Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
// SPDX-License-Identifier: GPL-2.0-only
/*
 * fs/crypto/hooks.c
 *
 * Encryption hooks for higher-level filesystem operations.
 */

#include "fscrypt_private.h"

/**
 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
 * @inode: the inode being opened
 * @filp: the struct file being set up
 *
 * Currently, an encrypted regular file can only be opened if its encryption key
 * is available; access to the raw encrypted contents is not supported.
 * Therefore, we first set up the inode's encryption key (if not already done)
 * and return an error if it's unavailable.
 *
 * We also verify that if the parent directory (from the path via which the file
 * is being opened) is encrypted, then the inode being opened uses the same
 * encryption policy.  This is needed as part of the enforcement that all files
 * in an encrypted directory tree use the same encryption policy, as a
 * protection against certain types of offline attacks.  Note that this check is
 * needed even when opening an *unencrypted* file, since it's forbidden to have
 * an unencrypted file in an encrypted directory.
 *
 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
 */
int fscrypt_file_open(struct inode *inode, struct file *filp)
{
	int err;
	struct dentry *dir;

	err = fscrypt_require_key(inode);
	if (err)
		return err;

	dir = dget_parent(file_dentry(filp));
	if (IS_ENCRYPTED(d_inode(dir)) &&
	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
		fscrypt_warn(inode,
			     "Inconsistent encryption context (parent directory: %lu)",
			     d_inode(dir)->i_ino);
		err = -EPERM;
	}
	dput(dir);
	return err;
}
EXPORT_SYMBOL_GPL(fscrypt_file_open);

int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
			   struct dentry *dentry)
{
	if (fscrypt_is_nokey_name(dentry))
		return -ENOKEY;
	/*
	 * We don't need to separately check that the directory inode's key is
	 * available, as it's implied by the dentry not being a no-key name.
	 */

	if (!fscrypt_has_permitted_context(dir, inode))
		return -EXDEV;

	return 0;
}
EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);

int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
			     struct inode *new_dir, struct dentry *new_dentry,
			     unsigned int flags)
{
	if (fscrypt_is_nokey_name(old_dentry) ||
	    fscrypt_is_nokey_name(new_dentry))
		return -ENOKEY;
	/*
	 * We don't need to separately check that the directory inodes' keys are
	 * available, as it's implied by the dentries not being no-key names.
	 */

	if (old_dir != new_dir) {
		if (IS_ENCRYPTED(new_dir) &&
		    !fscrypt_has_permitted_context(new_dir,
						   d_inode(old_dentry)))
			return -EXDEV;

		if ((flags & RENAME_EXCHANGE) &&
		    IS_ENCRYPTED(old_dir) &&
		    !fscrypt_has_permitted_context(old_dir,
						   d_inode(new_dentry)))
			return -EXDEV;
	}
	return 0;
}
EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);

int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
			     struct fscrypt_name *fname)
{
	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);

	if (err && err != -ENOENT)
		return err;

	if (fname->is_nokey_name) {
		spin_lock(&dentry->d_lock);
		dentry->d_flags |= DCACHE_NOKEY_NAME;
		spin_unlock(&dentry->d_lock);
	}
	return err;
}
EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);

/**
 * fscrypt_prepare_lookup_partial() - prepare lookup without filename setup
 * @dir: the encrypted directory being searched
 * @dentry: the dentry being looked up in @dir
 *
 * This function should be used by the ->lookup and ->atomic_open methods of
 * filesystems that handle filename encryption and no-key name encoding
 * themselves and thus can't use fscrypt_prepare_lookup().  Like
 * fscrypt_prepare_lookup(), this will try to set up the directory's encryption
 * key and will set DCACHE_NOKEY_NAME on the dentry if the key is unavailable.
 * However, this function doesn't set up a struct fscrypt_name for the filename.
 *
 * Return: 0 on success; -errno on error.  Note that the encryption key being
 *	   unavailable is not considered an error.  It is also not an error if
 *	   the encryption policy is unsupported by this kernel; that is treated
 *	   like the key being unavailable, so that files can still be deleted.
 */
int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry)
{
	int err = fscrypt_get_encryption_info(dir, true);

	if (!err && !fscrypt_has_encryption_key(dir)) {
		spin_lock(&dentry->d_lock);
		dentry->d_flags |= DCACHE_NOKEY_NAME;
		spin_unlock(&dentry->d_lock);
	}
	return err;
}
EXPORT_SYMBOL_GPL(fscrypt_prepare_lookup_partial);

int __fscrypt_prepare_readdir(struct inode *dir)
{
	return fscrypt_get_encryption_info(dir, true);
}
EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);

int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
{
	if (attr->ia_valid & ATTR_SIZE)
		return fscrypt_require_key(d_inode(dentry));
	return 0;
}
EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);

/**
 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
 * @inode: the inode on which flags are being changed
 * @oldflags: the old flags
 * @flags: the new flags
 *
 * The caller should be holding i_rwsem for write.
 *
 * Return: 0 on success; -errno if the flags change isn't allowed or if
 *	   another error occurs.
 */
int fscrypt_prepare_setflags(struct inode *inode,
			     unsigned int oldflags, unsigned int flags)
{
	struct fscrypt_inode_info *ci;
	struct fscrypt_master_key *mk;
	int err;

	/*
	 * When the CASEFOLD flag is set on an encrypted directory, we must
	 * derive the secret key needed for the dirhash.  This is only possible
	 * if the directory uses a v2 encryption policy.
	 */
	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
		err = fscrypt_require_key(inode);
		if (err)
			return err;
		ci = inode->i_crypt_info;
		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
			return -EINVAL;
		mk = ci->ci_master_key;
		down_read(&mk->mk_sem);
		if (mk->mk_present)
			err = fscrypt_derive_dirhash_key(ci, mk);
		else
			err = -ENOKEY;
		up_read(&mk->mk_sem);
		return err;
	}
	return 0;
}

/**
 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
 * @dir: directory in which the symlink is being created
 * @target: plaintext symlink target
 * @len: length of @target excluding null terminator
 * @max_len: space the filesystem has available to store the symlink target
 * @disk_link: (out) the on-disk symlink target being prepared
 *
 * This function computes the size the symlink target will require on-disk,
 * stores it in @disk_link->len, and validates it against @max_len.  An
 * encrypted symlink may be longer than the original.
 *
 * Additionally, @disk_link->name is set to @target if the symlink will be
 * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
 * on-disk target later.  (The reason for the two-step process is that some
 * filesystems need to know the size of the symlink target before creating the
 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
 *
 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
 * occurred while setting up the encryption key.
 */
int fscrypt_prepare_symlink(struct inode *dir, const char *target,
			    unsigned int len, unsigned int max_len,
			    struct fscrypt_str *disk_link)
{
	const union fscrypt_policy *policy;

	/*
	 * To calculate the size of the encrypted symlink target we need to know
	 * the amount of NUL padding, which is determined by the flags set in
	 * the encryption policy which will be inherited from the directory.
	 */
	policy = fscrypt_policy_to_inherit(dir);
	if (policy == NULL) {
		/* Not encrypted */
		disk_link->name = (unsigned char *)target;
		disk_link->len = len + 1;
		if (disk_link->len > max_len)
			return -ENAMETOOLONG;
		return 0;
	}
	if (IS_ERR(policy))
		return PTR_ERR(policy);

	/*
	 * Calculate the size of the encrypted symlink and verify it won't
	 * exceed max_len.  Note that for historical reasons, encrypted symlink
	 * targets are prefixed with the ciphertext length, despite this
	 * actually being redundant with i_size.  This decreases by 2 bytes the
	 * longest symlink target we can accept.
	 *
	 * We could recover 1 byte by not counting a null terminator, but
	 * counting it (even though it is meaningless for ciphertext) is simpler
	 * for now since filesystems will assume it is there and subtract it.
	 */
	if (!__fscrypt_fname_encrypted_size(policy, len,
					    max_len - sizeof(struct fscrypt_symlink_data) - 1,
					    &disk_link->len))
		return -ENAMETOOLONG;
	disk_link->len += sizeof(struct fscrypt_symlink_data) + 1;

	disk_link->name = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);

int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
			      unsigned int len, struct fscrypt_str *disk_link)
{
	int err;
	struct qstr iname = QSTR_INIT(target, len);
	struct fscrypt_symlink_data *sd;
	unsigned int ciphertext_len;

	/*
	 * fscrypt_prepare_new_inode() should have already set up the new
	 * symlink inode's encryption key.  We don't wait until now to do it,
	 * since we may be in a filesystem transaction now.
	 */
	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
		return -ENOKEY;

	if (disk_link->name) {
		/* filesystem-provided buffer */
		sd = (struct fscrypt_symlink_data *)disk_link->name;
	} else {
		sd = kmalloc(disk_link->len, GFP_NOFS);
		if (!sd)
			return -ENOMEM;
	}
	ciphertext_len = disk_link->len - sizeof(*sd) - 1;
	sd->len = cpu_to_le16(ciphertext_len);

	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
				    ciphertext_len);
	if (err)
		goto err_free_sd;

	/*
	 * Null-terminating the ciphertext doesn't make sense, but we still
	 * count the null terminator in the length, so we might as well
	 * initialize it just in case the filesystem writes it out.
	 */
	sd->encrypted_path[ciphertext_len] = '\0';

	/* Cache the plaintext symlink target for later use by get_link() */
	err = -ENOMEM;
	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
	if (!inode->i_link)
		goto err_free_sd;

	if (!disk_link->name)
		disk_link->name = (unsigned char *)sd;
	return 0;

err_free_sd:
	if (!disk_link->name)
		kfree(sd);
	return err;
}
EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);

/**
 * fscrypt_get_symlink() - get the target of an encrypted symlink
 * @inode: the symlink inode
 * @caddr: the on-disk contents of the symlink
 * @max_size: size of @caddr buffer
 * @done: if successful, will be set up to free the returned target if needed
 *
 * If the symlink's encryption key is available, we decrypt its target.
 * Otherwise, we encode its target for presentation.
 *
 * This may sleep, so the filesystem must have dropped out of RCU mode already.
 *
 * Return: the presentable symlink target or an ERR_PTR()
 */
const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
				unsigned int max_size,
				struct delayed_call *done)
{
	const struct fscrypt_symlink_data *sd;
	struct fscrypt_str cstr, pstr;
	bool has_key;
	int err;

	/* This is for encrypted symlinks only */
	if (WARN_ON_ONCE(!IS_ENCRYPTED(inode)))
		return ERR_PTR(-EINVAL);

	/* If the decrypted target is already cached, just return it. */
	pstr.name = READ_ONCE(inode->i_link);
	if (pstr.name)
		return pstr.name;

	/*
	 * Try to set up the symlink's encryption key, but we can continue
	 * regardless of whether the key is available or not.
	 */
	err = fscrypt_get_encryption_info(inode, false);
	if (err)
		return ERR_PTR(err);
	has_key = fscrypt_has_encryption_key(inode);

	/*
	 * For historical reasons, encrypted symlink targets are prefixed with
	 * the ciphertext length, even though this is redundant with i_size.
	 */

	if (max_size < sizeof(*sd) + 1)
		return ERR_PTR(-EUCLEAN);
	sd = caddr;
	cstr.name = (unsigned char *)sd->encrypted_path;
	cstr.len = le16_to_cpu(sd->len);

	if (cstr.len == 0)
		return ERR_PTR(-EUCLEAN);

	if (cstr.len + sizeof(*sd) > max_size)
		return ERR_PTR(-EUCLEAN);

	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
	if (err)
		return ERR_PTR(err);

	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
	if (err)
		goto err_kfree;

	err = -EUCLEAN;
	if (pstr.name[0] == '\0')
		goto err_kfree;

	pstr.name[pstr.len] = '\0';

	/*
	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
	 * symlink targets encoded without the key, since those become outdated
	 * once the key is added.  This pairs with the READ_ONCE() above and in
	 * the VFS path lookup code.
	 */
	if (!has_key ||
	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
		set_delayed_call(done, kfree_link, pstr.name);

	return pstr.name;

err_kfree:
	kfree(pstr.name);
	return ERR_PTR(err);
}
EXPORT_SYMBOL_GPL(fscrypt_get_symlink);

/**
 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
 * @path: the path for the encrypted symlink being queried
 * @stat: the struct being filled with the symlink's attributes
 *
 * Override st_size of encrypted symlinks to be the length of the decrypted
 * symlink target (or the no-key encoded symlink target, if the key is
 * unavailable) rather than the length of the encrypted symlink target.  This is
 * necessary for st_size to match the symlink target that userspace actually
 * sees.  POSIX requires this, and some userspace programs depend on it.
 *
 * This requires reading the symlink target from disk if needed, setting up the
 * inode's encryption key if possible, and then decrypting or encoding the
 * symlink target.  This makes lstat() more heavyweight than is normally the
 * case.  However, decrypted symlink targets will be cached in ->i_link, so
 * usually the symlink won't have to be read and decrypted again later if/when
 * it is actually followed, readlink() is called, or lstat() is called again.
 *
 * Return: 0 on success, -errno on failure
 */
int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
{
	struct dentry *dentry = path->dentry;
	struct inode *inode = d_inode(dentry);
	const char *link;
	DEFINE_DELAYED_CALL(done);

	/*
	 * To get the symlink target that userspace will see (whether it's the
	 * decrypted target or the no-key encoded target), we can just get it in
	 * the same way the VFS does during path resolution and readlink().
	 */
	link = READ_ONCE(inode->i_link);
	if (!link) {
		link = inode->i_op->get_link(dentry, inode, &done);
		if (IS_ERR(link))
			return PTR_ERR(link);
	}
	stat->size = strlen(link);
	do_delayed_call(&done);
	return 0;
}
EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);