Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
/*
 * This file is part of the Chelsio FCoE driver for Linux.
 *
 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/compiler.h>
#include <linux/slab.h>
#include <asm/page.h>
#include <linux/cache.h>

#include "t4_values.h"
#include "csio_hw.h"
#include "csio_wr.h"
#include "csio_mb.h"
#include "csio_defs.h"

int csio_intr_coalesce_cnt;		/* value:SGE_INGRESS_RX_THRESHOLD[0] */
static int csio_sge_thresh_reg;		/* SGE_INGRESS_RX_THRESHOLD[0] */

int csio_intr_coalesce_time = 10;	/* value:SGE_TIMER_VALUE_1 */
static int csio_sge_timer_reg = 1;

#define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val)				\
	csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)

static void
csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
{
	sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
							reg * sizeof(uint32_t));
}

/* Free list buffer size */
static inline uint32_t
csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
{
	return sge->sge_fl_buf_size[buf->paddr & 0xF];
}

/* Size of the egress queue status page */
static inline uint32_t
csio_wr_qstat_pgsz(struct csio_hw *hw)
{
	return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ?  128 : 64;
}

/* Ring freelist doorbell */
static inline void
csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
{
	/*
	 * Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
	 * number of bytes in the freelist queue. This translates to atleast
	 * 8 freelist buffer pointers (since each pointer is 8 bytes).
	 */
	if (flq->inc_idx >= 8) {
		csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
				  PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
				  MYPF_REG(SGE_PF_KDOORBELL_A));
		flq->inc_idx &= 7;
	}
}

/* Write a 0 cidx increment value to enable SGE interrupts for this queue */
static void
csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
{
	csio_wr_reg32(hw, CIDXINC_V(0)		|
			  INGRESSQID_V(iqid)	|
			  TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
			  MYPF_REG(SGE_PF_GTS_A));
}

/*
 * csio_wr_fill_fl - Populate the FL buffers of a FL queue.
 * @hw: HW module.
 * @flq: Freelist queue.
 *
 * Fill up freelist buffer entries with buffers of size specified
 * in the size register.
 *
 */
static int
csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
{
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	struct csio_sge *sge = &wrm->sge;
	__be64 *d = (__be64 *)(flq->vstart);
	struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
	uint64_t paddr;
	int sreg = flq->un.fl.sreg;
	int n = flq->credits;

	while (n--) {
		buf->len = sge->sge_fl_buf_size[sreg];
		buf->vaddr = dma_alloc_coherent(&hw->pdev->dev, buf->len,
						&buf->paddr, GFP_KERNEL);
		if (!buf->vaddr) {
			csio_err(hw, "Could only fill %d buffers!\n", n + 1);
			return -ENOMEM;
		}

		paddr = buf->paddr | (sreg & 0xF);

		*d++ = cpu_to_be64(paddr);
		buf++;
	}

	return 0;
}

/*
 * csio_wr_update_fl -
 * @hw: HW module.
 * @flq: Freelist queue.
 *
 *
 */
static inline void
csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
{

	flq->inc_idx += n;
	flq->pidx += n;
	if (unlikely(flq->pidx >= flq->credits))
		flq->pidx -= (uint16_t)flq->credits;

	CSIO_INC_STATS(flq, n_flq_refill);
}

/*
 * csio_wr_alloc_q - Allocate a WR queue and initialize it.
 * @hw: HW module
 * @qsize: Size of the queue in bytes
 * @wrsize: Since of WR in this queue, if fixed.
 * @type: Type of queue (Ingress/Egress/Freelist)
 * @owner: Module that owns this queue.
 * @nflb: Number of freelist buffers for FL.
 * @sreg: What is the FL buffer size register?
 * @iq_int_handler: Ingress queue handler in INTx mode.
 *
 * This function allocates and sets up a queue for the caller
 * of size qsize, aligned at the required boundary. This is subject to
 * be free entries being available in the queue array. If one is found,
 * it is initialized with the allocated queue, marked as being used (owner),
 * and a handle returned to the caller in form of the queue's index
 * into the q_arr array.
 * If user has indicated a freelist (by specifying nflb > 0), create
 * another queue (with its own index into q_arr) for the freelist. Allocate
 * memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
 * idx in the ingress queue's flq.idx. This is how a Freelist is associated
 * with its owning ingress queue.
 */
int
csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
		uint16_t type, void *owner, uint32_t nflb, int sreg,
		iq_handler_t iq_intx_handler)
{
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	struct csio_q	*q, *flq;
	int		free_idx = wrm->free_qidx;
	int		ret_idx = free_idx;
	uint32_t	qsz;
	int flq_idx;

	if (free_idx >= wrm->num_q) {
		csio_err(hw, "No more free queues.\n");
		return -1;
	}

	switch (type) {
	case CSIO_EGRESS:
		qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
		break;
	case CSIO_INGRESS:
		switch (wrsize) {
		case 16:
		case 32:
		case 64:
		case 128:
			break;
		default:
			csio_err(hw, "Invalid Ingress queue WR size:%d\n",
				    wrsize);
			return -1;
		}

		/*
		 * Number of elements must be a multiple of 16
		 * So this includes status page size
		 */
		qsz = ALIGN(qsize/wrsize, 16) * wrsize;

		break;
	case CSIO_FREELIST:
		qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
		break;
	default:
		csio_err(hw, "Invalid queue type: 0x%x\n", type);
		return -1;
	}

	q = wrm->q_arr[free_idx];

	q->vstart = dma_alloc_coherent(&hw->pdev->dev, qsz, &q->pstart,
				       GFP_KERNEL);
	if (!q->vstart) {
		csio_err(hw,
			 "Failed to allocate DMA memory for "
			 "queue at id: %d size: %d\n", free_idx, qsize);
		return -1;
	}

	q->type		= type;
	q->owner	= owner;
	q->pidx		= q->cidx = q->inc_idx = 0;
	q->size		= qsz;
	q->wr_sz	= wrsize;	/* If using fixed size WRs */

	wrm->free_qidx++;

	if (type == CSIO_INGRESS) {
		/* Since queue area is set to zero */
		q->un.iq.genbit	= 1;

		/*
		 * Ingress queue status page size is always the size of
		 * the ingress queue entry.
		 */
		q->credits	= (qsz - q->wr_sz) / q->wr_sz;
		q->vwrap	= (void *)((uintptr_t)(q->vstart) + qsz
							- q->wr_sz);

		/* Allocate memory for FL if requested */
		if (nflb > 0) {
			flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
						  sizeof(__be64), CSIO_FREELIST,
						  owner, 0, sreg, NULL);
			if (flq_idx == -1) {
				csio_err(hw,
					 "Failed to allocate FL queue"
					 " for IQ idx:%d\n", free_idx);
				return -1;
			}

			/* Associate the new FL with the Ingress quue */
			q->un.iq.flq_idx = flq_idx;

			flq = wrm->q_arr[q->un.iq.flq_idx];
			flq->un.fl.bufs = kcalloc(flq->credits,
						  sizeof(struct csio_dma_buf),
						  GFP_KERNEL);
			if (!flq->un.fl.bufs) {
				csio_err(hw,
					 "Failed to allocate FL queue bufs"
					 " for IQ idx:%d\n", free_idx);
				return -1;
			}

			flq->un.fl.packen = 0;
			flq->un.fl.offset = 0;
			flq->un.fl.sreg = sreg;

			/* Fill up the free list buffers */
			if (csio_wr_fill_fl(hw, flq))
				return -1;

			/*
			 * Make sure in a FLQ, atleast 1 credit (8 FL buffers)
			 * remains unpopulated,otherwise HW thinks
			 * FLQ is empty.
			 */
			flq->pidx = flq->inc_idx = flq->credits - 8;
		} else {
			q->un.iq.flq_idx = -1;
		}

		/* Associate the IQ INTx handler. */
		q->un.iq.iq_intx_handler = iq_intx_handler;

		csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;

	} else if (type == CSIO_EGRESS) {
		q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
		q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
						- csio_wr_qstat_pgsz(hw));
		csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
	} else { /* Freelist */
		q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
		q->vwrap   = (void *)((uintptr_t)(q->vstart) + qsz
						- csio_wr_qstat_pgsz(hw));
		csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
	}

	return ret_idx;
}

/*
 * csio_wr_iq_create_rsp - Response handler for IQ creation.
 * @hw: The HW module.
 * @mbp: Mailbox.
 * @iq_idx: Ingress queue that got created.
 *
 * Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
 */
static int
csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
{
	struct csio_iq_params iqp;
	enum fw_retval retval;
	uint32_t iq_id;
	int flq_idx;

	memset(&iqp, 0, sizeof(struct csio_iq_params));

	csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);

	if (retval != FW_SUCCESS) {
		csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
		mempool_free(mbp, hw->mb_mempool);
		return -EINVAL;
	}

	csio_q_iqid(hw, iq_idx)		= iqp.iqid;
	csio_q_physiqid(hw, iq_idx)	= iqp.physiqid;
	csio_q_pidx(hw, iq_idx)		= csio_q_cidx(hw, iq_idx) = 0;
	csio_q_inc_idx(hw, iq_idx)	= 0;

	/* Actual iq-id. */
	iq_id = iqp.iqid - hw->wrm.fw_iq_start;

	/* Set the iq-id to iq map table. */
	if (iq_id >= CSIO_MAX_IQ) {
		csio_err(hw,
			 "Exceeding MAX_IQ(%d) supported!"
			 " iqid:%d rel_iqid:%d FW iq_start:%d\n",
			 CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
		mempool_free(mbp, hw->mb_mempool);
		return -EINVAL;
	}
	csio_q_set_intr_map(hw, iq_idx, iq_id);

	/*
	 * During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
	 * ingress context of this queue. This will block interrupts to
	 * this queue until the next GTS write. Therefore, we do a
	 * 0-cidx increment GTS write for this queue just to clear the
	 * interrupt_sent bit. This will re-enable interrupts to this
	 * queue.
	 */
	csio_wr_sge_intr_enable(hw, iqp.physiqid);

	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
	if (flq_idx != -1) {
		struct csio_q *flq = hw->wrm.q_arr[flq_idx];

		csio_q_flid(hw, flq_idx) = iqp.fl0id;
		csio_q_cidx(hw, flq_idx) = 0;
		csio_q_pidx(hw, flq_idx)    = csio_q_credits(hw, flq_idx) - 8;
		csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;

		/* Now update SGE about the buffers allocated during init */
		csio_wr_ring_fldb(hw, flq);
	}

	mempool_free(mbp, hw->mb_mempool);

	return 0;
}

/*
 * csio_wr_iq_create - Configure an Ingress queue with FW.
 * @hw: The HW module.
 * @priv: Private data object.
 * @iq_idx: Ingress queue index in the WR module.
 * @vec: MSIX vector.
 * @portid: PCIE Channel to be associated with this queue.
 * @async: Is this a FW asynchronous message handling queue?
 * @cbfn: Completion callback.
 *
 * This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
 * with alloc/write bits set.
 */
int
csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
		  uint32_t vec, uint8_t portid, bool async,
		  void (*cbfn) (struct csio_hw *, struct csio_mb *))
{
	struct csio_mb  *mbp;
	struct csio_iq_params iqp;
	int flq_idx;

	memset(&iqp, 0, sizeof(struct csio_iq_params));
	csio_q_portid(hw, iq_idx) = portid;

	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
	if (!mbp) {
		csio_err(hw, "IQ command out of memory!\n");
		return -ENOMEM;
	}

	switch (hw->intr_mode) {
	case CSIO_IM_INTX:
	case CSIO_IM_MSI:
		/* For interrupt forwarding queue only */
		if (hw->intr_iq_idx == iq_idx)
			iqp.iqandst	= X_INTERRUPTDESTINATION_PCIE;
		else
			iqp.iqandst	= X_INTERRUPTDESTINATION_IQ;
		iqp.iqandstindex	=
			csio_q_physiqid(hw, hw->intr_iq_idx);
		break;
	case CSIO_IM_MSIX:
		iqp.iqandst		= X_INTERRUPTDESTINATION_PCIE;
		iqp.iqandstindex	= (uint16_t)vec;
		break;
	case CSIO_IM_NONE:
		mempool_free(mbp, hw->mb_mempool);
		return -EINVAL;
	}

	/* Pass in the ingress queue cmd parameters */
	iqp.pfn			= hw->pfn;
	iqp.vfn			= 0;
	iqp.iq_start		= 1;
	iqp.viid		= 0;
	iqp.type		= FW_IQ_TYPE_FL_INT_CAP;
	iqp.iqasynch		= async;
	if (csio_intr_coalesce_cnt)
		iqp.iqanus	= X_UPDATESCHEDULING_COUNTER_OPTTIMER;
	else
		iqp.iqanus	= X_UPDATESCHEDULING_TIMER;
	iqp.iqanud		= X_UPDATEDELIVERY_INTERRUPT;
	iqp.iqpciech		= portid;
	iqp.iqintcntthresh	= (uint8_t)csio_sge_thresh_reg;

	switch (csio_q_wr_sz(hw, iq_idx)) {
	case 16:
		iqp.iqesize = 0; break;
	case 32:
		iqp.iqesize = 1; break;
	case 64:
		iqp.iqesize = 2; break;
	case 128:
		iqp.iqesize = 3; break;
	}

	iqp.iqsize		= csio_q_size(hw, iq_idx) /
						csio_q_wr_sz(hw, iq_idx);
	iqp.iqaddr		= csio_q_pstart(hw, iq_idx);

	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
	if (flq_idx != -1) {
		enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
		struct csio_q *flq = hw->wrm.q_arr[flq_idx];

		iqp.fl0paden	= 1;
		iqp.fl0packen	= flq->un.fl.packen ? 1 : 0;
		iqp.fl0fbmin	= X_FETCHBURSTMIN_64B;
		iqp.fl0fbmax	= ((chip == CHELSIO_T5) ?
				  X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
		iqp.fl0size	= csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
		iqp.fl0addr	= csio_q_pstart(hw, flq_idx);
	}

	csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);

	if (csio_mb_issue(hw, mbp)) {
		csio_err(hw, "Issue of IQ cmd failed!\n");
		mempool_free(mbp, hw->mb_mempool);
		return -EINVAL;
	}

	if (cbfn != NULL)
		return 0;

	return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
}

/*
 * csio_wr_eq_create_rsp - Response handler for EQ creation.
 * @hw: The HW module.
 * @mbp: Mailbox.
 * @eq_idx: Egress queue that got created.
 *
 * Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
 */
static int
csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
{
	struct csio_eq_params eqp;
	enum fw_retval retval;

	memset(&eqp, 0, sizeof(struct csio_eq_params));

	csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);

	if (retval != FW_SUCCESS) {
		csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
		mempool_free(mbp, hw->mb_mempool);
		return -EINVAL;
	}

	csio_q_eqid(hw, eq_idx)	= (uint16_t)eqp.eqid;
	csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
	csio_q_pidx(hw, eq_idx)	= csio_q_cidx(hw, eq_idx) = 0;
	csio_q_inc_idx(hw, eq_idx) = 0;

	mempool_free(mbp, hw->mb_mempool);

	return 0;
}

/*
 * csio_wr_eq_create - Configure an Egress queue with FW.
 * @hw: HW module.
 * @priv: Private data.
 * @eq_idx: Egress queue index in the WR module.
 * @iq_idx: Associated ingress queue index.
 * @cbfn: Completion callback.
 *
 * This API configures a offload egress queue with FW by issuing a
 * FW_EQ_OFLD_CMD  (with alloc + write ) mailbox.
 */
int
csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
		  int iq_idx, uint8_t portid,
		  void (*cbfn) (struct csio_hw *, struct csio_mb *))
{
	struct csio_mb  *mbp;
	struct csio_eq_params eqp;

	memset(&eqp, 0, sizeof(struct csio_eq_params));

	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
	if (!mbp) {
		csio_err(hw, "EQ command out of memory!\n");
		return -ENOMEM;
	}

	eqp.pfn			= hw->pfn;
	eqp.vfn			= 0;
	eqp.eqstart		= 1;
	eqp.hostfcmode		= X_HOSTFCMODE_STATUS_PAGE;
	eqp.iqid		= csio_q_iqid(hw, iq_idx);
	eqp.fbmin		= X_FETCHBURSTMIN_64B;
	eqp.fbmax		= X_FETCHBURSTMAX_512B;
	eqp.cidxfthresh		= 0;
	eqp.pciechn		= portid;
	eqp.eqsize		= csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
	eqp.eqaddr		= csio_q_pstart(hw, eq_idx);

	csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
				    &eqp, cbfn);

	if (csio_mb_issue(hw, mbp)) {
		csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
		mempool_free(mbp, hw->mb_mempool);
		return -EINVAL;
	}

	if (cbfn != NULL)
		return 0;

	return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
}

/*
 * csio_wr_iq_destroy_rsp - Response handler for IQ removal.
 * @hw: The HW module.
 * @mbp: Mailbox.
 * @iq_idx: Ingress queue that was freed.
 *
 * Handle FW_IQ_CMD (free) mailbox completion.
 */
static int
csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
{
	enum fw_retval retval = csio_mb_fw_retval(mbp);
	int rv = 0;

	if (retval != FW_SUCCESS)
		rv = -EINVAL;

	mempool_free(mbp, hw->mb_mempool);

	return rv;
}

/*
 * csio_wr_iq_destroy - Free an ingress queue.
 * @hw: The HW module.
 * @priv: Private data object.
 * @iq_idx: Ingress queue index to destroy
 * @cbfn: Completion callback.
 *
 * This API frees an ingress queue by issuing the FW_IQ_CMD
 * with the free bit set.
 */
static int
csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
		   void (*cbfn)(struct csio_hw *, struct csio_mb *))
{
	int rv = 0;
	struct csio_mb  *mbp;
	struct csio_iq_params iqp;
	int flq_idx;

	memset(&iqp, 0, sizeof(struct csio_iq_params));

	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
	if (!mbp)
		return -ENOMEM;

	iqp.pfn		= hw->pfn;
	iqp.vfn		= 0;
	iqp.iqid	= csio_q_iqid(hw, iq_idx);
	iqp.type	= FW_IQ_TYPE_FL_INT_CAP;

	flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
	if (flq_idx != -1)
		iqp.fl0id = csio_q_flid(hw, flq_idx);
	else
		iqp.fl0id = 0xFFFF;

	iqp.fl1id = 0xFFFF;

	csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);

	rv = csio_mb_issue(hw, mbp);
	if (rv != 0) {
		mempool_free(mbp, hw->mb_mempool);
		return rv;
	}

	if (cbfn != NULL)
		return 0;

	return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
}

/*
 * csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
 * @hw: The HW module.
 * @mbp: Mailbox.
 * @eq_idx: Egress queue that was freed.
 *
 * Handle FW_OFLD_EQ_CMD (free) mailbox completion.
 */
static int
csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
{
	enum fw_retval retval = csio_mb_fw_retval(mbp);
	int rv = 0;

	if (retval != FW_SUCCESS)
		rv = -EINVAL;

	mempool_free(mbp, hw->mb_mempool);

	return rv;
}

/*
 * csio_wr_eq_destroy - Free an Egress queue.
 * @hw: The HW module.
 * @priv: Private data object.
 * @eq_idx: Egress queue index to destroy
 * @cbfn: Completion callback.
 *
 * This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
 * with the free bit set.
 */
static int
csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
		   void (*cbfn) (struct csio_hw *, struct csio_mb *))
{
	int rv = 0;
	struct csio_mb  *mbp;
	struct csio_eq_params eqp;

	memset(&eqp, 0, sizeof(struct csio_eq_params));

	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
	if (!mbp)
		return -ENOMEM;

	eqp.pfn		= hw->pfn;
	eqp.vfn		= 0;
	eqp.eqid	= csio_q_eqid(hw, eq_idx);

	csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);

	rv = csio_mb_issue(hw, mbp);
	if (rv != 0) {
		mempool_free(mbp, hw->mb_mempool);
		return rv;
	}

	if (cbfn != NULL)
		return 0;

	return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
}

/*
 * csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
 * @hw: HW module
 * @qidx: Egress queue index
 *
 * Cleanup the Egress queue status page.
 */
static void
csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
{
	struct csio_q	*q = csio_hw_to_wrm(hw)->q_arr[qidx];
	struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;

	memset(stp, 0, sizeof(*stp));
}

/*
 * csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
 * @hw: HW module
 * @qidx: Ingress queue index
 *
 * Cleanup the footer entries in the given ingress queue,
 * set to 1 the internal copy of genbit.
 */
static void
csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
{
	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
	struct csio_q	*q	= wrm->q_arr[qidx];
	void *wr;
	struct csio_iqwr_footer *ftr;
	uint32_t i = 0;

	/* set to 1 since we are just about zero out genbit */
	q->un.iq.genbit = 1;

	for (i = 0; i < q->credits; i++) {
		/* Get the WR */
		wr = (void *)((uintptr_t)q->vstart +
					   (i * q->wr_sz));
		/* Get the footer */
		ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
					  (q->wr_sz - sizeof(*ftr)));
		/* Zero out footer */
		memset(ftr, 0, sizeof(*ftr));
	}
}

int
csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
{
	int i, flq_idx;
	struct csio_q *q;
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	int rv;

	for (i = 0; i < wrm->free_qidx; i++) {
		q = wrm->q_arr[i];

		switch (q->type) {
		case CSIO_EGRESS:
			if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
				csio_wr_cleanup_eq_stpg(hw, i);
				if (!cmd) {
					csio_q_eqid(hw, i) = CSIO_MAX_QID;
					continue;
				}

				rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
				if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
					cmd = false;

				csio_q_eqid(hw, i) = CSIO_MAX_QID;
			}
			fallthrough;
		case CSIO_INGRESS:
			if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
				csio_wr_cleanup_iq_ftr(hw, i);
				if (!cmd) {
					csio_q_iqid(hw, i) = CSIO_MAX_QID;
					flq_idx = csio_q_iq_flq_idx(hw, i);
					if (flq_idx != -1)
						csio_q_flid(hw, flq_idx) =
								CSIO_MAX_QID;
					continue;
				}

				rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
				if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
					cmd = false;

				csio_q_iqid(hw, i) = CSIO_MAX_QID;
				flq_idx = csio_q_iq_flq_idx(hw, i);
				if (flq_idx != -1)
					csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
			}
			break;
		default:
			break;
		}
	}

	hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;

	return 0;
}

/*
 * csio_wr_get - Get requested size of WR entry/entries from queue.
 * @hw: HW module.
 * @qidx: Index of queue.
 * @size: Cumulative size of Work request(s).
 * @wrp: Work request pair.
 *
 * If requested credits are available, return the start address of the
 * work request in the work request pair. Set pidx accordingly and
 * return.
 *
 * NOTE about WR pair:
 * ==================
 * A WR can start towards the end of a queue, and then continue at the
 * beginning, since the queue is considered to be circular. This will
 * require a pair of address/size to be passed back to the caller -
 * hence Work request pair format.
 */
int
csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
	    struct csio_wr_pair *wrp)
{
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	struct csio_q *q = wrm->q_arr[qidx];
	void *cwr = (void *)((uintptr_t)(q->vstart) +
						(q->pidx * CSIO_QCREDIT_SZ));
	struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
	uint16_t cidx = q->cidx = ntohs(stp->cidx);
	uint16_t pidx = q->pidx;
	uint32_t req_sz	= ALIGN(size, CSIO_QCREDIT_SZ);
	int req_credits	= req_sz / CSIO_QCREDIT_SZ;
	int credits;

	CSIO_DB_ASSERT(q->owner != NULL);
	CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
	CSIO_DB_ASSERT(cidx <= q->credits);

	/* Calculate credits */
	if (pidx > cidx) {
		credits = q->credits - (pidx - cidx) - 1;
	} else if (cidx > pidx) {
		credits = cidx - pidx - 1;
	} else {
		/* cidx == pidx, empty queue */
		credits = q->credits;
		CSIO_INC_STATS(q, n_qempty);
	}

	/*
	 * Check if we have enough credits.
	 * credits = 1 implies queue is full.
	 */
	if (!credits || (req_credits > credits)) {
		CSIO_INC_STATS(q, n_qfull);
		return -EBUSY;
	}

	/*
	 * If we are here, we have enough credits to satisfy the
	 * request. Check if we are near the end of q, and if WR spills over.
	 * If it does, use the first addr/size to cover the queue until
	 * the end. Fit the remainder portion of the request at the top
	 * of queue and return it in the second addr/len. Set pidx
	 * accordingly.
	 */
	if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
		wrp->addr1 = cwr;
		wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
		wrp->addr2 = q->vstart;
		wrp->size2 = req_sz - wrp->size1;
		q->pidx	= (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
							CSIO_QCREDIT_SZ);
		CSIO_INC_STATS(q, n_qwrap);
		CSIO_INC_STATS(q, n_eq_wr_split);
	} else {
		wrp->addr1 = cwr;
		wrp->size1 = req_sz;
		wrp->addr2 = NULL;
		wrp->size2 = 0;
		q->pidx	+= (uint16_t)req_credits;

		/* We are the end of queue, roll back pidx to top of queue */
		if (unlikely(q->pidx == q->credits)) {
			q->pidx = 0;
			CSIO_INC_STATS(q, n_qwrap);
		}
	}

	q->inc_idx = (uint16_t)req_credits;

	CSIO_INC_STATS(q, n_tot_reqs);

	return 0;
}

/*
 * csio_wr_copy_to_wrp - Copies given data into WR.
 * @data_buf - Data buffer
 * @wrp - Work request pair.
 * @wr_off - Work request offset.
 * @data_len - Data length.
 *
 * Copies the given data in Work Request. Work request pair(wrp) specifies
 * address information of Work request.
 * Returns: none
 */
void
csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
		   uint32_t wr_off, uint32_t data_len)
{
	uint32_t nbytes;

	/* Number of space available in buffer addr1 of WRP */
	nbytes = ((wrp->size1 - wr_off) >= data_len) ?
					data_len : (wrp->size1 - wr_off);

	memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
	data_len -= nbytes;

	/* Write the remaining data from the begining of circular buffer */
	if (data_len) {
		CSIO_DB_ASSERT(data_len <= wrp->size2);
		CSIO_DB_ASSERT(wrp->addr2 != NULL);
		memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
	}
}

/*
 * csio_wr_issue - Notify chip of Work request.
 * @hw: HW module.
 * @qidx: Index of queue.
 * @prio: 0: Low priority, 1: High priority
 *
 * Rings the SGE Doorbell by writing the current producer index of the passed
 * in queue into the register.
 *
 */
int
csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
{
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	struct csio_q *q = wrm->q_arr[qidx];

	CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));

	wmb();
	/* Ring SGE Doorbell writing q->pidx into it */
	csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
			  PIDX_T5_V(q->inc_idx) | DBTYPE_F,
			  MYPF_REG(SGE_PF_KDOORBELL_A));
	q->inc_idx = 0;

	return 0;
}

static inline uint32_t
csio_wr_avail_qcredits(struct csio_q *q)
{
	if (q->pidx > q->cidx)
		return q->pidx - q->cidx;
	else if (q->cidx > q->pidx)
		return q->credits - (q->cidx - q->pidx);
	else
		return 0;	/* cidx == pidx, empty queue */
}

/*
 * csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
 * @hw: HW module.
 * @flq: The freelist queue.
 *
 * Invalidate the driver's version of a freelist buffer entry,
 * without freeing the associated the DMA memory. The entry
 * to be invalidated is picked up from the current Free list
 * queue cidx.
 *
 */
static inline void
csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
{
	flq->cidx++;
	if (flq->cidx == flq->credits) {
		flq->cidx = 0;
		CSIO_INC_STATS(flq, n_qwrap);
	}
}

/*
 * csio_wr_process_fl - Process a freelist completion.
 * @hw: HW module.
 * @q: The ingress queue attached to the Freelist.
 * @wr: The freelist completion WR in the ingress queue.
 * @len_to_qid: The lower 32-bits of the first flit of the RSP footer
 * @iq_handler: Caller's handler for this completion.
 * @priv: Private pointer of caller
 *
 */
static inline void
csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
		   void *wr, uint32_t len_to_qid,
		   void (*iq_handler)(struct csio_hw *, void *,
				      uint32_t, struct csio_fl_dma_buf *,
				      void *),
		   void *priv)
{
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	struct csio_sge *sge = &wrm->sge;
	struct csio_fl_dma_buf flb;
	struct csio_dma_buf *buf, *fbuf;
	uint32_t bufsz, len, lastlen = 0;
	struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];

	CSIO_DB_ASSERT(flq != NULL);

	len = len_to_qid;

	if (len & IQWRF_NEWBUF) {
		if (flq->un.fl.offset > 0) {
			csio_wr_inval_flq_buf(hw, flq);
			flq->un.fl.offset = 0;
		}
		len = IQWRF_LEN_GET(len);
	}

	CSIO_DB_ASSERT(len != 0);

	flb.totlen = len;

	/* Consume all freelist buffers used for len bytes */
	for (fbuf = flb.flbufs; ; fbuf++) {
		buf = &flq->un.fl.bufs[flq->cidx];
		bufsz = csio_wr_fl_bufsz(sge, buf);

		fbuf->paddr	= buf->paddr;
		fbuf->vaddr	= buf->vaddr;

		flb.offset	= flq->un.fl.offset;
		lastlen		= min(bufsz, len);
		fbuf->len	= lastlen;

		len -= lastlen;
		if (!len)
			break;
		csio_wr_inval_flq_buf(hw, flq);
	}

	flb.defer_free = flq->un.fl.packen ? 0 : 1;

	iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
		   &flb, priv);

	if (flq->un.fl.packen)
		flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
	else
		csio_wr_inval_flq_buf(hw, flq);

}

/*
 * csio_is_new_iqwr - Is this a new Ingress queue entry ?
 * @q: Ingress quueue.
 * @ftr: Ingress queue WR SGE footer.
 *
 * The entry is new if our generation bit matches the corresponding
 * bit in the footer of the current WR.
 */
static inline bool
csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
{
	return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
}

/*
 * csio_wr_process_iq - Process elements in Ingress queue.
 * @hw:  HW pointer
 * @qidx: Index of queue
 * @iq_handler: Handler for this queue
 * @priv: Caller's private pointer
 *
 * This routine walks through every entry of the ingress queue, calling
 * the provided iq_handler with the entry, until the generation bit
 * flips.
 */
int
csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
		   void (*iq_handler)(struct csio_hw *, void *,
				      uint32_t, struct csio_fl_dma_buf *,
				      void *),
		   void *priv)
{
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
	struct csio_iqwr_footer *ftr;
	uint32_t wr_type, fw_qid, qid;
	struct csio_q *q_completed;
	struct csio_q *flq = csio_iq_has_fl(q) ?
					wrm->q_arr[q->un.iq.flq_idx] : NULL;
	int rv = 0;

	/* Get the footer */
	ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
					  (q->wr_sz - sizeof(*ftr)));

	/*
	 * When q wrapped around last time, driver should have inverted
	 * ic.genbit as well.
	 */
	while (csio_is_new_iqwr(q, ftr)) {

		CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
						(uintptr_t)q->vwrap);
		rmb();
		wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);

		switch (wr_type) {
		case X_RSPD_TYPE_CPL:
			/* Subtract footer from WR len */
			iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
			break;
		case X_RSPD_TYPE_FLBUF:
			csio_wr_process_fl(hw, q, wr,
					   ntohl(ftr->pldbuflen_qid),
					   iq_handler, priv);
			break;
		case X_RSPD_TYPE_INTR:
			fw_qid = ntohl(ftr->pldbuflen_qid);
			qid = fw_qid - wrm->fw_iq_start;
			q_completed = hw->wrm.intr_map[qid];

			if (unlikely(qid ==
					csio_q_physiqid(hw, hw->intr_iq_idx))) {
				/*
				 * We are already in the Forward Interrupt
				 * Interrupt Queue Service! Do-not service
				 * again!
				 *
				 */
			} else {
				CSIO_DB_ASSERT(q_completed);
				CSIO_DB_ASSERT(
					q_completed->un.iq.iq_intx_handler);

				/* Call the queue handler. */
				q_completed->un.iq.iq_intx_handler(hw, NULL,
						0, NULL, (void *)q_completed);
			}
			break;
		default:
			csio_warn(hw, "Unknown resp type 0x%x received\n",
				 wr_type);
			CSIO_INC_STATS(q, n_rsp_unknown);
			break;
		}

		/*
		 * Ingress *always* has fixed size WR entries. Therefore,
		 * there should always be complete WRs towards the end of
		 * queue.
		 */
		if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {

			/* Roll over to start of queue */
			q->cidx = 0;
			wr	= q->vstart;

			/* Toggle genbit */
			q->un.iq.genbit ^= 0x1;

			CSIO_INC_STATS(q, n_qwrap);
		} else {
			q->cidx++;
			wr	= (void *)((uintptr_t)(q->vstart) +
					   (q->cidx * q->wr_sz));
		}

		ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
						  (q->wr_sz - sizeof(*ftr)));
		q->inc_idx++;

	} /* while (q->un.iq.genbit == hdr->genbit) */

	/*
	 * We need to re-arm SGE interrupts in case we got a stray interrupt,
	 * especially in msix mode. With INTx, this may be a common occurence.
	 */
	if (unlikely(!q->inc_idx)) {
		CSIO_INC_STATS(q, n_stray_comp);
		rv = -EINVAL;
		goto restart;
	}

	/* Replenish free list buffers if pending falls below low water mark */
	if (flq) {
		uint32_t avail  = csio_wr_avail_qcredits(flq);
		if (avail <= 16) {
			/* Make sure in FLQ, atleast 1 credit (8 FL buffers)
			 * remains unpopulated otherwise HW thinks
			 * FLQ is empty.
			 */
			csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
			csio_wr_ring_fldb(hw, flq);
		}
	}

restart:
	/* Now inform SGE about our incremental index value */
	csio_wr_reg32(hw, CIDXINC_V(q->inc_idx)		|
			  INGRESSQID_V(q->un.iq.physiqid)	|
			  TIMERREG_V(csio_sge_timer_reg),
			  MYPF_REG(SGE_PF_GTS_A));
	q->stats.n_tot_rsps += q->inc_idx;

	q->inc_idx = 0;

	return rv;
}

int
csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
		   void (*iq_handler)(struct csio_hw *, void *,
				      uint32_t, struct csio_fl_dma_buf *,
				      void *),
		   void *priv)
{
	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
	struct csio_q	*iq	= wrm->q_arr[qidx];

	return csio_wr_process_iq(hw, iq, iq_handler, priv);
}

static int
csio_closest_timer(struct csio_sge *s, int time)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
		delta = time - s->timer_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

static int
csio_closest_thresh(struct csio_sge *s, int cnt)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
		delta = cnt - s->counter_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

static void
csio_wr_fixup_host_params(struct csio_hw *hw)
{
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	struct csio_sge *sge = &wrm->sge;
	uint32_t clsz = L1_CACHE_BYTES;
	uint32_t s_hps = PAGE_SHIFT - 10;
	uint32_t stat_len = clsz > 64 ? 128 : 64;
	u32 fl_align = clsz < 32 ? 32 : clsz;
	u32 pack_align;
	u32 ingpad, ingpack;

	csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
		      HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
		      HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
		      HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
		      SGE_HOST_PAGE_SIZE_A);

	/* T5 introduced the separation of the Free List Padding and
	 * Packing Boundaries.  Thus, we can select a smaller Padding
	 * Boundary to avoid uselessly chewing up PCIe Link and Memory
	 * Bandwidth, and use a Packing Boundary which is large enough
	 * to avoid false sharing between CPUs, etc.
	 *
	 * For the PCI Link, the smaller the Padding Boundary the
	 * better.  For the Memory Controller, a smaller Padding
	 * Boundary is better until we cross under the Memory Line
	 * Size (the minimum unit of transfer to/from Memory).  If we
	 * have a Padding Boundary which is smaller than the Memory
	 * Line Size, that'll involve a Read-Modify-Write cycle on the
	 * Memory Controller which is never good.
	 */

	/* We want the Packing Boundary to be based on the Cache Line
	 * Size in order to help avoid False Sharing performance
	 * issues between CPUs, etc.  We also want the Packing
	 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
	 * get best performance when the Packing Boundary is a
	 * multiple of the Maximum Payload Size.
	 */
	pack_align = fl_align;
	if (pci_is_pcie(hw->pdev)) {
		u32 mps, mps_log;
		u16 devctl;

		/* The PCIe Device Control Maximum Payload Size field
		 * [bits 7:5] encodes sizes as powers of 2 starting at
		 * 128 bytes.
		 */
		pcie_capability_read_word(hw->pdev, PCI_EXP_DEVCTL, &devctl);
		mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
		mps = 1 << mps_log;
		if (mps > pack_align)
			pack_align = mps;
	}

	/* T5/T6 have a special interpretation of the "0"
	 * value for the Packing Boundary.  This corresponds to 16
	 * bytes instead of the expected 32 bytes.
	 */
	if (pack_align <= 16) {
		ingpack = INGPACKBOUNDARY_16B_X;
		fl_align = 16;
	} else if (pack_align == 32) {
		ingpack = INGPACKBOUNDARY_64B_X;
		fl_align = 64;
	} else {
		u32 pack_align_log = fls(pack_align) - 1;

		ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
		fl_align = pack_align;
	}

	/* Use the smallest Ingress Padding which isn't smaller than
	 * the Memory Controller Read/Write Size.  We'll take that as
	 * being 8 bytes since we don't know of any system with a
	 * wider Memory Controller Bus Width.
	 */
	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
		ingpad = INGPADBOUNDARY_32B_X;
	else
		ingpad = T6_INGPADBOUNDARY_8B_X;

	csio_set_reg_field(hw, SGE_CONTROL_A,
			   INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
			   EGRSTATUSPAGESIZE_F,
			   INGPADBOUNDARY_V(ingpad) |
			   EGRSTATUSPAGESIZE_V(stat_len != 64));
	csio_set_reg_field(hw, SGE_CONTROL2_A,
			   INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
			   INGPACKBOUNDARY_V(ingpack));

	/* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
	csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);

	/*
	 * If using hard params, the following will get set correctly
	 * in csio_wr_set_sge().
	 */
	if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
		csio_wr_reg32(hw,
			(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
			fl_align - 1) & ~(fl_align - 1),
			SGE_FL_BUFFER_SIZE2_A);
		csio_wr_reg32(hw,
			(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
			fl_align - 1) & ~(fl_align - 1),
			SGE_FL_BUFFER_SIZE3_A);
	}

	sge->csio_fl_align = fl_align;

	csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);

	/* default value of rx_dma_offset of the NIC driver */
	csio_set_reg_field(hw, SGE_CONTROL_A,
			   PKTSHIFT_V(PKTSHIFT_M),
			   PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));

	csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
				    CSUM_HAS_PSEUDO_HDR_F, 0);
}

static void
csio_init_intr_coalesce_parms(struct csio_hw *hw)
{
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	struct csio_sge *sge = &wrm->sge;

	csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
	if (csio_intr_coalesce_cnt) {
		csio_sge_thresh_reg = 0;
		csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
		return;
	}

	csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
}

/*
 * csio_wr_get_sge - Get SGE register values.
 * @hw: HW module.
 *
 * Used by non-master functions and by master-functions relying on config file.
 */
static void
csio_wr_get_sge(struct csio_hw *hw)
{
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	struct csio_sge *sge = &wrm->sge;
	uint32_t ingpad;
	int i;
	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
	u32 ingress_rx_threshold;

	sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);

	ingpad = INGPADBOUNDARY_G(sge->sge_control);

	switch (ingpad) {
	case X_INGPCIEBOUNDARY_32B:
		sge->csio_fl_align = 32; break;
	case X_INGPCIEBOUNDARY_64B:
		sge->csio_fl_align = 64; break;
	case X_INGPCIEBOUNDARY_128B:
		sge->csio_fl_align = 128; break;
	case X_INGPCIEBOUNDARY_256B:
		sge->csio_fl_align = 256; break;
	case X_INGPCIEBOUNDARY_512B:
		sge->csio_fl_align = 512; break;
	case X_INGPCIEBOUNDARY_1024B:
		sge->csio_fl_align = 1024; break;
	case X_INGPCIEBOUNDARY_2048B:
		sge->csio_fl_align = 2048; break;
	case X_INGPCIEBOUNDARY_4096B:
		sge->csio_fl_align = 4096; break;
	}

	for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
		csio_get_flbuf_size(hw, sge, i);

	timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
	timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
	timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);

	sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
					TIMERVALUE0_G(timer_value_0_and_1));
	sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
					TIMERVALUE1_G(timer_value_0_and_1));
	sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
					TIMERVALUE2_G(timer_value_2_and_3));
	sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
					TIMERVALUE3_G(timer_value_2_and_3));
	sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
					TIMERVALUE4_G(timer_value_4_and_5));
	sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
					TIMERVALUE5_G(timer_value_4_and_5));

	ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
	sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
	sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
	sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
	sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);

	csio_init_intr_coalesce_parms(hw);
}

/*
 * csio_wr_set_sge - Initialize SGE registers
 * @hw: HW module.
 *
 * Used by Master function to initialize SGE registers in the absence
 * of a config file.
 */
static void
csio_wr_set_sge(struct csio_hw *hw)
{
	struct csio_wrm *wrm = csio_hw_to_wrm(hw);
	struct csio_sge *sge = &wrm->sge;
	int i;

	/*
	 * Set up our basic SGE mode to deliver CPL messages to our Ingress
	 * Queue and Packet Date to the Free List.
	 */
	csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);

	sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);

	/* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */

	/*
	 * Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
	 * and generate an interrupt when this occurs so we can recover.
	 */
	csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
			   LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
			   LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
	csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
			   HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
			   HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));

	csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
			   ENABLE_DROP_F);

	/* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */

	CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
	csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
		      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
	csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
		      & ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
	CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
	CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
	CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
	CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
	CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);

	for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
		csio_get_flbuf_size(hw, sge, i);

	/* Initialize interrupt coalescing attributes */
	sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
	sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
	sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
	sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
	sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
	sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;

	sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
	sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
	sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
	sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;

	csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
		      THRESHOLD_1_V(sge->counter_val[1]) |
		      THRESHOLD_2_V(sge->counter_val[2]) |
		      THRESHOLD_3_V(sge->counter_val[3]),
		      SGE_INGRESS_RX_THRESHOLD_A);

	csio_wr_reg32(hw,
		   TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
		   TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
		   SGE_TIMER_VALUE_0_AND_1_A);

	csio_wr_reg32(hw,
		   TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
		   TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
		   SGE_TIMER_VALUE_2_AND_3_A);

	csio_wr_reg32(hw,
		   TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
		   TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
		   SGE_TIMER_VALUE_4_AND_5_A);

	csio_init_intr_coalesce_parms(hw);
}

void
csio_wr_sge_init(struct csio_hw *hw)
{
	/*
	 * If we are master and chip is not initialized:
	 *    - If we plan to use the config file, we need to fixup some
	 *      host specific registers, and read the rest of the SGE
	 *      configuration.
	 *    - If we dont plan to use the config file, we need to initialize
	 *      SGE entirely, including fixing the host specific registers.
	 * If we are master and chip is initialized, just read and work off of
	 *	the already initialized SGE values.
	 * If we arent the master, we are only allowed to read and work off of
	 *      the already initialized SGE values.
	 *
	 * Therefore, before calling this function, we assume that the master-
	 * ship of the card, state and whether to use config file or not, have
	 * already been decided.
	 */
	if (csio_is_hw_master(hw)) {
		if (hw->fw_state != CSIO_DEV_STATE_INIT)
			csio_wr_fixup_host_params(hw);

		if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
			csio_wr_get_sge(hw);
		else
			csio_wr_set_sge(hw);
	} else
		csio_wr_get_sge(hw);
}

/*
 * csio_wrm_init - Initialize Work request module.
 * @wrm: WR module
 * @hw: HW pointer
 *
 * Allocates memory for an array of queue pointers starting at q_arr.
 */
int
csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
{
	int i;

	if (!wrm->num_q) {
		csio_err(hw, "Num queues is not set\n");
		return -EINVAL;
	}

	wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL);
	if (!wrm->q_arr)
		goto err;

	for (i = 0; i < wrm->num_q; i++) {
		wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
		if (!wrm->q_arr[i]) {
			while (--i >= 0)
				kfree(wrm->q_arr[i]);
			goto err_free_arr;
		}
	}
	wrm->free_qidx	= 0;

	return 0;

err_free_arr:
	kfree(wrm->q_arr);
err:
	return -ENOMEM;
}

/*
 * csio_wrm_exit - Initialize Work request module.
 * @wrm: WR module
 * @hw: HW module
 *
 * Uninitialize WR module. Free q_arr and pointers in it.
 * We have the additional job of freeing the DMA memory associated
 * with the queues.
 */
void
csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
{
	int i;
	uint32_t j;
	struct csio_q *q;
	struct csio_dma_buf *buf;

	for (i = 0; i < wrm->num_q; i++) {
		q = wrm->q_arr[i];

		if (wrm->free_qidx && (i < wrm->free_qidx)) {
			if (q->type == CSIO_FREELIST) {
				if (!q->un.fl.bufs)
					continue;
				for (j = 0; j < q->credits; j++) {
					buf = &q->un.fl.bufs[j];
					if (!buf->vaddr)
						continue;
					dma_free_coherent(&hw->pdev->dev,
							buf->len, buf->vaddr,
							buf->paddr);
				}
				kfree(q->un.fl.bufs);
			}
			dma_free_coherent(&hw->pdev->dev, q->size,
					q->vstart, q->pstart);
		}
		kfree(q);
	}

	hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;

	kfree(wrm->q_arr);
}