// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2023 Intel Corporation. All rights reserved.
* Intel Visual Sensing Controller CSI Linux driver
*/
/*
* To set ownership of CSI-2 link and to configure CSI-2 link, there
* are specific commands, which are sent via MEI protocol. The send
* command function uses "completion" as a synchronization mechanism.
* The response for command is received via a mei callback which wakes
* up the caller. There can be only one outstanding command at a time.
*/
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/mei_cl_bus.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/units.h>
#include <linux/uuid.h>
#include <linux/workqueue.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#define MEI_CSI_ENTITY_NAME "Intel IVSC CSI"
#define MEI_CSI_LINK_FREQ_400MHZ 400000000ULL
/* the 5s used here is based on experiment */
#define CSI_CMD_TIMEOUT (5 * HZ)
/* to setup CSI-2 link an extra delay needed and determined experimentally */
#define CSI_FW_READY_DELAY_MS 100
/* link frequency unit is 100kHz */
#define CSI_LINK_FREQ(x) ((u32)(div_u64(x, 100 * HZ_PER_KHZ)))
/*
* identify the command id supported by firmware
* IPC, as well as the privacy notification id
* used when processing privacy event.
*/
enum csi_cmd_id {
/* used to set csi ownership */
CSI_SET_OWNER = 0,
/* used to configure CSI-2 link */
CSI_SET_CONF = 2,
/* privacy notification id used when privacy state changes */
CSI_PRIVACY_NOTIF = 6,
};
/* CSI-2 link ownership definition */
enum csi_link_owner {
CSI_LINK_IVSC,
CSI_LINK_HOST,
};
/* privacy status definition */
enum ivsc_privacy_status {
CSI_PRIVACY_OFF,
CSI_PRIVACY_ON,
CSI_PRIVACY_MAX,
};
enum csi_pads {
CSI_PAD_SINK,
CSI_PAD_SOURCE,
CSI_NUM_PADS
};
/* configuration of the CSI-2 link between host and IVSC */
struct csi_link_cfg {
/* number of data lanes used on the CSI-2 link */
u32 nr_of_lanes;
/* frequency of the CSI-2 link */
u32 link_freq;
/* for future use */
u32 rsvd[2];
} __packed;
/* CSI command structure */
struct csi_cmd {
u32 cmd_id;
union _cmd_param {
u32 param;
struct csi_link_cfg conf;
} param;
} __packed;
/* CSI notification structure */
struct csi_notif {
u32 cmd_id;
int status;
union _resp_cont {
u32 cont;
struct csi_link_cfg conf;
} cont;
} __packed;
struct mei_csi {
struct mei_cl_device *cldev;
/* command response */
struct csi_notif cmd_response;
/* used to wait for command response from firmware */
struct completion cmd_completion;
/* protect command download */
struct mutex lock;
struct v4l2_subdev subdev;
struct v4l2_subdev *remote;
struct v4l2_async_notifier notifier;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *freq_ctrl;
struct v4l2_ctrl *privacy_ctrl;
unsigned int remote_pad;
/* start streaming or not */
int streaming;
struct media_pad pads[CSI_NUM_PADS];
/* number of data lanes used on the CSI-2 link */
u32 nr_of_lanes;
/* frequency of the CSI-2 link */
u64 link_freq;
/* privacy status */
enum ivsc_privacy_status status;
};
static const struct v4l2_mbus_framefmt mei_csi_format_mbus_default = {
.width = 1,
.height = 1,
.code = MEDIA_BUS_FMT_Y8_1X8,
.field = V4L2_FIELD_NONE,
};
static s64 link_freq_menu_items[] = {
MEI_CSI_LINK_FREQ_400MHZ
};
static inline struct mei_csi *notifier_to_csi(struct v4l2_async_notifier *n)
{
return container_of(n, struct mei_csi, notifier);
}
static inline struct mei_csi *sd_to_csi(struct v4l2_subdev *sd)
{
return container_of(sd, struct mei_csi, subdev);
}
static inline struct mei_csi *ctrl_to_csi(struct v4l2_ctrl *ctrl)
{
return container_of(ctrl->handler, struct mei_csi, ctrl_handler);
}
/* send a command to firmware and mutex must be held by caller */
static int mei_csi_send(struct mei_csi *csi, u8 *buf, size_t len)
{
struct csi_cmd *cmd = (struct csi_cmd *)buf;
int ret;
reinit_completion(&csi->cmd_completion);
ret = mei_cldev_send(csi->cldev, buf, len);
if (ret < 0)
goto out;
ret = wait_for_completion_killable_timeout(&csi->cmd_completion,
CSI_CMD_TIMEOUT);
if (ret < 0) {
goto out;
} else if (!ret) {
ret = -ETIMEDOUT;
goto out;
}
/* command response status */
ret = csi->cmd_response.status;
if (ret) {
ret = -EINVAL;
goto out;
}
if (csi->cmd_response.cmd_id != cmd->cmd_id)
ret = -EINVAL;
out:
return ret;
}
/* set CSI-2 link ownership */
static int csi_set_link_owner(struct mei_csi *csi, enum csi_link_owner owner)
{
struct csi_cmd cmd = { 0 };
size_t cmd_size;
int ret;
cmd.cmd_id = CSI_SET_OWNER;
cmd.param.param = owner;
cmd_size = sizeof(cmd.cmd_id) + sizeof(cmd.param.param);
mutex_lock(&csi->lock);
ret = mei_csi_send(csi, (u8 *)&cmd, cmd_size);
mutex_unlock(&csi->lock);
return ret;
}
/* configure CSI-2 link between host and IVSC */
static int csi_set_link_cfg(struct mei_csi *csi)
{
struct csi_cmd cmd = { 0 };
size_t cmd_size;
int ret;
cmd.cmd_id = CSI_SET_CONF;
cmd.param.conf.nr_of_lanes = csi->nr_of_lanes;
cmd.param.conf.link_freq = CSI_LINK_FREQ(csi->link_freq);
cmd_size = sizeof(cmd.cmd_id) + sizeof(cmd.param.conf);
mutex_lock(&csi->lock);
ret = mei_csi_send(csi, (u8 *)&cmd, cmd_size);
/*
* wait configuration ready if download success. placing
* delay under mutex is to make sure current command flow
* completed before starting a possible new one.
*/
if (!ret)
msleep(CSI_FW_READY_DELAY_MS);
mutex_unlock(&csi->lock);
return ret;
}
/* callback for receive */
static void mei_csi_rx(struct mei_cl_device *cldev)
{
struct mei_csi *csi = mei_cldev_get_drvdata(cldev);
struct csi_notif notif = { 0 };
int ret;
ret = mei_cldev_recv(cldev, (u8 *)¬if, sizeof(notif));
if (ret < 0) {
dev_err(&cldev->dev, "recv error: %d\n", ret);
return;
}
switch (notif.cmd_id) {
case CSI_PRIVACY_NOTIF:
if (notif.cont.cont < CSI_PRIVACY_MAX) {
csi->status = notif.cont.cont;
v4l2_ctrl_s_ctrl(csi->privacy_ctrl, csi->status);
}
break;
case CSI_SET_OWNER:
case CSI_SET_CONF:
memcpy(&csi->cmd_response, ¬if, ret);
complete(&csi->cmd_completion);
break;
default:
break;
}
}
static int mei_csi_set_stream(struct v4l2_subdev *sd, int enable)
{
struct mei_csi *csi = sd_to_csi(sd);
s64 freq;
int ret;
if (enable && csi->streaming == 0) {
freq = v4l2_get_link_freq(csi->remote->ctrl_handler, 0, 0);
if (freq < 0) {
dev_err(&csi->cldev->dev,
"error %lld, invalid link_freq\n", freq);
ret = freq;
goto err;
}
csi->link_freq = freq;
/* switch CSI-2 link to host */
ret = csi_set_link_owner(csi, CSI_LINK_HOST);
if (ret < 0)
goto err;
/* configure CSI-2 link */
ret = csi_set_link_cfg(csi);
if (ret < 0)
goto err_switch;
ret = v4l2_subdev_call(csi->remote, video, s_stream, 1);
if (ret)
goto err_switch;
} else if (!enable && csi->streaming == 1) {
v4l2_subdev_call(csi->remote, video, s_stream, 0);
/* switch CSI-2 link to IVSC */
ret = csi_set_link_owner(csi, CSI_LINK_IVSC);
if (ret < 0)
dev_warn(&csi->cldev->dev,
"failed to switch CSI2 link: %d\n", ret);
}
csi->streaming = enable;
return 0;
err_switch:
csi_set_link_owner(csi, CSI_LINK_IVSC);
err:
return ret;
}
static int mei_csi_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
struct v4l2_mbus_framefmt *mbusformat;
unsigned int i;
for (i = 0; i < sd->entity.num_pads; i++) {
mbusformat = v4l2_subdev_state_get_format(sd_state, i);
*mbusformat = mei_csi_format_mbus_default;
}
return 0;
}
static int mei_csi_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct v4l2_mbus_framefmt *source_fmt;
struct v4l2_mbus_framefmt *sink_fmt;
sink_fmt = v4l2_subdev_state_get_format(sd_state, CSI_PAD_SINK);
source_fmt = v4l2_subdev_state_get_format(sd_state, CSI_PAD_SOURCE);
if (format->pad) {
*source_fmt = *sink_fmt;
return 0;
}
v4l_bound_align_image(&format->format.width, 1, 65536, 0,
&format->format.height, 1, 65536, 0, 0);
switch (format->format.code) {
case MEDIA_BUS_FMT_RGB444_1X12:
case MEDIA_BUS_FMT_RGB444_2X8_PADHI_BE:
case MEDIA_BUS_FMT_RGB444_2X8_PADHI_LE:
case MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE:
case MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE:
case MEDIA_BUS_FMT_RGB565_1X16:
case MEDIA_BUS_FMT_BGR565_2X8_BE:
case MEDIA_BUS_FMT_BGR565_2X8_LE:
case MEDIA_BUS_FMT_RGB565_2X8_BE:
case MEDIA_BUS_FMT_RGB565_2X8_LE:
case MEDIA_BUS_FMT_RGB666_1X18:
case MEDIA_BUS_FMT_RBG888_1X24:
case MEDIA_BUS_FMT_RGB666_1X24_CPADHI:
case MEDIA_BUS_FMT_BGR888_1X24:
case MEDIA_BUS_FMT_GBR888_1X24:
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_RGB888_2X12_BE:
case MEDIA_BUS_FMT_RGB888_2X12_LE:
case MEDIA_BUS_FMT_ARGB8888_1X32:
case MEDIA_BUS_FMT_RGB888_1X32_PADHI:
case MEDIA_BUS_FMT_RGB101010_1X30:
case MEDIA_BUS_FMT_RGB121212_1X36:
case MEDIA_BUS_FMT_RGB161616_1X48:
case MEDIA_BUS_FMT_Y8_1X8:
case MEDIA_BUS_FMT_UV8_1X8:
case MEDIA_BUS_FMT_UYVY8_1_5X8:
case MEDIA_BUS_FMT_VYUY8_1_5X8:
case MEDIA_BUS_FMT_YUYV8_1_5X8:
case MEDIA_BUS_FMT_YVYU8_1_5X8:
case MEDIA_BUS_FMT_UYVY8_2X8:
case MEDIA_BUS_FMT_VYUY8_2X8:
case MEDIA_BUS_FMT_YUYV8_2X8:
case MEDIA_BUS_FMT_YVYU8_2X8:
case MEDIA_BUS_FMT_Y10_1X10:
case MEDIA_BUS_FMT_UYVY10_2X10:
case MEDIA_BUS_FMT_VYUY10_2X10:
case MEDIA_BUS_FMT_YUYV10_2X10:
case MEDIA_BUS_FMT_YVYU10_2X10:
case MEDIA_BUS_FMT_Y12_1X12:
case MEDIA_BUS_FMT_UYVY12_2X12:
case MEDIA_BUS_FMT_VYUY12_2X12:
case MEDIA_BUS_FMT_YUYV12_2X12:
case MEDIA_BUS_FMT_YVYU12_2X12:
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_VYUY8_1X16:
case MEDIA_BUS_FMT_YUYV8_1X16:
case MEDIA_BUS_FMT_YVYU8_1X16:
case MEDIA_BUS_FMT_YDYUYDYV8_1X16:
case MEDIA_BUS_FMT_UYVY10_1X20:
case MEDIA_BUS_FMT_VYUY10_1X20:
case MEDIA_BUS_FMT_YUYV10_1X20:
case MEDIA_BUS_FMT_YVYU10_1X20:
case MEDIA_BUS_FMT_VUY8_1X24:
case MEDIA_BUS_FMT_YUV8_1X24:
case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
case MEDIA_BUS_FMT_UYVY12_1X24:
case MEDIA_BUS_FMT_VYUY12_1X24:
case MEDIA_BUS_FMT_YUYV12_1X24:
case MEDIA_BUS_FMT_YVYU12_1X24:
case MEDIA_BUS_FMT_YUV10_1X30:
case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
case MEDIA_BUS_FMT_AYUV8_1X32:
case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_YUV16_1X48:
case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
case MEDIA_BUS_FMT_JPEG_1X8:
case MEDIA_BUS_FMT_AHSV8888_1X32:
case MEDIA_BUS_FMT_SBGGR8_1X8:
case MEDIA_BUS_FMT_SGBRG8_1X8:
case MEDIA_BUS_FMT_SGRBG8_1X8:
case MEDIA_BUS_FMT_SRGGB8_1X8:
case MEDIA_BUS_FMT_SBGGR10_1X10:
case MEDIA_BUS_FMT_SGBRG10_1X10:
case MEDIA_BUS_FMT_SGRBG10_1X10:
case MEDIA_BUS_FMT_SRGGB10_1X10:
case MEDIA_BUS_FMT_SBGGR12_1X12:
case MEDIA_BUS_FMT_SGBRG12_1X12:
case MEDIA_BUS_FMT_SGRBG12_1X12:
case MEDIA_BUS_FMT_SRGGB12_1X12:
case MEDIA_BUS_FMT_SBGGR14_1X14:
case MEDIA_BUS_FMT_SGBRG14_1X14:
case MEDIA_BUS_FMT_SGRBG14_1X14:
case MEDIA_BUS_FMT_SRGGB14_1X14:
case MEDIA_BUS_FMT_SBGGR16_1X16:
case MEDIA_BUS_FMT_SGBRG16_1X16:
case MEDIA_BUS_FMT_SGRBG16_1X16:
case MEDIA_BUS_FMT_SRGGB16_1X16:
break;
default:
format->format.code = MEDIA_BUS_FMT_Y8_1X8;
break;
}
if (format->format.field == V4L2_FIELD_ANY)
format->format.field = V4L2_FIELD_NONE;
*sink_fmt = format->format;
*source_fmt = *sink_fmt;
return 0;
}
static int mei_csi_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct mei_csi *csi = ctrl_to_csi(ctrl);
s64 freq;
if (ctrl->id == V4L2_CID_LINK_FREQ) {
if (!csi->remote)
return -EINVAL;
freq = v4l2_get_link_freq(csi->remote->ctrl_handler, 0, 0);
if (freq < 0) {
dev_err(&csi->cldev->dev,
"error %lld, invalid link_freq\n", freq);
return -EINVAL;
}
link_freq_menu_items[0] = freq;
ctrl->val = 0;
return 0;
}
return -EINVAL;
}
static const struct v4l2_ctrl_ops mei_csi_ctrl_ops = {
.g_volatile_ctrl = mei_csi_g_volatile_ctrl,
};
static const struct v4l2_subdev_video_ops mei_csi_video_ops = {
.s_stream = mei_csi_set_stream,
};
static const struct v4l2_subdev_pad_ops mei_csi_pad_ops = {
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = mei_csi_set_fmt,
};
static const struct v4l2_subdev_ops mei_csi_subdev_ops = {
.video = &mei_csi_video_ops,
.pad = &mei_csi_pad_ops,
};
static const struct v4l2_subdev_internal_ops mei_csi_internal_ops = {
.init_state = mei_csi_init_state,
};
static const struct media_entity_operations mei_csi_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static int mei_csi_notify_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_connection *asd)
{
struct mei_csi *csi = notifier_to_csi(notifier);
int pad;
pad = media_entity_get_fwnode_pad(&subdev->entity, asd->match.fwnode,
MEDIA_PAD_FL_SOURCE);
if (pad < 0)
return pad;
csi->remote = subdev;
csi->remote_pad = pad;
return media_create_pad_link(&subdev->entity, pad,
&csi->subdev.entity, CSI_PAD_SINK,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
}
static void mei_csi_notify_unbind(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_connection *asd)
{
struct mei_csi *csi = notifier_to_csi(notifier);
csi->remote = NULL;
}
static const struct v4l2_async_notifier_operations mei_csi_notify_ops = {
.bound = mei_csi_notify_bound,
.unbind = mei_csi_notify_unbind,
};
static int mei_csi_init_controls(struct mei_csi *csi)
{
u32 max;
int ret;
ret = v4l2_ctrl_handler_init(&csi->ctrl_handler, 2);
if (ret)
return ret;
csi->ctrl_handler.lock = &csi->lock;
max = ARRAY_SIZE(link_freq_menu_items) - 1;
csi->freq_ctrl = v4l2_ctrl_new_int_menu(&csi->ctrl_handler,
&mei_csi_ctrl_ops,
V4L2_CID_LINK_FREQ,
max,
0,
link_freq_menu_items);
if (csi->freq_ctrl)
csi->freq_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY |
V4L2_CTRL_FLAG_VOLATILE;
csi->privacy_ctrl = v4l2_ctrl_new_std(&csi->ctrl_handler, NULL,
V4L2_CID_PRIVACY, 0, 1, 1, 0);
if (csi->privacy_ctrl)
csi->privacy_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
if (csi->ctrl_handler.error)
return csi->ctrl_handler.error;
csi->subdev.ctrl_handler = &csi->ctrl_handler;
return 0;
}
static int mei_csi_parse_firmware(struct mei_csi *csi)
{
struct v4l2_fwnode_endpoint v4l2_ep = {
.bus_type = V4L2_MBUS_CSI2_DPHY,
};
struct device *dev = &csi->cldev->dev;
struct v4l2_async_connection *asd;
struct fwnode_handle *sink_ep, *source_ep;
int ret;
sink_ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(dev), 0, 0, 0);
if (!sink_ep) {
dev_err(dev, "can't obtain sink endpoint\n");
return -EINVAL;
}
v4l2_async_subdev_nf_init(&csi->notifier, &csi->subdev);
csi->notifier.ops = &mei_csi_notify_ops;
ret = v4l2_fwnode_endpoint_parse(sink_ep, &v4l2_ep);
if (ret) {
dev_err(dev, "could not parse v4l2 sink endpoint\n");
goto out_nf_cleanup;
}
csi->nr_of_lanes = v4l2_ep.bus.mipi_csi2.num_data_lanes;
source_ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(dev), 1, 0, 0);
if (!source_ep) {
ret = -ENOTCONN;
dev_err(dev, "can't obtain source endpoint\n");
goto out_nf_cleanup;
}
ret = v4l2_fwnode_endpoint_parse(source_ep, &v4l2_ep);
fwnode_handle_put(source_ep);
if (ret) {
dev_err(dev, "could not parse v4l2 source endpoint\n");
goto out_nf_cleanup;
}
if (csi->nr_of_lanes != v4l2_ep.bus.mipi_csi2.num_data_lanes) {
ret = -EINVAL;
dev_err(dev,
"the number of lanes does not match (%u vs. %u)\n",
csi->nr_of_lanes, v4l2_ep.bus.mipi_csi2.num_data_lanes);
goto out_nf_cleanup;
}
asd = v4l2_async_nf_add_fwnode_remote(&csi->notifier, sink_ep,
struct v4l2_async_connection);
if (IS_ERR(asd)) {
ret = PTR_ERR(asd);
goto out_nf_cleanup;
}
ret = v4l2_async_nf_register(&csi->notifier);
if (ret)
goto out_nf_cleanup;
fwnode_handle_put(sink_ep);
return 0;
out_nf_cleanup:
v4l2_async_nf_cleanup(&csi->notifier);
fwnode_handle_put(sink_ep);
return ret;
}
static int mei_csi_probe(struct mei_cl_device *cldev,
const struct mei_cl_device_id *id)
{
struct device *dev = &cldev->dev;
struct mei_csi *csi;
int ret;
if (!dev_fwnode(dev))
return -EPROBE_DEFER;
csi = devm_kzalloc(dev, sizeof(struct mei_csi), GFP_KERNEL);
if (!csi)
return -ENOMEM;
csi->cldev = cldev;
mutex_init(&csi->lock);
init_completion(&csi->cmd_completion);
mei_cldev_set_drvdata(cldev, csi);
ret = mei_cldev_enable(cldev);
if (ret < 0) {
dev_err(dev, "mei_cldev_enable failed: %d\n", ret);
goto destroy_mutex;
}
ret = mei_cldev_register_rx_cb(cldev, mei_csi_rx);
if (ret) {
dev_err(dev, "event cb registration failed: %d\n", ret);
goto err_disable;
}
ret = mei_csi_parse_firmware(csi);
if (ret)
goto err_disable;
csi->subdev.dev = &cldev->dev;
csi->subdev.state_lock = &csi->lock;
v4l2_subdev_init(&csi->subdev, &mei_csi_subdev_ops);
csi->subdev.internal_ops = &mei_csi_internal_ops;
v4l2_set_subdevdata(&csi->subdev, csi);
csi->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE |
V4L2_SUBDEV_FL_HAS_EVENTS;
csi->subdev.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
csi->subdev.entity.ops = &mei_csi_entity_ops;
snprintf(csi->subdev.name, sizeof(csi->subdev.name),
MEI_CSI_ENTITY_NAME);
ret = mei_csi_init_controls(csi);
if (ret)
goto err_ctrl_handler;
csi->pads[CSI_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
csi->pads[CSI_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
ret = media_entity_pads_init(&csi->subdev.entity, CSI_NUM_PADS,
csi->pads);
if (ret)
goto err_ctrl_handler;
ret = v4l2_subdev_init_finalize(&csi->subdev);
if (ret < 0)
goto err_entity;
ret = v4l2_async_register_subdev(&csi->subdev);
if (ret < 0)
goto err_subdev;
pm_runtime_enable(&cldev->dev);
return 0;
err_subdev:
v4l2_subdev_cleanup(&csi->subdev);
err_entity:
media_entity_cleanup(&csi->subdev.entity);
err_ctrl_handler:
v4l2_ctrl_handler_free(&csi->ctrl_handler);
v4l2_async_nf_unregister(&csi->notifier);
v4l2_async_nf_cleanup(&csi->notifier);
err_disable:
mei_cldev_disable(cldev);
destroy_mutex:
mutex_destroy(&csi->lock);
return ret;
}
static void mei_csi_remove(struct mei_cl_device *cldev)
{
struct mei_csi *csi = mei_cldev_get_drvdata(cldev);
v4l2_async_nf_unregister(&csi->notifier);
v4l2_async_nf_cleanup(&csi->notifier);
v4l2_ctrl_handler_free(&csi->ctrl_handler);
v4l2_async_unregister_subdev(&csi->subdev);
v4l2_subdev_cleanup(&csi->subdev);
media_entity_cleanup(&csi->subdev.entity);
pm_runtime_disable(&cldev->dev);
mutex_destroy(&csi->lock);
}
#define MEI_CSI_UUID UUID_LE(0x92335FCF, 0x3203, 0x4472, \
0xAF, 0x93, 0x7b, 0x44, 0x53, 0xAC, 0x29, 0xDA)
static const struct mei_cl_device_id mei_csi_tbl[] = {
{ .uuid = MEI_CSI_UUID, .version = MEI_CL_VERSION_ANY },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(mei, mei_csi_tbl);
static struct mei_cl_driver mei_csi_driver = {
.id_table = mei_csi_tbl,
.name = KBUILD_MODNAME,
.probe = mei_csi_probe,
.remove = mei_csi_remove,
};
module_mei_cl_driver(mei_csi_driver);
MODULE_AUTHOR("Wentong Wu <wentong.wu@intel.com>");
MODULE_AUTHOR("Zhifeng Wang <zhifeng.wang@intel.com>");
MODULE_DESCRIPTION("Device driver for IVSC CSI");
MODULE_LICENSE("GPL");