Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | /* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (c) 2013-2021, Arm Limited. * * Adapted from the original at: * https://github.com/ARM-software/optimized-routines/blob/98e4d6a5c13c8e54/string/aarch64/strlen.S */ #include <linux/linkage.h> #include <asm/assembler.h> #include <asm/mte-def.h> /* Assumptions: * * ARMv8-a, AArch64, unaligned accesses, min page size 4k. */ #define L(label) .L ## label /* Arguments and results. */ #define srcin x0 #define len x0 /* Locals and temporaries. */ #define src x1 #define data1 x2 #define data2 x3 #define has_nul1 x4 #define has_nul2 x5 #define tmp1 x4 #define tmp2 x5 #define tmp3 x6 #define tmp4 x7 #define zeroones x8 /* NUL detection works on the principle that (X - 1) & (~X) & 0x80 (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and can be done in parallel across the entire word. A faster check (X - 1) & 0x80 is zero for non-NUL ASCII characters, but gives false hits for characters 129..255. */ #define REP8_01 0x0101010101010101 #define REP8_7f 0x7f7f7f7f7f7f7f7f #define REP8_80 0x8080808080808080 /* * When KASAN_HW_TAGS is in use, memory is checked at MTE_GRANULE_SIZE * (16-byte) granularity, and we must ensure that no access straddles this * alignment boundary. */ #ifdef CONFIG_KASAN_HW_TAGS #define MIN_PAGE_SIZE MTE_GRANULE_SIZE #else #define MIN_PAGE_SIZE 4096 #endif /* Since strings are short on average, we check the first 16 bytes of the string for a NUL character. In order to do an unaligned ldp safely we have to do a page cross check first. If there is a NUL byte we calculate the length from the 2 8-byte words using conditional select to reduce branch mispredictions (it is unlikely strlen will be repeatedly called on strings with the same length). If the string is longer than 16 bytes, we align src so don't need further page cross checks, and process 32 bytes per iteration using the fast NUL check. If we encounter non-ASCII characters, fallback to a second loop using the full NUL check. If the page cross check fails, we read 16 bytes from an aligned address, remove any characters before the string, and continue in the main loop using aligned loads. Since strings crossing a page in the first 16 bytes are rare (probability of 16/MIN_PAGE_SIZE ~= 0.4%), this case does not need to be optimized. AArch64 systems have a minimum page size of 4k. We don't bother checking for larger page sizes - the cost of setting up the correct page size is just not worth the extra gain from a small reduction in the cases taking the slow path. Note that we only care about whether the first fetch, which may be misaligned, crosses a page boundary. */ SYM_FUNC_START(__pi_strlen) and tmp1, srcin, MIN_PAGE_SIZE - 1 mov zeroones, REP8_01 cmp tmp1, MIN_PAGE_SIZE - 16 b.gt L(page_cross) ldp data1, data2, [srcin] #ifdef __AARCH64EB__ /* For big-endian, carry propagation (if the final byte in the string is 0x01) means we cannot use has_nul1/2 directly. Since we expect strings to be small and early-exit, byte-swap the data now so has_null1/2 will be correct. */ rev data1, data1 rev data2, data2 #endif sub tmp1, data1, zeroones orr tmp2, data1, REP8_7f sub tmp3, data2, zeroones orr tmp4, data2, REP8_7f bics has_nul1, tmp1, tmp2 bic has_nul2, tmp3, tmp4 ccmp has_nul2, 0, 0, eq beq L(main_loop_entry) /* Enter with C = has_nul1 == 0. */ csel has_nul1, has_nul1, has_nul2, cc mov len, 8 rev has_nul1, has_nul1 clz tmp1, has_nul1 csel len, xzr, len, cc add len, len, tmp1, lsr 3 ret /* The inner loop processes 32 bytes per iteration and uses the fast NUL check. If we encounter non-ASCII characters, use a second loop with the accurate NUL check. */ .p2align 4 L(main_loop_entry): bic src, srcin, 15 sub src, src, 16 L(main_loop): ldp data1, data2, [src, 32]! L(page_cross_entry): sub tmp1, data1, zeroones sub tmp3, data2, zeroones orr tmp2, tmp1, tmp3 tst tmp2, zeroones, lsl 7 bne 1f ldp data1, data2, [src, 16] sub tmp1, data1, zeroones sub tmp3, data2, zeroones orr tmp2, tmp1, tmp3 tst tmp2, zeroones, lsl 7 beq L(main_loop) add src, src, 16 1: /* The fast check failed, so do the slower, accurate NUL check. */ orr tmp2, data1, REP8_7f orr tmp4, data2, REP8_7f bics has_nul1, tmp1, tmp2 bic has_nul2, tmp3, tmp4 ccmp has_nul2, 0, 0, eq beq L(nonascii_loop) /* Enter with C = has_nul1 == 0. */ L(tail): #ifdef __AARCH64EB__ /* For big-endian, carry propagation (if the final byte in the string is 0x01) means we cannot use has_nul1/2 directly. The easiest way to get the correct byte is to byte-swap the data and calculate the syndrome a second time. */ csel data1, data1, data2, cc rev data1, data1 sub tmp1, data1, zeroones orr tmp2, data1, REP8_7f bic has_nul1, tmp1, tmp2 #else csel has_nul1, has_nul1, has_nul2, cc #endif sub len, src, srcin rev has_nul1, has_nul1 add tmp2, len, 8 clz tmp1, has_nul1 csel len, len, tmp2, cc add len, len, tmp1, lsr 3 ret L(nonascii_loop): ldp data1, data2, [src, 16]! sub tmp1, data1, zeroones orr tmp2, data1, REP8_7f sub tmp3, data2, zeroones orr tmp4, data2, REP8_7f bics has_nul1, tmp1, tmp2 bic has_nul2, tmp3, tmp4 ccmp has_nul2, 0, 0, eq bne L(tail) ldp data1, data2, [src, 16]! sub tmp1, data1, zeroones orr tmp2, data1, REP8_7f sub tmp3, data2, zeroones orr tmp4, data2, REP8_7f bics has_nul1, tmp1, tmp2 bic has_nul2, tmp3, tmp4 ccmp has_nul2, 0, 0, eq beq L(nonascii_loop) b L(tail) /* Load 16 bytes from [srcin & ~15] and force the bytes that precede srcin to 0x7f, so we ignore any NUL bytes before the string. Then continue in the aligned loop. */ L(page_cross): bic src, srcin, 15 ldp data1, data2, [src] lsl tmp1, srcin, 3 mov tmp4, -1 #ifdef __AARCH64EB__ /* Big-endian. Early bytes are at MSB. */ lsr tmp1, tmp4, tmp1 /* Shift (tmp1 & 63). */ #else /* Little-endian. Early bytes are at LSB. */ lsl tmp1, tmp4, tmp1 /* Shift (tmp1 & 63). */ #endif orr tmp1, tmp1, REP8_80 orn data1, data1, tmp1 orn tmp2, data2, tmp1 tst srcin, 8 csel data1, data1, tmp4, eq csel data2, data2, tmp2, eq b L(page_cross_entry) SYM_FUNC_END(__pi_strlen) SYM_FUNC_ALIAS_WEAK(strlen, __pi_strlen) EXPORT_SYMBOL_NOKASAN(strlen) |