is always off) * * @state: ptr to mt2063_state structure * @Mode: desired receiver delivery system * * Note: Register cache must be valid for it to work */ static u32 MT2063_SetReceiverMode(struct mt2063_state *state, enum mt2063_delivery_sys Mode) { int status = 0; /* Status to be returned */ u8 val; u32 longval; dprintk(2, "\n"); if (Mode >= MT2063_NUM_RCVR_MODES) status = -ERANGE; /* RFAGCen */ if (status >= 0) { val = (state-> reg[MT2063_REG_PD1_TGT] & ~0x40) | (RFAGCEN[Mode] ? 0x40 : 0x00); if (state->reg[MT2063_REG_PD1_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); } /* LNARin */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_CTRL_2C] & ~0x03) | (LNARIN[Mode] & 0x03); if (state->reg[MT2063_REG_CTRL_2C] != val) status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val); } /* FIFFQEN and FIFFQ */ if (status >= 0) { val = (state-> reg[MT2063_REG_FIFF_CTRL2] & ~0xF0) | (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4); if (state->reg[MT2063_REG_FIFF_CTRL2] != val) { status |= mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val); /* trigger FIFF calibration, needed after changing FIFFQ */ val = (state->reg[MT2063_REG_FIFF_CTRL] | 0x01); status |= mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); val = (state-> reg[MT2063_REG_FIFF_CTRL] & ~0x01); status |= mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); } } /* DNC1GC & DNC2GC */ status |= mt2063_get_dnc_output_enable(state, &longval); status |= mt2063_set_dnc_output_enable(state, longval); /* acLNAmax */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_LNA_OV] & ~0x1F) | (ACLNAMAX[Mode] & 0x1F); if (state->reg[MT2063_REG_LNA_OV] != val) status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val); } /* LNATGT */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_LNA_TGT] & ~0x3F) | (LNATGT[Mode] & 0x3F); if (state->reg[MT2063_REG_LNA_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); } /* ACRF */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_RF_OV] & ~0x1F) | (ACRFMAX[Mode] & 0x1F); if (state->reg[MT2063_REG_RF_OV] != val) status |= mt2063_setreg(state, MT2063_REG_RF_OV, val); } /* PD1TGT */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_PD1_TGT] & ~0x3F) | (PD1TGT[Mode] & 0x3F); if (state->reg[MT2063_REG_PD1_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); } /* FIFATN */ if (status >= 0) { u8 val = ACFIFMAX[Mode]; if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5) val = 5; val = (state->reg[MT2063_REG_FIF_OV] & ~0x1F) | (val & 0x1F); if (state->reg[MT2063_REG_FIF_OV] != val) status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val); } /* PD2TGT */ if (status >= 0) { u8 val = (state->reg[MT2063_REG_PD2_TGT] & ~0x3F) | (PD2TGT[Mode] & 0x3F); if (state->reg[MT2063_REG_PD2_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val); } /* Ignore ATN Overload */ if (status >= 0) { val = (state->reg[MT2063_REG_LNA_TGT] & ~0x80) | (RFOVDIS[Mode] ? 0x80 : 0x00); if (state->reg[MT2063_REG_LNA_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); } /* Ignore FIF Overload */ if (status >= 0) { val = (state->reg[MT2063_REG_PD1_TGT] & ~0x80) | (FIFOVDIS[Mode] ? 0x80 : 0x00); if (state->reg[MT2063_REG_PD1_TGT] != val) status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); } if (status >= 0) { state->rcvr_mode = Mode; dprintk(1, "mt2063 mode changed to %s\n", mt2063_mode_name[state->rcvr_mode]); } return status; } /* * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various * sections of the MT2063 * * @Bits: Mask bits to be cleared. * * See definition of MT2063_Mask_Bits type for description * of each of the power bits. */ static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state, enum MT2063_Mask_Bits Bits) { int status = 0; dprintk(2, "\n"); Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */ if ((Bits & 0xFF00) != 0) { state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8); status |= mt2063_write(state, MT2063_REG_PWR_2, &state->reg[MT2063_REG_PWR_2], 1); } if ((Bits & 0xFF) != 0) { state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF); status |= mt2063_write(state, MT2063_REG_PWR_1, &state->reg[MT2063_REG_PWR_1], 1); } return status; } /* * MT2063_SoftwareShutdown() - Enables or disables software shutdown function. * When Shutdown is 1, any section whose power * mask is set will be shutdown. */ static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown) { int status; dprintk(2, "\n"); if (Shutdown == 1) state->reg[MT2063_REG_PWR_1] |= 0x04; else state->reg[MT2063_REG_PWR_1] &= ~0x04; status = mt2063_write(state, MT2063_REG_PWR_1, &state->reg[MT2063_REG_PWR_1], 1); if (Shutdown != 1) { state->reg[MT2063_REG_BYP_CTRL] = (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40; status |= mt2063_write(state, MT2063_REG_BYP_CTRL, &state->reg[MT2063_REG_BYP_CTRL], 1); state->reg[MT2063_REG_BYP_CTRL] = (state->reg[MT2063_REG_BYP_CTRL] & 0x9F); status |= mt2063_write(state, MT2063_REG_BYP_CTRL, &state->reg[MT2063_REG_BYP_CTRL], 1); } return status; } static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref) { return f_ref * (f_LO / f_ref) + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step); } /** * MT2063_fLO_FractionalTerm - Calculates the portion contributed by FracN / denom. * This function preserves maximum precision without * risk of overflow. It accurately calculates * f_ref * num / denom to within 1 HZ with fixed math. * * @f_ref: SRO frequency. * @num: Fractional portion of the multiplier * @denom: denominator portion of the ratio * * This calculation handles f_ref as two separate 14-bit fields. * Therefore, a maximum value of 2^28-1 may safely be used for f_ref. * This is the genesis of the magic number "14" and the magic mask value of * 0x03FFF. * * This routine successfully handles denom values up to and including 2^18. * Returns: f_ref * num / denom */ static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom) { u32 t1 = (f_ref >> 14) * num; u32 term1 = t1 / denom; u32 loss = t1 % denom; u32 term2 = (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom; return (term1 << 14) + term2; } /* * MT2063_CalcLO1Mult - Calculates Integer divider value and the numerator * value for a FracN PLL. * * This function assumes that the f_LO and f_Ref are * evenly divisible by f_LO_Step. * * @Div: OUTPUT: Whole number portion of the multiplier * @FracN: OUTPUT: Fractional portion of the multiplier * @f_LO: desired LO frequency. * @f_LO_Step: Minimum step size for the LO (in Hz). * @f_Ref: SRO frequency. * @f_Avoid: Range of PLL frequencies to avoid near integer multiples * of f_Ref (in Hz). * * Returns: Recalculated LO frequency. */ static u32 MT2063_CalcLO1Mult(u32 *Div, u32 *FracN, u32 f_LO, u32 f_LO_Step, u32 f_Ref) { /* Calculate the whole number portion of the divider */ *Div = f_LO / f_Ref; /* Calculate the numerator value (round to nearest f_LO_Step) */ *FracN = (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64); } /** * MT2063_CalcLO2Mult - Calculates Integer divider value and the numerator * value for a FracN PLL. * * This function assumes that the f_LO and f_Ref are * evenly divisible by f_LO_Step. * * @Div: OUTPUT: Whole number portion of the multiplier * @FracN: OUTPUT: Fractional portion of the multiplier * @f_LO: desired LO frequency. * @f_LO_Step: Minimum step size for the LO (in Hz). * @f_Ref: SRO frequency. * * Returns: Recalculated LO frequency. */ static u32 MT2063_CalcLO2Mult(u32 *Div, u32 *FracN, u32 f_LO, u32 f_LO_Step, u32 f_Ref) { /* Calculate the whole number portion of the divider */ *Div = f_LO / f_Ref; /* Calculate the numerator value (round to nearest f_LO_Step) */ *FracN = (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 8191); } /* * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be * used for a given input frequency. * * @state: ptr to tuner data structure * @f_in: RF input center frequency (in Hz). * * Returns: ClearTune filter number (0-31) */ static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in) { u32 RFBand; u32 idx; /* index loop */ /* ** Find RF Band setting */ RFBand = 31; /* def when f_in > all */ for (idx = 0; idx < 31; ++idx) { if (state->CTFiltMax[idx] >= f_in) { RFBand = idx; break; } } return RFBand; } /* * MT2063_Tune() - Change the tuner's tuned frequency to RFin. */ static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in) { /* RF input center frequency */ int status = 0; u32 LO1; /* 1st LO register value */ u32 Num1; /* Numerator for LO1 reg. value */ u32 f_IF1; /* 1st IF requested */ u32 LO2; /* 2nd LO register value */ u32 Num2; /* Numerator for LO2 reg. value */ u32 ofLO1, ofLO2; /* last time's LO frequencies */ u8 fiffc = 0x80; /* FIFF center freq from tuner */ u32 fiffof; /* Offset from FIFF center freq */ const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */ u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */ u8 val; u32 RFBand; dprintk(2, "\n"); /* Check the input and output frequency ranges */ if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ)) return -EINVAL; if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ) || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ)) return -EINVAL; /* * Save original LO1 and LO2 register values */ ofLO1 = state->AS_Data.f_LO1; ofLO2 = state->AS_Data.f_LO2; /* * Find and set RF Band setting */ if (state->ctfilt_sw == 1) { val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08); if (state->reg[MT2063_REG_CTUNE_CTRL] != val) { status |= mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val); } val = state->reg[MT2063_REG_CTUNE_OV]; RFBand = FindClearTuneFilter(state, f_in); state->reg[MT2063_REG_CTUNE_OV] = (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F) | RFBand); if (state->reg[MT2063_REG_CTUNE_OV] != val) { status |= mt2063_setreg(state, MT2063_REG_CTUNE_OV, val); } } /* * Read the FIFF Center Frequency from the tuner */ if (status >= 0) { status |= mt2063_read(state, MT2063_REG_FIFFC, &state->reg[MT2063_REG_FIFFC], 1); fiffc = state->reg[MT2063_REG_FIFFC]; } /* * Assign in the requested values */ state->AS_Data.f_in = f_in; /* Request a 1st IF such that LO1 is on a step size */ state->AS_Data.f_if1_Request = MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in, state->AS_Data.f_LO1_Step, state->AS_Data.f_ref) - f_in; /* * Calculate frequency settings. f_IF1_FREQ + f_in is the * desired LO1 frequency */ MT2063_ResetExclZones(&state->AS_Data); f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data); state->AS_Data.f_LO1 = MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step, state->AS_Data.f_ref); state->AS_Data.f_LO2 = MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); /* * Check for any LO spurs in the output bandwidth and adjust * the LO settings to avoid them if needed */ status |= MT2063_AvoidSpurs(&state->AS_Data); /* * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values. * Recalculate the LO frequencies and the values to be placed * in the tuning registers. */ state->AS_Data.f_LO1 = MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1, state->AS_Data.f_LO1_Step, state->AS_Data.f_ref); state->AS_Data.f_LO2 = MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); state->AS_Data.f_LO2 = MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2, state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); /* * Check the upconverter and downconverter frequency ranges */ if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ) || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ)) status |= MT2063_UPC_RANGE; if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ) || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ)) status |= MT2063_DNC_RANGE; /* LO2 Lock bit was in a different place for B0 version */ if (state->tuner_id == MT2063_B0) LO2LK = 0x40; /* * If we have the same LO frequencies and we're already locked, * then skip re-programming the LO registers. */ if ((ofLO1 != state->AS_Data.f_LO1) || (ofLO2 != state->AS_Data.f_LO2) || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) != (LO1LK | LO2LK))) { /* * Calculate the FIFFOF register value * * IF1_Actual * FIFFOF = ------------ - 8 * FIFFC - 4992 * f_ref/64 */ fiffof = (state->AS_Data.f_LO1 - f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc - 4992; if (fiffof > 0xFF) fiffof = 0xFF; /* * Place all of the calculated values into the local tuner * register fields. */ if (status >= 0) { state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */ state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */ state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */ |(Num2 >> 12)); /* NUM2q (hi) */ state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */ state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */ /* * Now write out the computed register values * IMPORTANT: There is a required order for writing * (0x05 must follow all the others). */ status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */ if (state->tuner_id == MT2063_B0) { /* Re-write the one-shot bits to trigger the tune operation */ status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */ } /* Write out the FIFF offset only if it's changing */ if (state->reg[MT2063_REG_FIFF_OFFSET] != (u8) fiffof) { state->reg[MT2063_REG_FIFF_OFFSET] = (u8) fiffof; status |= mt2063_write(state, MT2063_REG_FIFF_OFFSET, &state-> reg[MT2063_REG_FIFF_OFFSET], 1); } } /* * Check for LO's locking */ if (status < 0) return status; status = mt2063_lockStatus(state); if (status < 0) return status; if (!status) return -EINVAL; /* Couldn't lock */ /* * If we locked OK, assign calculated data to mt2063_state structure */ state->f_IF1_actual = state->AS_Data.f_LO1 - f_in; } return status; } static const u8 MT2063B0_defaults[] = { /* Reg, Value */ 0x19, 0x05, 0x1B, 0x1D, 0x1C, 0x1F, 0x1D, 0x0F, 0x1E, 0x3F, 0x1F, 0x0F, 0x20, 0x3F, 0x22, 0x21, 0x23, 0x3F, 0x24, 0x20, 0x25, 0x3F, 0x27, 0xEE, 0x2C, 0x27, /* bit at 0x20 is cleared below */ 0x30, 0x03, 0x2C, 0x07, /* bit at 0x20 is cleared here */ 0x2D, 0x87, 0x2E, 0xAA, 0x28, 0xE1, /* Set the FIFCrst bit here */ 0x28, 0xE0, /* Clear the FIFCrst bit here */ 0x00 }; /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ static const u8 MT2063B1_defaults[] = { /* Reg, Value */ 0x05, 0xF0, 0x11, 0x10, /* New Enable AFCsd */ 0x19, 0x05, 0x1A, 0x6C, 0x1B, 0x24, 0x1C, 0x28, 0x1D, 0x8F, 0x1E, 0x14, 0x1F, 0x8F, 0x20, 0x57, 0x22, 0x21, /* New - ver 1.03 */ 0x23, 0x3C, /* New - ver 1.10 */ 0x24, 0x20, /* New - ver 1.03 */ 0x2C, 0x24, /* bit at 0x20 is cleared below */ 0x2D, 0x87, /* FIFFQ=0 */ 0x2F, 0xF3, 0x30, 0x0C, /* New - ver 1.11 */ 0x31, 0x1B, /* New - ver 1.11 */ 0x2C, 0x04, /* bit at 0x20 is cleared here */ 0x28, 0xE1, /* Set the FIFCrst bit here */ 0x28, 0xE0, /* Clear the FIFCrst bit here */ 0x00 }; /* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ static const u8 MT2063B3_defaults[] = { /* Reg, Value */ 0x05, 0xF0, 0x19, 0x3D, 0x2C, 0x24, /* bit at 0x20 is cleared below */ 0x2C, 0x04, /* bit at 0x20 is cleared here */ 0x28, 0xE1, /* Set the FIFCrst bit here */ 0x28, 0xE0, /* Clear the FIFCrst bit here */ 0x00 }; static int mt2063_init(struct dvb_frontend *fe) { int status; struct mt2063_state *state = fe->tuner_priv; u8 all_resets = 0xF0; /* reset/load bits */ const u8 *def = NULL; char *step; u32 FCRUN; s32 maxReads; u32 fcu_osc; u32 i; dprintk(2, "\n"); state->rcvr_mode = MT2063_CABLE_QAM; /* Read the Part/Rev code from the tuner */ status = mt2063_read(state, MT2063_REG_PART_REV, &state->reg[MT2063_REG_PART_REV], 1); if (status < 0) { printk(KERN_ERR "Can't read mt2063 part ID\n"); return status; } /* Check the part/rev code */ switch (state->reg[MT2063_REG_PART_REV]) { case MT2063_B0: step = "B0"; break; case MT2063_B1: step = "B1"; break; case MT2063_B2: step = "B2"; break; case MT2063_B3: step = "B3"; break; default: printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n", state->reg[MT2063_REG_PART_REV]); return -ENODEV; /* Wrong tuner Part/Rev code */ } /* Check the 2nd byte of the Part/Rev code from the tuner */ status = mt2063_read(state, MT2063_REG_RSVD_3B, &state->reg[MT2063_REG_RSVD_3B], 1); /* b7 != 0 ==> NOT MT2063 */ if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) { printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n", state->reg[MT2063_REG_PART_REV], state->reg[MT2063_REG_RSVD_3B]); return -ENODEV; /* Wrong tuner Part/Rev code */ } printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step); /* Reset the tuner */ status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1); if (status < 0) return status; /* change all of the default values that vary from the HW reset values */ /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */ switch (state->reg[MT2063_REG_PART_REV]) { case MT2063_B3: def = MT2063B3_defaults; break; case MT2063_B1: def = MT2063B1_defaults; break; case MT2063_B0: def = MT2063B0_defaults; break; default: return -ENODEV; } while (status >= 0 && *def) { u8 reg = *def++; u8 val = *def++; status = mt2063_write(state, reg, &val, 1); } if (status < 0) return status; /* Wait for FIFF location to complete. */ FCRUN = 1; maxReads = 10; while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) { msleep(2); status = mt2063_read(state, MT2063_REG_XO_STATUS, &state-> reg[MT2063_REG_XO_STATUS], 1); FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6; } if (FCRUN != 0 || status < 0) return -ENODEV; status = mt2063_read(state, MT2063_REG_FIFFC, &state->reg[MT2063_REG_FIFFC], 1); if (status < 0) return status; /* Read back all the registers from the tuner */ status = mt2063_read(state, MT2063_REG_PART_REV, state->reg, MT2063_REG_END_REGS); if (status < 0) return status; /* Initialize the tuner state. */ state->tuner_id = state->reg[MT2063_REG_PART_REV]; state->AS_Data.f_ref = MT2063_REF_FREQ; state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) * ((u32) state->reg[MT2063_REG_FIFFC] + 640); state->AS_Data.f_if1_bw = MT2063_IF1_BW; state->AS_Data.f_out = 43750000UL; state->AS_Data.f_out_bw = 6750000UL; state->AS_Data.f_zif_bw = MT2063_ZIF_BW; state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64; state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE; state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1; state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2; state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP; state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center; state->AS_Data.f_LO1 = 2181000000UL; state->AS_Data.f_LO2 = 1486249786UL; state->f_IF1_actual = state->AS_Data.f_if1_Center; state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual; state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID; state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID; state->num_regs = MT2063_REG_END_REGS; state->AS_Data.avoidDECT = MT2063_AVOID_BOTH; state->ctfilt_sw = 0; state->CTFiltMax[0] = 69230000; state->CTFiltMax[1] = 105770000; state->CTFiltMax[2] = 140350000; state->CTFiltMax[3] = 177110000; state->CTFiltMax[4] = 212860000; state->CTFiltMax[5] = 241130000; state->CTFiltMax[6] = 274370000; state->CTFiltMax[7] = 309820000; state->CTFiltMax[8] = 342450000; state->CTFiltMax[9] = 378870000; state->CTFiltMax[10] = 416210000; state->CTFiltMax[11] = 456500000; state->CTFiltMax[12] = 495790000; state->CTFiltMax[13] = 534530000; state->CTFiltMax[14] = 572610000; state->CTFiltMax[15] = 598970000; state->CTFiltMax[16] = 635910000; state->CTFiltMax[17] = 672130000; state->CTFiltMax[18] = 714840000; state->CTFiltMax[19] = 739660000; state->CTFiltMax[20] = 770410000; state->CTFiltMax[21] = 814660000; state->CTFiltMax[22] = 846950000; state->CTFiltMax[23] = 867820000; state->CTFiltMax[24] = 915980000; state->CTFiltMax[25] = 947450000; state->CTFiltMax[26] = 983110000; state->CTFiltMax[27] = 1021630000; state->CTFiltMax[28] = 1061870000; state->CTFiltMax[29] = 1098330000; state->CTFiltMax[30] = 1138990000; /* ** Fetch the FCU osc value and use it and the fRef value to ** scale all of the Band Max values */ state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A; status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, &state->reg[MT2063_REG_CTUNE_CTRL], 1); if (status < 0) return status; /* Read the ClearTune filter calibration value */ status = mt2063_read(state, MT2063_REG_FIFFC, &state->reg[MT2063_REG_FIFFC], 1); if (status < 0) return status; fcu_osc = state->reg[MT2063_REG_FIFFC]; state->reg[MT2063_REG_CTUNE_CTRL] = 0x00; status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, &state->reg[MT2063_REG_CTUNE_CTRL], 1); if (status < 0) return status; /* Adjust each of the values in the ClearTune filter cross-over table */ for (i = 0; i < 31; i++) state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640); status = MT2063_SoftwareShutdown(state, 1); if (status < 0) return status; status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); if (status < 0) return status; state->init = true; return 0; } static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status) { struct mt2063_state *state = fe->tuner_priv; int status; dprintk(2, "\n"); if (!state->init) return -ENODEV; *tuner_status = 0; status = mt2063_lockStatus(state); if (status < 0) return status; if (status) *tuner_status = TUNER_STATUS_LOCKED; dprintk(1, "Tuner status: %d", *tuner_status); return 0; } static void mt2063_release(struct dvb_frontend *fe) { struct mt2063_state *state = fe->tuner_priv; dprintk(2, "\n"); fe->tuner_priv = NULL; kfree(state); } static int mt2063_set_analog_params(struct dvb_frontend *fe, struct analog_parameters *params) { struct mt2063_state *state = fe->tuner_priv; s32 pict_car; s32 pict2chanb_vsb; s32 ch_bw; s32 if_mid; s32 rcvr_mode; int status; dprintk(2, "\n"); if (!state->init) { status = mt2063_init(fe); if (status < 0) return status; } switch (params->mode) { case V4L2_TUNER_RADIO: pict_car = 38900000; ch_bw = 8000000; pict2chanb_vsb = -(ch_bw / 2); rcvr_mode = MT2063_OFFAIR_ANALOG; break; case V4L2_TUNER_ANALOG_TV: rcvr_mode = MT2063_CABLE_ANALOG; if (params->std & ~V4L2_STD_MN) { pict_car = 38900000; ch_bw = 6000000; pict2chanb_vsb = -1250000; } else if (params->std & V4L2_STD_PAL_G) { pict_car = 38900000; ch_bw = 7000000; pict2chanb_vsb = -1250000; } else { /* PAL/SECAM standards */ pict_car = 38900000; ch_bw = 8000000; pict2chanb_vsb = -1250000; } break; default: return -EINVAL; } if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ state->AS_Data.f_out = if_mid; state->AS_Data.f_out_bw = ch_bw + 750000; status = MT2063_SetReceiverMode(state, rcvr_mode); if (status < 0) return status; dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", params->frequency, ch_bw, pict2chanb_vsb); status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2)))); if (status < 0) return status; state->frequency = params->frequency; return 0; } /* * As defined on EN 300 429, the DVB-C roll-off factor is 0.15. * So, the amount of the needed bandwidth is given by: * Bw = Symbol_rate * (1 + 0.15) * As such, the maximum symbol rate supported by 6 MHz is given by: * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds */ #define MAX_SYMBOL_RATE_6MHz 5217391 static int mt2063_set_params(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct mt2063_state *state = fe->tuner_priv; int status; s32 pict_car; s32 pict2chanb_vsb; s32 ch_bw; s32 if_mid; s32 rcvr_mode; if (!state->init) { status = mt2063_init(fe); if (status < 0) return status; } dprintk(2, "\n"); if (c->bandwidth_hz == 0) return -EINVAL; if (c->bandwidth_hz <= 6000000) ch_bw = 6000000; else if (c->bandwidth_hz <= 7000000) ch_bw = 7000000; else ch_bw = 8000000; switch (c->delivery_system) { case SYS_DVBT: rcvr_mode = MT2063_OFFAIR_COFDM; pict_car = 36125000; pict2chanb_vsb = -(ch_bw / 2); break; case SYS_DVBC_ANNEX_A: case SYS_DVBC_ANNEX_C: rcvr_mode = MT2063_CABLE_QAM; pict_car = 36125000; pict2chanb_vsb = -(ch_bw / 2); break; default: return -EINVAL; } if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ state->AS_Data.f_out = if_mid; state->AS_Data.f_out_bw = ch_bw + 750000; status = MT2063_SetReceiverMode(state, rcvr_mode); if (status < 0) return status; dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", c->frequency, ch_bw, pict2chanb_vsb); status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2)))); if (status < 0) return status; state->frequency = c->frequency; return 0; } static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq) { struct mt2063_state *state = fe->tuner_priv; dprintk(2, "\n"); if (!state->init) return -ENODEV; *freq = state->AS_Data.f_out; dprintk(1, "IF frequency: %d\n", *freq); return 0; } static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw) { struct mt2063_state *state = fe->tuner_priv; dprintk(2, "\n"); if (!state->init) return -ENODEV; *bw = state->AS_Data.f_out_bw - 750000; dprintk(1, "bandwidth: %d\n", *bw); return 0; } static const struct dvb_tuner_ops mt2063_ops = { .info = { .name = "MT2063 Silicon Tuner", .frequency_min_hz = 45 * MHz, .frequency_max_hz = 865 * MHz, }, .init = mt2063_init, .sleep = MT2063_Sleep, .get_status = mt2063_get_status, .set_analog_params = mt2063_set_analog_params, .set_params = mt2063_set_params, .get_if_frequency = mt2063_get_if_frequency, .get_bandwidth = mt2063_get_bandwidth, .release = mt2063_release, }; struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe, struct mt2063_config *config, struct i2c_adapter *i2c) { struct mt2063_state *state = NULL; dprintk(2, "\n"); state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL); if (!state) return NULL; state->config = config; state->i2c = i2c; state->frontend = fe; state->reference = config->refclock / 1000; /* kHz */ fe->tuner_priv = state; fe->ops.tuner_ops = mt2063_ops; printk(KERN_INFO "%s: Attaching MT2063\n", __func__); return fe; } EXPORT_SYMBOL_GPL(mt2063_attach); #if 0 /* * Ancillary routines visible outside mt2063 * FIXME: Remove them in favor of using standard tuner callbacks */ static int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe) { struct mt2063_state *state = fe->tuner_priv; int err = 0; dprintk(2, "\n"); err = MT2063_SoftwareShutdown(state, 1); if (err < 0) printk(KERN_ERR "%s: Couldn't shutdown\n", __func__); return err; } static int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe) { struct mt2063_state *state = fe->tuner_priv; int err = 0; dprintk(2, "\n"); err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); if (err < 0) printk(KERN_ERR "%s: Invalid parameter\n", __func__); return err; } #endif MODULE_AUTHOR("Mauro Carvalho Chehab"); MODULE_DESCRIPTION("MT2063 Silicon tuner"); MODULE_LICENSE("GPL"); |