Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 | // SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com> */ #include "sja1105.h" #define SJA1105_TAS_CLKSRC_DISABLED 0 #define SJA1105_TAS_CLKSRC_STANDALONE 1 #define SJA1105_TAS_CLKSRC_AS6802 2 #define SJA1105_TAS_CLKSRC_PTP 3 #define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0) #define work_to_sja1105_tas(d) \ container_of((d), struct sja1105_tas_data, tas_work) #define tas_to_sja1105(d) \ container_of((d), struct sja1105_private, tas_data) static int sja1105_tas_set_runtime_params(struct sja1105_private *priv) { struct sja1105_tas_data *tas_data = &priv->tas_data; struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg; struct dsa_switch *ds = priv->ds; s64 earliest_base_time = S64_MAX; s64 latest_base_time = 0; s64 its_cycle_time = 0; s64 max_cycle_time = 0; int port; tas_data->enabled = false; for (port = 0; port < ds->num_ports; port++) { const struct tc_taprio_qopt_offload *offload; offload = tas_data->offload[port]; if (!offload) continue; tas_data->enabled = true; if (max_cycle_time < offload->cycle_time) max_cycle_time = offload->cycle_time; if (latest_base_time < offload->base_time) latest_base_time = offload->base_time; if (earliest_base_time > offload->base_time) { earliest_base_time = offload->base_time; its_cycle_time = offload->cycle_time; } } if (!list_empty(&gating_cfg->entries)) { tas_data->enabled = true; if (max_cycle_time < gating_cfg->cycle_time) max_cycle_time = gating_cfg->cycle_time; if (latest_base_time < gating_cfg->base_time) latest_base_time = gating_cfg->base_time; if (earliest_base_time > gating_cfg->base_time) { earliest_base_time = gating_cfg->base_time; its_cycle_time = gating_cfg->cycle_time; } } if (!tas_data->enabled) return 0; /* Roll the earliest base time over until it is in a comparable * time base with the latest, then compare their deltas. * We want to enforce that all ports' base times are within * SJA1105_TAS_MAX_DELTA 200ns cycles of one another. */ earliest_base_time = future_base_time(earliest_base_time, its_cycle_time, latest_base_time); while (earliest_base_time > latest_base_time) earliest_base_time -= its_cycle_time; if (latest_base_time - earliest_base_time > sja1105_delta_to_ns(SJA1105_TAS_MAX_DELTA)) { dev_err(ds->dev, "Base times too far apart: min %llu max %llu\n", earliest_base_time, latest_base_time); return -ERANGE; } tas_data->earliest_base_time = earliest_base_time; tas_data->max_cycle_time = max_cycle_time; dev_dbg(ds->dev, "earliest base time %lld ns\n", earliest_base_time); dev_dbg(ds->dev, "latest base time %lld ns\n", latest_base_time); dev_dbg(ds->dev, "longest cycle time %lld ns\n", max_cycle_time); return 0; } /* Lo and behold: the egress scheduler from hell. * * At the hardware level, the Time-Aware Shaper holds a global linear arrray of * all schedule entries for all ports. These are the Gate Control List (GCL) * entries, let's call them "timeslots" for short. This linear array of * timeslots is held in BLK_IDX_SCHEDULE. * * Then there are a maximum of 8 "execution threads" inside the switch, which * iterate cyclically through the "schedule". Each "cycle" has an entry point * and an exit point, both being timeslot indices in the schedule table. The * hardware calls each cycle a "subschedule". * * Subschedule (cycle) i starts when * ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta. * * The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from * k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to * k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i] * * For each schedule entry (timeslot) k, the engine executes the gate control * list entry for the duration of BLK_IDX_SCHEDULE[k].delta. * * +---------+ * | | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS * +---------+ * | * +-----------------+ * | .actsubsch * BLK_IDX_SCHEDULE_ENTRY_POINTS v * +-------+-------+ * |cycle 0|cycle 1| * +-------+-------+ * | | | | * +----------------+ | | +-------------------------------------+ * | .subschindx | | .subschindx | * | | +---------------+ | * | .address | .address | | * | | | | * | | | | * | BLK_IDX_SCHEDULE v v | * | +-------+-------+-------+-------+-------+------+ | * | |entry 0|entry 1|entry 2|entry 3|entry 4|entry5| | * | +-------+-------+-------+-------+-------+------+ | * | ^ ^ ^ ^ | * | | | | | | * | +-------------------------+ | | | | * | | +-------------------------------+ | | | * | | | +-------------------+ | | * | | | | | | * | +---------------------------------------------------------------+ | * | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| | * | +---------------------------------------------------------------+ | * | ^ ^ BLK_IDX_SCHEDULE_PARAMS | * | | | | * +--------+ +-------------------------------------------+ * * In the above picture there are two subschedules (cycles): * * - cycle 0: iterates the schedule table from 0 to 2 (and back) * - cycle 1: iterates the schedule table from 3 to 5 (and back) * * All other possible execution threads must be marked as unused by making * their "subschedule end index" (subscheind) equal to the last valid * subschedule's end index (in this case 5). */ int sja1105_init_scheduling(struct sja1105_private *priv) { struct sja1105_schedule_entry_points_entry *schedule_entry_points; struct sja1105_schedule_entry_points_params_entry *schedule_entry_points_params; struct sja1105_schedule_params_entry *schedule_params; struct sja1105_tas_data *tas_data = &priv->tas_data; struct sja1105_gating_config *gating_cfg = &tas_data->gating_cfg; struct sja1105_schedule_entry *schedule; struct dsa_switch *ds = priv->ds; struct sja1105_table *table; int schedule_start_idx; s64 entry_point_delta; int schedule_end_idx; int num_entries = 0; int num_cycles = 0; int cycle = 0; int i, k = 0; int port, rc; rc = sja1105_tas_set_runtime_params(priv); if (rc < 0) return rc; /* Discard previous Schedule Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Discard previous Schedule Entry Points Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Discard previous Schedule Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Discard previous Schedule Entry Points Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Figure out the dimensioning of the problem */ for (port = 0; port < ds->num_ports; port++) { if (tas_data->offload[port]) { num_entries += tas_data->offload[port]->num_entries; num_cycles++; } } if (!list_empty(&gating_cfg->entries)) { num_entries += gating_cfg->num_entries; num_cycles++; } /* Nothing to do */ if (!num_cycles) return 0; /* Pre-allocate space in the static config tables */ /* Schedule Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE]; table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = num_entries; schedule = table->entries; /* Schedule Points Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS]; table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) /* Previously allocated memory will be freed automatically in * sja1105_static_config_free. This is true for all early * returns below. */ return -ENOMEM; table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT; schedule_entry_points_params = table->entries; /* Schedule Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS]; table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT; schedule_params = table->entries; /* Schedule Entry Points Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS]; table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = num_cycles; schedule_entry_points = table->entries; /* Finally start populating the static config tables */ schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_PTP; schedule_entry_points_params->actsubsch = num_cycles - 1; for (port = 0; port < ds->num_ports; port++) { const struct tc_taprio_qopt_offload *offload; /* Relative base time */ s64 rbt; offload = tas_data->offload[port]; if (!offload) continue; schedule_start_idx = k; schedule_end_idx = k + offload->num_entries - 1; /* This is the base time expressed as a number of TAS ticks * relative to PTPSCHTM, which we'll (perhaps improperly) call * the operational base time. */ rbt = future_base_time(offload->base_time, offload->cycle_time, tas_data->earliest_base_time); rbt -= tas_data->earliest_base_time; /* UM10944.pdf 4.2.2. Schedule Entry Points table says that * delta cannot be zero, which is shitty. Advance all relative * base times by 1 TAS delta, so that even the earliest base * time becomes 1 in relative terms. Then start the operational * base time (PTPSCHTM) one TAS delta earlier than planned. */ entry_point_delta = ns_to_sja1105_delta(rbt) + 1; schedule_entry_points[cycle].subschindx = cycle; schedule_entry_points[cycle].delta = entry_point_delta; schedule_entry_points[cycle].address = schedule_start_idx; /* The subschedule end indices need to be * monotonically increasing. */ for (i = cycle; i < 8; i++) schedule_params->subscheind[i] = schedule_end_idx; for (i = 0; i < offload->num_entries; i++, k++) { s64 delta_ns = offload->entries[i].interval; schedule[k].delta = ns_to_sja1105_delta(delta_ns); schedule[k].destports = BIT(port); schedule[k].resmedia_en = true; schedule[k].resmedia = SJA1105_GATE_MASK & ~offload->entries[i].gate_mask; } cycle++; } if (!list_empty(&gating_cfg->entries)) { struct sja1105_gate_entry *e; /* Relative base time */ s64 rbt; schedule_start_idx = k; schedule_end_idx = k + gating_cfg->num_entries - 1; rbt = future_base_time(gating_cfg->base_time, gating_cfg->cycle_time, tas_data->earliest_base_time); rbt -= tas_data->earliest_base_time; entry_point_delta = ns_to_sja1105_delta(rbt) + 1; schedule_entry_points[cycle].subschindx = cycle; schedule_entry_points[cycle].delta = entry_point_delta; schedule_entry_points[cycle].address = schedule_start_idx; for (i = cycle; i < 8; i++) schedule_params->subscheind[i] = schedule_end_idx; list_for_each_entry(e, &gating_cfg->entries, list) { schedule[k].delta = ns_to_sja1105_delta(e->interval); schedule[k].destports = e->rule->vl.destports; schedule[k].setvalid = true; schedule[k].txen = true; schedule[k].vlindex = e->rule->vl.sharindx; schedule[k].winstindex = e->rule->vl.sharindx; if (e->gate_state) /* Gate open */ schedule[k].winst = true; else /* Gate closed */ schedule[k].winend = true; k++; } } return 0; } /* Be there 2 port subschedules, each executing an arbitrary number of gate * open/close events cyclically. * None of those gate events must ever occur at the exact same time, otherwise * the switch is known to act in exotically strange ways. * However the hardware doesn't bother performing these integrity checks. * So here we are with the task of validating whether the new @admin offload * has any conflict with the already established TAS configuration in * tas_data->offload. We already know the other ports are in harmony with one * another, otherwise we wouldn't have saved them. * Each gate event executes periodically, with a period of @cycle_time and a * phase given by its cycle's @base_time plus its offset within the cycle * (which in turn is given by the length of the events prior to it). * There are two aspects to possible collisions: * - Collisions within one cycle's (actually the longest cycle's) time frame. * For that, we need to compare the cartesian product of each possible * occurrence of each event within one cycle time. * - Collisions in the future. Events may not collide within one cycle time, * but if two port schedules don't have the same periodicity (aka the cycle * times aren't multiples of one another), they surely will some time in the * future (actually they will collide an infinite amount of times). */ static bool sja1105_tas_check_conflicts(struct sja1105_private *priv, int port, const struct tc_taprio_qopt_offload *admin) { struct sja1105_tas_data *tas_data = &priv->tas_data; const struct tc_taprio_qopt_offload *offload; s64 max_cycle_time, min_cycle_time; s64 delta1, delta2; s64 rbt1, rbt2; s64 stop_time; s64 t1, t2; int i, j; s32 rem; offload = tas_data->offload[port]; if (!offload) return false; /* Check if the two cycle times are multiples of one another. * If they aren't, then they will surely collide. */ max_cycle_time = max(offload->cycle_time, admin->cycle_time); min_cycle_time = min(offload->cycle_time, admin->cycle_time); div_s64_rem(max_cycle_time, min_cycle_time, &rem); if (rem) return true; /* Calculate the "reduced" base time of each of the two cycles * (transposed back as close to 0 as possible) by dividing to * the cycle time. */ div_s64_rem(offload->base_time, offload->cycle_time, &rem); rbt1 = rem; div_s64_rem(admin->base_time, admin->cycle_time, &rem); rbt2 = rem; stop_time = max_cycle_time + max(rbt1, rbt2); /* delta1 is the relative base time of each GCL entry within * the established ports' TAS config. */ for (i = 0, delta1 = 0; i < offload->num_entries; delta1 += offload->entries[i].interval, i++) { /* delta2 is the relative base time of each GCL entry * within the newly added TAS config. */ for (j = 0, delta2 = 0; j < admin->num_entries; delta2 += admin->entries[j].interval, j++) { /* t1 follows all possible occurrences of the * established ports' GCL entry i within the * first cycle time. */ for (t1 = rbt1 + delta1; t1 <= stop_time; t1 += offload->cycle_time) { /* t2 follows all possible occurrences * of the newly added GCL entry j * within the first cycle time. */ for (t2 = rbt2 + delta2; t2 <= stop_time; t2 += admin->cycle_time) { if (t1 == t2) { dev_warn(priv->ds->dev, "GCL entry %d collides with entry %d of port %d\n", j, i, port); return true; } } } } } return false; } /* Check the tc-taprio configuration on @port for conflicts with the tc-gate * global subschedule. If @port is -1, check it against all ports. * To reuse the sja1105_tas_check_conflicts logic without refactoring it, * convert the gating configuration to a dummy tc-taprio offload structure. */ bool sja1105_gating_check_conflicts(struct sja1105_private *priv, int port, struct netlink_ext_ack *extack) { struct sja1105_gating_config *gating_cfg = &priv->tas_data.gating_cfg; size_t num_entries = gating_cfg->num_entries; struct tc_taprio_qopt_offload *dummy; struct dsa_switch *ds = priv->ds; struct sja1105_gate_entry *e; bool conflict; int i = 0; if (list_empty(&gating_cfg->entries)) return false; dummy = kzalloc(struct_size(dummy, entries, num_entries), GFP_KERNEL); if (!dummy) { NL_SET_ERR_MSG_MOD(extack, "Failed to allocate memory"); return true; } dummy->num_entries = num_entries; dummy->base_time = gating_cfg->base_time; dummy->cycle_time = gating_cfg->cycle_time; list_for_each_entry(e, &gating_cfg->entries, list) dummy->entries[i++].interval = e->interval; if (port != -1) { conflict = sja1105_tas_check_conflicts(priv, port, dummy); } else { for (port = 0; port < ds->num_ports; port++) { conflict = sja1105_tas_check_conflicts(priv, port, dummy); if (conflict) break; } } kfree(dummy); return conflict; } int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port, struct tc_taprio_qopt_offload *admin) { struct sja1105_private *priv = ds->priv; struct sja1105_tas_data *tas_data = &priv->tas_data; int other_port, rc, i; /* Can't change an already configured port (must delete qdisc first). * Can't delete the qdisc from an unconfigured port. */ if ((!!tas_data->offload[port] && admin->cmd == TAPRIO_CMD_REPLACE) || (!tas_data->offload[port] && admin->cmd == TAPRIO_CMD_DESTROY)) return -EINVAL; if (admin->cmd == TAPRIO_CMD_DESTROY) { taprio_offload_free(tas_data->offload[port]); tas_data->offload[port] = NULL; rc = sja1105_init_scheduling(priv); if (rc < 0) return rc; return sja1105_static_config_reload(priv, SJA1105_SCHEDULING); } else if (admin->cmd != TAPRIO_CMD_REPLACE) { return -EOPNOTSUPP; } /* The cycle time extension is the amount of time the last cycle from * the old OPER needs to be extended in order to phase-align with the * base time of the ADMIN when that becomes the new OPER. * But of course our switch needs to be reset to switch-over between * the ADMIN and the OPER configs - so much for a seamless transition. * So don't add insult over injury and just say we don't support cycle * time extension. */ if (admin->cycle_time_extension) return -ENOTSUPP; for (i = 0; i < admin->num_entries; i++) { s64 delta_ns = admin->entries[i].interval; s64 delta_cycles = ns_to_sja1105_delta(delta_ns); bool too_long, too_short; too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA); too_short = (delta_cycles == 0); if (too_long || too_short) { dev_err(priv->ds->dev, "Interval %llu too %s for GCL entry %d\n", delta_ns, too_long ? "long" : "short", i); return -ERANGE; } } for (other_port = 0; other_port < ds->num_ports; other_port++) { if (other_port == port) continue; if (sja1105_tas_check_conflicts(priv, other_port, admin)) return -ERANGE; } if (sja1105_gating_check_conflicts(priv, port, NULL)) { dev_err(ds->dev, "Conflict with tc-gate schedule\n"); return -ERANGE; } tas_data->offload[port] = taprio_offload_get(admin); rc = sja1105_init_scheduling(priv); if (rc < 0) return rc; return sja1105_static_config_reload(priv, SJA1105_SCHEDULING); } static int sja1105_tas_check_running(struct sja1105_private *priv) { struct sja1105_tas_data *tas_data = &priv->tas_data; struct dsa_switch *ds = priv->ds; struct sja1105_ptp_cmd cmd = {0}; int rc; rc = sja1105_ptp_commit(ds, &cmd, SPI_READ); if (rc < 0) return rc; if (cmd.ptpstrtsch == 1) /* Schedule successfully started */ tas_data->state = SJA1105_TAS_STATE_RUNNING; else if (cmd.ptpstopsch == 1) /* Schedule is stopped */ tas_data->state = SJA1105_TAS_STATE_DISABLED; else /* Schedule is probably not configured with PTP clock source */ rc = -EINVAL; return rc; } /* Write to PTPCLKCORP */ static int sja1105_tas_adjust_drift(struct sja1105_private *priv, u64 correction) { const struct sja1105_regs *regs = priv->info->regs; u32 ptpclkcorp = ns_to_sja1105_ticks(correction); return sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkcorp, &ptpclkcorp, NULL); } /* Write to PTPSCHTM */ static int sja1105_tas_set_base_time(struct sja1105_private *priv, u64 base_time) { const struct sja1105_regs *regs = priv->info->regs; u64 ptpschtm = ns_to_sja1105_ticks(base_time); return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpschtm, &ptpschtm, NULL); } static int sja1105_tas_start(struct sja1105_private *priv) { struct sja1105_tas_data *tas_data = &priv->tas_data; struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd; struct dsa_switch *ds = priv->ds; int rc; dev_dbg(ds->dev, "Starting the TAS\n"); if (tas_data->state == SJA1105_TAS_STATE_ENABLED_NOT_RUNNING || tas_data->state == SJA1105_TAS_STATE_RUNNING) { dev_err(ds->dev, "TAS already started\n"); return -EINVAL; } cmd->ptpstrtsch = 1; cmd->ptpstopsch = 0; rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE); if (rc < 0) return rc; tas_data->state = SJA1105_TAS_STATE_ENABLED_NOT_RUNNING; return 0; } static int sja1105_tas_stop(struct sja1105_private *priv) { struct sja1105_tas_data *tas_data = &priv->tas_data; struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd; struct dsa_switch *ds = priv->ds; int rc; dev_dbg(ds->dev, "Stopping the TAS\n"); if (tas_data->state == SJA1105_TAS_STATE_DISABLED) { dev_err(ds->dev, "TAS already disabled\n"); return -EINVAL; } cmd->ptpstopsch = 1; cmd->ptpstrtsch = 0; rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE); if (rc < 0) return rc; tas_data->state = SJA1105_TAS_STATE_DISABLED; return 0; } /* The schedule engine and the PTP clock are driven by the same oscillator, and * they run in parallel. But whilst the PTP clock can keep an absolute * time-of-day, the schedule engine is only running in 'ticks' (25 ticks make * up a delta, which is 200ns), and wrapping around at the end of each cycle. * The schedule engine is started when the PTP clock reaches the PTPSCHTM time * (in PTP domain). * Because the PTP clock can be rate-corrected (accelerated or slowed down) by * a software servo, and the schedule engine clock runs in parallel to the PTP * clock, there is logic internal to the switch that periodically keeps the * schedule engine from drifting away. The frequency with which this internal * syntonization happens is the PTP clock correction period (PTPCLKCORP). It is * a value also in the PTP clock domain, and is also rate-corrected. * To be precise, during a correction period, there is logic to determine by * how many scheduler clock ticks has the PTP clock drifted. At the end of each * correction period/beginning of new one, the length of a delta is shrunk or * expanded with an integer number of ticks, compared with the typical 25. * So a delta lasts for 200ns (or 25 ticks) only on average. * Sometimes it is longer, sometimes it is shorter. The internal syntonization * logic can adjust for at most 5 ticks each 20 ticks. * * The first implication is that you should choose your schedule correction * period to be an integer multiple of the schedule length. Preferably one. * In case there are schedules of multiple ports active, then the correction * period needs to be a multiple of them all. Given the restriction that the * cycle times have to be multiples of one another anyway, this means the * correction period can simply be the largest cycle time, hence the current * choice. This way, the updates are always synchronous to the transmission * cycle, and therefore predictable. * * The second implication is that at the beginning of a correction period, the * first few deltas will be modulated in time, until the schedule engine is * properly phase-aligned with the PTP clock. For this reason, you should place * your best-effort traffic at the beginning of a cycle, and your * time-triggered traffic afterwards. * * The third implication is that once the schedule engine is started, it can * only adjust for so much drift within a correction period. In the servo you * can only change the PTPCLKRATE, but not step the clock (PTPCLKADD). If you * want to do the latter, you need to stop and restart the schedule engine, * which is what the state machine handles. */ static void sja1105_tas_state_machine(struct work_struct *work) { struct sja1105_tas_data *tas_data = work_to_sja1105_tas(work); struct sja1105_private *priv = tas_to_sja1105(tas_data); struct sja1105_ptp_data *ptp_data = &priv->ptp_data; struct timespec64 base_time_ts, now_ts; struct dsa_switch *ds = priv->ds; struct timespec64 diff; s64 base_time, now; int rc = 0; mutex_lock(&ptp_data->lock); switch (tas_data->state) { case SJA1105_TAS_STATE_DISABLED: /* Can't do anything at all if clock is still being stepped */ if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) break; rc = sja1105_tas_adjust_drift(priv, tas_data->max_cycle_time); if (rc < 0) break; rc = __sja1105_ptp_gettimex(ds, &now, NULL); if (rc < 0) break; /* Plan to start the earliest schedule first. The others * will be started in hardware, by way of their respective * entry points delta. * Try our best to avoid fringe cases (race condition between * ptpschtm and ptpstrtsch) by pushing the oper_base_time at * least one second in the future from now. This is not ideal, * but this only needs to buy us time until the * sja1105_tas_start command below gets executed. */ base_time = future_base_time(tas_data->earliest_base_time, tas_data->max_cycle_time, now + 1ull * NSEC_PER_SEC); base_time -= sja1105_delta_to_ns(1); rc = sja1105_tas_set_base_time(priv, base_time); if (rc < 0) break; tas_data->oper_base_time = base_time; rc = sja1105_tas_start(priv); if (rc < 0) break; base_time_ts = ns_to_timespec64(base_time); now_ts = ns_to_timespec64(now); dev_dbg(ds->dev, "OPER base time %lld.%09ld (now %lld.%09ld)\n", base_time_ts.tv_sec, base_time_ts.tv_nsec, now_ts.tv_sec, now_ts.tv_nsec); break; case SJA1105_TAS_STATE_ENABLED_NOT_RUNNING: if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) { /* Clock was stepped.. bad news for TAS */ sja1105_tas_stop(priv); break; } /* Check if TAS has actually started, by comparing the * scheduled start time with the SJA1105 PTP clock */ rc = __sja1105_ptp_gettimex(ds, &now, NULL); if (rc < 0) break; if (now < tas_data->oper_base_time) { /* TAS has not started yet */ diff = ns_to_timespec64(tas_data->oper_base_time - now); dev_dbg(ds->dev, "time to start: [%lld.%09ld]", diff.tv_sec, diff.tv_nsec); break; } /* Time elapsed, what happened? */ rc = sja1105_tas_check_running(priv); if (rc < 0) break; if (tas_data->state != SJA1105_TAS_STATE_RUNNING) /* TAS has started */ dev_err(ds->dev, "TAS not started despite time elapsed\n"); break; case SJA1105_TAS_STATE_RUNNING: /* Clock was stepped.. bad news for TAS */ if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) { sja1105_tas_stop(priv); break; } rc = sja1105_tas_check_running(priv); if (rc < 0) break; if (tas_data->state != SJA1105_TAS_STATE_RUNNING) dev_err(ds->dev, "TAS surprisingly stopped\n"); break; default: if (net_ratelimit()) dev_err(ds->dev, "TAS in an invalid state (incorrect use of API)!\n"); } if (rc && net_ratelimit()) dev_err(ds->dev, "An operation returned %d\n", rc); mutex_unlock(&ptp_data->lock); } void sja1105_tas_clockstep(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; struct sja1105_tas_data *tas_data = &priv->tas_data; if (!tas_data->enabled) return; tas_data->last_op = SJA1105_PTP_CLOCKSTEP; schedule_work(&tas_data->tas_work); } void sja1105_tas_adjfreq(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; struct sja1105_tas_data *tas_data = &priv->tas_data; if (!tas_data->enabled) return; /* No reason to schedule the workqueue, nothing changed */ if (tas_data->state == SJA1105_TAS_STATE_RUNNING) return; tas_data->last_op = SJA1105_PTP_ADJUSTFREQ; schedule_work(&tas_data->tas_work); } void sja1105_tas_setup(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; struct sja1105_tas_data *tas_data = &priv->tas_data; INIT_WORK(&tas_data->tas_work, sja1105_tas_state_machine); tas_data->state = SJA1105_TAS_STATE_DISABLED; tas_data->last_op = SJA1105_PTP_NONE; INIT_LIST_HEAD(&tas_data->gating_cfg.entries); } void sja1105_tas_teardown(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; struct tc_taprio_qopt_offload *offload; int port; cancel_work_sync(&priv->tas_data.tas_work); for (port = 0; port < ds->num_ports; port++) { offload = priv->tas_data.offload[port]; if (!offload) continue; taprio_offload_free(offload); } } |