Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "dm_services.h"

#include "core_types.h"

#include "reg_helper.h"
#include "dcn10_dpp.h"
#include "basics/conversion.h"


#define NUM_PHASES    64
#define HORZ_MAX_TAPS 8
#define VERT_MAX_TAPS 8

#define BLACK_OFFSET_RGB_Y 0x0
#define BLACK_OFFSET_CBCR  0x8000


#define REG(reg)\
	dpp->tf_regs->reg

#define CTX \
	dpp->base.ctx

#undef FN
#define FN(reg_name, field_name) \
	dpp->tf_shift->field_name, dpp->tf_mask->field_name

enum dcn10_coef_filter_type_sel {
	SCL_COEF_LUMA_VERT_FILTER = 0,
	SCL_COEF_LUMA_HORZ_FILTER = 1,
	SCL_COEF_CHROMA_VERT_FILTER = 2,
	SCL_COEF_CHROMA_HORZ_FILTER = 3,
	SCL_COEF_ALPHA_VERT_FILTER = 4,
	SCL_COEF_ALPHA_HORZ_FILTER = 5
};

enum dscl_autocal_mode {
	AUTOCAL_MODE_OFF = 0,

	/* Autocal calculate the scaling ratio and initial phase and the
	 * DSCL_MODE_SEL must be set to 1
	 */
	AUTOCAL_MODE_AUTOSCALE = 1,
	/* Autocal perform auto centering without replication and the
	 * DSCL_MODE_SEL must be set to 0
	 */
	AUTOCAL_MODE_AUTOCENTER = 2,
	/* Autocal perform auto centering and auto replication and the
	 * DSCL_MODE_SEL must be set to 0
	 */
	AUTOCAL_MODE_AUTOREPLICATE = 3
};

enum dscl_mode_sel {
	DSCL_MODE_SCALING_444_BYPASS = 0,
	DSCL_MODE_SCALING_444_RGB_ENABLE = 1,
	DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2,
	DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3,
	DSCL_MODE_SCALING_420_LUMA_BYPASS = 4,
	DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5,
	DSCL_MODE_DSCL_BYPASS = 6
};

static int dpp1_dscl_get_pixel_depth_val(enum lb_pixel_depth depth)
{
	if (depth == LB_PIXEL_DEPTH_30BPP)
		return 0; /* 10 bpc */
	else if (depth == LB_PIXEL_DEPTH_24BPP)
		return 1; /* 8 bpc */
	else if (depth == LB_PIXEL_DEPTH_18BPP)
		return 2; /* 6 bpc */
	else if (depth == LB_PIXEL_DEPTH_36BPP)
		return 3; /* 12 bpc */
	else {
		ASSERT(0);
		return -1; /* Unsupported */
	}
}

static bool dpp1_dscl_is_video_format(enum pixel_format format)
{
	if (format >= PIXEL_FORMAT_VIDEO_BEGIN
			&& format <= PIXEL_FORMAT_VIDEO_END)
		return true;
	else
		return false;
}

static bool dpp1_dscl_is_420_format(enum pixel_format format)
{
	if (format == PIXEL_FORMAT_420BPP8 ||
			format == PIXEL_FORMAT_420BPP10)
		return true;
	else
		return false;
}

static enum dscl_mode_sel dpp1_dscl_get_dscl_mode(
		struct dpp *dpp_base,
		const struct scaler_data *data,
		bool dbg_always_scale)
{
	const long long one = dc_fixpt_one.value;

	if (dpp_base->caps->dscl_data_proc_format == DSCL_DATA_PRCESSING_FIXED_FORMAT) {
		/* DSCL is processing data in fixed format */
		if (data->format == PIXEL_FORMAT_FP16)
			return DSCL_MODE_DSCL_BYPASS;
	}

	if (data->ratios.horz.value == one
			&& data->ratios.vert.value == one
			&& data->ratios.horz_c.value == one
			&& data->ratios.vert_c.value == one
			&& !dbg_always_scale)
		return DSCL_MODE_SCALING_444_BYPASS;

	if (!dpp1_dscl_is_420_format(data->format)) {
		if (dpp1_dscl_is_video_format(data->format))
			return DSCL_MODE_SCALING_444_YCBCR_ENABLE;
		else
			return DSCL_MODE_SCALING_444_RGB_ENABLE;
	}
	if (data->ratios.horz.value == one && data->ratios.vert.value == one)
		return DSCL_MODE_SCALING_420_LUMA_BYPASS;
	if (data->ratios.horz_c.value == one && data->ratios.vert_c.value == one)
		return DSCL_MODE_SCALING_420_CHROMA_BYPASS;

	return DSCL_MODE_SCALING_420_YCBCR_ENABLE;
}

static void dpp1_power_on_dscl(
	struct dpp *dpp_base,
	bool power_on)
{
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);

	if (dpp->tf_regs->DSCL_MEM_PWR_CTRL) {
		if (power_on) {
			REG_UPDATE(DSCL_MEM_PWR_CTRL, LUT_MEM_PWR_FORCE, 0);
			REG_WAIT(DSCL_MEM_PWR_STATUS, LUT_MEM_PWR_STATE, 0, 1, 5);
		} else {
			if (dpp->base.ctx->dc->debug.enable_mem_low_power.bits.dscl) {
				dpp->base.ctx->dc->optimized_required = true;
				dpp->base.deferred_reg_writes.bits.disable_dscl = true;
			} else {
				REG_UPDATE(DSCL_MEM_PWR_CTRL, LUT_MEM_PWR_FORCE, 3);
			}
		}
	}
}


static void dpp1_dscl_set_lb(
	struct dcn10_dpp *dpp,
	const struct line_buffer_params *lb_params,
	enum lb_memory_config mem_size_config)
{
	uint32_t max_partitions = 63; /* Currently hardcoded on all ASICs before DCN 3.2 */

	/* LB */
	if (dpp->base.caps->dscl_data_proc_format == DSCL_DATA_PRCESSING_FIXED_FORMAT) {
		/* DSCL caps: pixel data processed in fixed format */
		uint32_t pixel_depth = dpp1_dscl_get_pixel_depth_val(lb_params->depth);
		uint32_t dyn_pix_depth = lb_params->dynamic_pixel_depth;

		REG_SET_7(LB_DATA_FORMAT, 0,
			PIXEL_DEPTH, pixel_depth, /* Pixel depth stored in LB */
			PIXEL_EXPAN_MODE, lb_params->pixel_expan_mode, /* Pixel expansion mode */
			PIXEL_REDUCE_MODE, 1, /* Pixel reduction mode: Rounding */
			DYNAMIC_PIXEL_DEPTH, dyn_pix_depth, /* Dynamic expansion pixel depth */
			DITHER_EN, 0, /* Dithering enable: Disabled */
			INTERLEAVE_EN, lb_params->interleave_en, /* Interleave source enable */
			LB_DATA_FORMAT__ALPHA_EN, lb_params->alpha_en); /* Alpha enable */
	} else {
		/* DSCL caps: pixel data processed in float format */
		REG_SET_2(LB_DATA_FORMAT, 0,
			INTERLEAVE_EN, lb_params->interleave_en, /* Interleave source enable */
			LB_DATA_FORMAT__ALPHA_EN, lb_params->alpha_en); /* Alpha enable */
	}

	if (dpp->base.caps->max_lb_partitions == 31)
		max_partitions = 31;

	REG_SET_2(LB_MEMORY_CTRL, 0,
		MEMORY_CONFIG, mem_size_config,
		LB_MAX_PARTITIONS, max_partitions);
}

static const uint16_t *dpp1_dscl_get_filter_coeffs_64p(int taps, struct fixed31_32 ratio)
{
	if (taps == 8)
		return get_filter_8tap_64p(ratio);
	else if (taps == 7)
		return get_filter_7tap_64p(ratio);
	else if (taps == 6)
		return get_filter_6tap_64p(ratio);
	else if (taps == 5)
		return get_filter_5tap_64p(ratio);
	else if (taps == 4)
		return get_filter_4tap_64p(ratio);
	else if (taps == 3)
		return get_filter_3tap_64p(ratio);
	else if (taps == 2)
		return get_filter_2tap_64p();
	else if (taps == 1)
		return NULL;
	else {
		/* should never happen, bug */
		BREAK_TO_DEBUGGER();
		return NULL;
	}
}

static void dpp1_dscl_set_scaler_filter(
		struct dcn10_dpp *dpp,
		uint32_t taps,
		enum dcn10_coef_filter_type_sel filter_type,
		const uint16_t *filter)
{
	const int tap_pairs = (taps + 1) / 2;
	int phase;
	int pair;
	uint16_t odd_coef, even_coef;

	REG_SET_3(SCL_COEF_RAM_TAP_SELECT, 0,
		SCL_COEF_RAM_TAP_PAIR_IDX, 0,
		SCL_COEF_RAM_PHASE, 0,
		SCL_COEF_RAM_FILTER_TYPE, filter_type);

	for (phase = 0; phase < (NUM_PHASES / 2 + 1); phase++) {
		for (pair = 0; pair < tap_pairs; pair++) {
			even_coef = filter[phase * taps + 2 * pair];
			if ((pair * 2 + 1) < taps)
				odd_coef = filter[phase * taps + 2 * pair + 1];
			else
				odd_coef = 0;

			REG_SET_4(SCL_COEF_RAM_TAP_DATA, 0,
				/* Even tap coefficient (bits 1:0 fixed to 0) */
				SCL_COEF_RAM_EVEN_TAP_COEF, even_coef,
				/* Write/read control for even coefficient */
				SCL_COEF_RAM_EVEN_TAP_COEF_EN, 1,
				/* Odd tap coefficient (bits 1:0 fixed to 0) */
				SCL_COEF_RAM_ODD_TAP_COEF, odd_coef,
				/* Write/read control for odd coefficient */
				SCL_COEF_RAM_ODD_TAP_COEF_EN, 1);
		}
	}

}

static void dpp1_dscl_set_scl_filter(
		struct dcn10_dpp *dpp,
		const struct scaler_data *scl_data,
		bool chroma_coef_mode)
{
	bool h_2tap_hardcode_coef_en = false;
	bool v_2tap_hardcode_coef_en = false;
	bool h_2tap_sharp_en = false;
	bool v_2tap_sharp_en = false;
	uint32_t h_2tap_sharp_factor = scl_data->sharpness.horz;
	uint32_t v_2tap_sharp_factor = scl_data->sharpness.vert;
	bool coef_ram_current;
	const uint16_t *filter_h = NULL;
	const uint16_t *filter_v = NULL;
	const uint16_t *filter_h_c = NULL;
	const uint16_t *filter_v_c = NULL;

	h_2tap_hardcode_coef_en = scl_data->taps.h_taps < 3
					&& scl_data->taps.h_taps_c < 3
		&& (scl_data->taps.h_taps > 1 && scl_data->taps.h_taps_c > 1);
	v_2tap_hardcode_coef_en = scl_data->taps.v_taps < 3
					&& scl_data->taps.v_taps_c < 3
		&& (scl_data->taps.v_taps > 1 && scl_data->taps.v_taps_c > 1);

	h_2tap_sharp_en = h_2tap_hardcode_coef_en && h_2tap_sharp_factor != 0;
	v_2tap_sharp_en = v_2tap_hardcode_coef_en && v_2tap_sharp_factor != 0;

	REG_UPDATE_6(DSCL_2TAP_CONTROL,
		SCL_H_2TAP_HARDCODE_COEF_EN, h_2tap_hardcode_coef_en,
		SCL_H_2TAP_SHARP_EN, h_2tap_sharp_en,
		SCL_H_2TAP_SHARP_FACTOR, h_2tap_sharp_factor,
		SCL_V_2TAP_HARDCODE_COEF_EN, v_2tap_hardcode_coef_en,
		SCL_V_2TAP_SHARP_EN, v_2tap_sharp_en,
		SCL_V_2TAP_SHARP_FACTOR, v_2tap_sharp_factor);

	if (!v_2tap_hardcode_coef_en || !h_2tap_hardcode_coef_en) {
		bool filter_updated = false;

		filter_h = dpp1_dscl_get_filter_coeffs_64p(
				scl_data->taps.h_taps, scl_data->ratios.horz);
		filter_v = dpp1_dscl_get_filter_coeffs_64p(
				scl_data->taps.v_taps, scl_data->ratios.vert);

		filter_updated = (filter_h && (filter_h != dpp->filter_h))
				|| (filter_v && (filter_v != dpp->filter_v));

		if (chroma_coef_mode) {
			filter_h_c = dpp1_dscl_get_filter_coeffs_64p(
					scl_data->taps.h_taps_c, scl_data->ratios.horz_c);
			filter_v_c = dpp1_dscl_get_filter_coeffs_64p(
					scl_data->taps.v_taps_c, scl_data->ratios.vert_c);
			filter_updated = filter_updated || (filter_h_c && (filter_h_c != dpp->filter_h_c))
							|| (filter_v_c && (filter_v_c != dpp->filter_v_c));
		}

		if (filter_updated) {
			uint32_t scl_mode = REG_READ(SCL_MODE);

			if (!h_2tap_hardcode_coef_en && filter_h) {
				dpp1_dscl_set_scaler_filter(
					dpp, scl_data->taps.h_taps,
					SCL_COEF_LUMA_HORZ_FILTER, filter_h);
			}
			dpp->filter_h = filter_h;
			if (!v_2tap_hardcode_coef_en && filter_v) {
				dpp1_dscl_set_scaler_filter(
					dpp, scl_data->taps.v_taps,
					SCL_COEF_LUMA_VERT_FILTER, filter_v);
			}
			dpp->filter_v = filter_v;
			if (chroma_coef_mode) {
				if (!h_2tap_hardcode_coef_en && filter_h_c) {
					dpp1_dscl_set_scaler_filter(
						dpp, scl_data->taps.h_taps_c,
						SCL_COEF_CHROMA_HORZ_FILTER, filter_h_c);
				}
				if (!v_2tap_hardcode_coef_en && filter_v_c) {
					dpp1_dscl_set_scaler_filter(
						dpp, scl_data->taps.v_taps_c,
						SCL_COEF_CHROMA_VERT_FILTER, filter_v_c);
				}
			}
			dpp->filter_h_c = filter_h_c;
			dpp->filter_v_c = filter_v_c;

			coef_ram_current = get_reg_field_value_ex(
				scl_mode, dpp->tf_mask->SCL_COEF_RAM_SELECT_CURRENT,
				dpp->tf_shift->SCL_COEF_RAM_SELECT_CURRENT);

			/* Swap coefficient RAM and set chroma coefficient mode */
			REG_SET_2(SCL_MODE, scl_mode,
					SCL_COEF_RAM_SELECT, !coef_ram_current,
					SCL_CHROMA_COEF_MODE, chroma_coef_mode);
		}
	}
}

static int dpp1_dscl_get_lb_depth_bpc(enum lb_pixel_depth depth)
{
	if (depth == LB_PIXEL_DEPTH_30BPP)
		return 10;
	else if (depth == LB_PIXEL_DEPTH_24BPP)
		return 8;
	else if (depth == LB_PIXEL_DEPTH_18BPP)
		return 6;
	else if (depth == LB_PIXEL_DEPTH_36BPP)
		return 12;
	else {
		BREAK_TO_DEBUGGER();
		return -1; /* Unsupported */
	}
}

void dpp1_dscl_calc_lb_num_partitions(
		const struct scaler_data *scl_data,
		enum lb_memory_config lb_config,
		int *num_part_y,
		int *num_part_c)
{
	int lb_memory_size, lb_memory_size_c, lb_memory_size_a, num_partitions_a,
	lb_bpc, memory_line_size_y, memory_line_size_c, memory_line_size_a;

	int line_size = scl_data->viewport.width < scl_data->recout.width ?
			scl_data->viewport.width : scl_data->recout.width;
	int line_size_c = scl_data->viewport_c.width < scl_data->recout.width ?
			scl_data->viewport_c.width : scl_data->recout.width;

	if (line_size == 0)
		line_size = 1;

	if (line_size_c == 0)
		line_size_c = 1;


	lb_bpc = dpp1_dscl_get_lb_depth_bpc(scl_data->lb_params.depth);
	memory_line_size_y = (line_size * lb_bpc + 71) / 72; /* +71 to ceil */
	memory_line_size_c = (line_size_c * lb_bpc + 71) / 72; /* +71 to ceil */
	memory_line_size_a = (line_size + 5) / 6; /* +5 to ceil */

	if (lb_config == LB_MEMORY_CONFIG_1) {
		lb_memory_size = 816;
		lb_memory_size_c = 816;
		lb_memory_size_a = 984;
	} else if (lb_config == LB_MEMORY_CONFIG_2) {
		lb_memory_size = 1088;
		lb_memory_size_c = 1088;
		lb_memory_size_a = 1312;
	} else if (lb_config == LB_MEMORY_CONFIG_3) {
		/* 420 mode: using 3rd mem from Y, Cr and Cb */
		lb_memory_size = 816 + 1088 + 848 + 848 + 848;
		lb_memory_size_c = 816 + 1088;
		lb_memory_size_a = 984 + 1312 + 456;
	} else {
		lb_memory_size = 816 + 1088 + 848;
		lb_memory_size_c = 816 + 1088 + 848;
		lb_memory_size_a = 984 + 1312 + 456;
	}
	*num_part_y = lb_memory_size / memory_line_size_y;
	*num_part_c = lb_memory_size_c / memory_line_size_c;
	num_partitions_a = lb_memory_size_a / memory_line_size_a;

	if (scl_data->lb_params.alpha_en
			&& (num_partitions_a < *num_part_y))
		*num_part_y = num_partitions_a;

	if (*num_part_y > 64)
		*num_part_y = 64;
	if (*num_part_c > 64)
		*num_part_c = 64;

}

bool dpp1_dscl_is_lb_conf_valid(int ceil_vratio, int num_partitions, int vtaps)
{
	if (ceil_vratio > 2)
		return vtaps <= (num_partitions - ceil_vratio + 2);
	else
		return vtaps <= num_partitions;
}

/*find first match configuration which meets the min required lb size*/
static enum lb_memory_config dpp1_dscl_find_lb_memory_config(struct dcn10_dpp *dpp,
		const struct scaler_data *scl_data)
{
	int num_part_y, num_part_c;
	int vtaps = scl_data->taps.v_taps;
	int vtaps_c = scl_data->taps.v_taps_c;
	int ceil_vratio = dc_fixpt_ceil(scl_data->ratios.vert);
	int ceil_vratio_c = dc_fixpt_ceil(scl_data->ratios.vert_c);

	if (dpp->base.ctx->dc->debug.use_max_lb) {
		if (scl_data->format == PIXEL_FORMAT_420BPP8
				|| scl_data->format == PIXEL_FORMAT_420BPP10)
			return LB_MEMORY_CONFIG_3;
		return LB_MEMORY_CONFIG_0;
	}

	dpp->base.caps->dscl_calc_lb_num_partitions(
			scl_data, LB_MEMORY_CONFIG_1, &num_part_y, &num_part_c);

	if (dpp1_dscl_is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
			&& dpp1_dscl_is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c))
		return LB_MEMORY_CONFIG_1;

	dpp->base.caps->dscl_calc_lb_num_partitions(
			scl_data, LB_MEMORY_CONFIG_2, &num_part_y, &num_part_c);

	if (dpp1_dscl_is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
			&& dpp1_dscl_is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c))
		return LB_MEMORY_CONFIG_2;

	if (scl_data->format == PIXEL_FORMAT_420BPP8
			|| scl_data->format == PIXEL_FORMAT_420BPP10) {
		dpp->base.caps->dscl_calc_lb_num_partitions(
				scl_data, LB_MEMORY_CONFIG_3, &num_part_y, &num_part_c);

		if (dpp1_dscl_is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
				&& dpp1_dscl_is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c))
			return LB_MEMORY_CONFIG_3;
	}

	dpp->base.caps->dscl_calc_lb_num_partitions(
			scl_data, LB_MEMORY_CONFIG_0, &num_part_y, &num_part_c);

	/*Ensure we can support the requested number of vtaps*/
	ASSERT(dpp1_dscl_is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
			&& dpp1_dscl_is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c));

	return LB_MEMORY_CONFIG_0;
}


static void dpp1_dscl_set_manual_ratio_init(
		struct dcn10_dpp *dpp, const struct scaler_data *data)
{
	uint32_t init_frac = 0;
	uint32_t init_int = 0;

	REG_SET(SCL_HORZ_FILTER_SCALE_RATIO, 0,
			SCL_H_SCALE_RATIO, dc_fixpt_u3d19(data->ratios.horz) << 5);

	REG_SET(SCL_VERT_FILTER_SCALE_RATIO, 0,
			SCL_V_SCALE_RATIO, dc_fixpt_u3d19(data->ratios.vert) << 5);

	REG_SET(SCL_HORZ_FILTER_SCALE_RATIO_C, 0,
			SCL_H_SCALE_RATIO_C, dc_fixpt_u3d19(data->ratios.horz_c) << 5);

	REG_SET(SCL_VERT_FILTER_SCALE_RATIO_C, 0,
			SCL_V_SCALE_RATIO_C, dc_fixpt_u3d19(data->ratios.vert_c) << 5);

	/*
	 * 0.24 format for fraction, first five bits zeroed
	 */
	init_frac = dc_fixpt_u0d19(data->inits.h) << 5;
	init_int = dc_fixpt_floor(data->inits.h);
	REG_SET_2(SCL_HORZ_FILTER_INIT, 0,
		SCL_H_INIT_FRAC, init_frac,
		SCL_H_INIT_INT, init_int);

	init_frac = dc_fixpt_u0d19(data->inits.h_c) << 5;
	init_int = dc_fixpt_floor(data->inits.h_c);
	REG_SET_2(SCL_HORZ_FILTER_INIT_C, 0,
		SCL_H_INIT_FRAC_C, init_frac,
		SCL_H_INIT_INT_C, init_int);

	init_frac = dc_fixpt_u0d19(data->inits.v) << 5;
	init_int = dc_fixpt_floor(data->inits.v);
	REG_SET_2(SCL_VERT_FILTER_INIT, 0,
		SCL_V_INIT_FRAC, init_frac,
		SCL_V_INIT_INT, init_int);

	if (REG(SCL_VERT_FILTER_INIT_BOT)) {
		struct fixed31_32 bot = dc_fixpt_add(data->inits.v, data->ratios.vert);

		init_frac = dc_fixpt_u0d19(bot) << 5;
		init_int = dc_fixpt_floor(bot);
		REG_SET_2(SCL_VERT_FILTER_INIT_BOT, 0,
			SCL_V_INIT_FRAC_BOT, init_frac,
			SCL_V_INIT_INT_BOT, init_int);
	}

	init_frac = dc_fixpt_u0d19(data->inits.v_c) << 5;
	init_int = dc_fixpt_floor(data->inits.v_c);
	REG_SET_2(SCL_VERT_FILTER_INIT_C, 0,
		SCL_V_INIT_FRAC_C, init_frac,
		SCL_V_INIT_INT_C, init_int);

	if (REG(SCL_VERT_FILTER_INIT_BOT_C)) {
		struct fixed31_32 bot = dc_fixpt_add(data->inits.v_c, data->ratios.vert_c);

		init_frac = dc_fixpt_u0d19(bot) << 5;
		init_int = dc_fixpt_floor(bot);
		REG_SET_2(SCL_VERT_FILTER_INIT_BOT_C, 0,
			SCL_V_INIT_FRAC_BOT_C, init_frac,
			SCL_V_INIT_INT_BOT_C, init_int);
	}
}

/**
 * dpp1_dscl_set_recout - Set the first pixel of RECOUT in the OTG active area
 *
 * @dpp: DPP data struct
 * @recout: Rectangle information
 *
 * This function sets the MPC RECOUT_START and RECOUT_SIZE registers based on
 * the values specified in the recount parameter.
 *
 * Note: This function only have effect if AutoCal is disabled.
 */
static void dpp1_dscl_set_recout(struct dcn10_dpp *dpp,
				 const struct rect *recout)
{
	REG_SET_2(RECOUT_START, 0,
		  /* First pixel of RECOUT in the active OTG area */
		  RECOUT_START_X, recout->x,
		  /* First line of RECOUT in the active OTG area */
		  RECOUT_START_Y, recout->y);

	REG_SET_2(RECOUT_SIZE, 0,
		  /* Number of RECOUT horizontal pixels */
		  RECOUT_WIDTH, recout->width,
		  /* Number of RECOUT vertical lines */
		  RECOUT_HEIGHT, recout->height);
}

/**
 * dpp1_dscl_set_scaler_manual_scale - Manually program scaler and line buffer
 *
 * @dpp_base: High level DPP struct
 * @scl_data: scalaer_data info
 *
 * This is the primary function to program scaler and line buffer in manual
 * scaling mode. To execute the required operations for manual scale, we need
 * to disable AutoCal first.
 */
void dpp1_dscl_set_scaler_manual_scale(struct dpp *dpp_base,
				       const struct scaler_data *scl_data)
{
	enum lb_memory_config lb_config;
	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
	enum dscl_mode_sel dscl_mode = dpp1_dscl_get_dscl_mode(
			dpp_base, scl_data, dpp_base->ctx->dc->debug.always_scale);
	bool ycbcr = scl_data->format >= PIXEL_FORMAT_VIDEO_BEGIN
				&& scl_data->format <= PIXEL_FORMAT_VIDEO_END;

	if (memcmp(&dpp->scl_data, scl_data, sizeof(*scl_data)) == 0)
		return;

	PERF_TRACE();

	dpp->scl_data = *scl_data;

	if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.dscl) {
		if (dscl_mode != DSCL_MODE_DSCL_BYPASS)
			dpp1_power_on_dscl(dpp_base, true);
	}

	/* Autocal off */
	REG_SET_3(DSCL_AUTOCAL, 0,
		AUTOCAL_MODE, AUTOCAL_MODE_OFF,
		AUTOCAL_NUM_PIPE, 0,
		AUTOCAL_PIPE_ID, 0);

	/*clean scaler boundary mode when Autocal off*/
	REG_SET(DSCL_CONTROL, 0,
		SCL_BOUNDARY_MODE, 0);

	/* Recout */
	dpp1_dscl_set_recout(dpp, &scl_data->recout);

	/* MPC Size */
	REG_SET_2(MPC_SIZE, 0,
		/* Number of horizontal pixels of MPC */
			 MPC_WIDTH, scl_data->h_active,
		/* Number of vertical lines of MPC */
			 MPC_HEIGHT, scl_data->v_active);

	/* SCL mode */
	REG_UPDATE(SCL_MODE, DSCL_MODE, dscl_mode);

	if (dscl_mode == DSCL_MODE_DSCL_BYPASS) {
		if (dpp_base->ctx->dc->debug.enable_mem_low_power.bits.dscl)
			dpp1_power_on_dscl(dpp_base, false);
		return;
	}

	/* LB */
	lb_config =  dpp1_dscl_find_lb_memory_config(dpp, scl_data);
	dpp1_dscl_set_lb(dpp, &scl_data->lb_params, lb_config);

	if (dscl_mode == DSCL_MODE_SCALING_444_BYPASS)
		return;

	/* Black offsets */
	if (REG(SCL_BLACK_OFFSET)) {
		if (ycbcr)
			REG_SET_2(SCL_BLACK_OFFSET, 0,
					SCL_BLACK_OFFSET_RGB_Y, BLACK_OFFSET_RGB_Y,
					SCL_BLACK_OFFSET_CBCR, BLACK_OFFSET_CBCR);
		else

			REG_SET_2(SCL_BLACK_OFFSET, 0,
					SCL_BLACK_OFFSET_RGB_Y, BLACK_OFFSET_RGB_Y,
					SCL_BLACK_OFFSET_CBCR, BLACK_OFFSET_RGB_Y);
	}

	/* Manually calculate scale ratio and init values */
	dpp1_dscl_set_manual_ratio_init(dpp, scl_data);

	/* HTaps/VTaps */
	REG_SET_4(SCL_TAP_CONTROL, 0,
		SCL_V_NUM_TAPS, scl_data->taps.v_taps - 1,
		SCL_H_NUM_TAPS, scl_data->taps.h_taps - 1,
		SCL_V_NUM_TAPS_C, scl_data->taps.v_taps_c - 1,
		SCL_H_NUM_TAPS_C, scl_data->taps.h_taps_c - 1);

	dpp1_dscl_set_scl_filter(dpp, scl_data, ycbcr);
	PERF_TRACE();
}