Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 | // SPDX-License-Identifier: GPL-2.0 #define DEBUG #include <linux/wait.h> #include <linux/ptrace.h> #include <asm/spu.h> #include <asm/spu_priv1.h> #include <asm/io.h> #include <asm/unistd.h> #include "spufs.h" /* interrupt-level stop callback function. */ void spufs_stop_callback(struct spu *spu, int irq) { struct spu_context *ctx = spu->ctx; /* * It should be impossible to preempt a context while an exception * is being processed, since the context switch code is specially * coded to deal with interrupts ... But, just in case, sanity check * the context pointer. It is OK to return doing nothing since * the exception will be regenerated when the context is resumed. */ if (ctx) { /* Copy exception arguments into module specific structure */ switch(irq) { case 0 : ctx->csa.class_0_pending = spu->class_0_pending; ctx->csa.class_0_dar = spu->class_0_dar; break; case 1 : ctx->csa.class_1_dsisr = spu->class_1_dsisr; ctx->csa.class_1_dar = spu->class_1_dar; break; case 2 : break; } /* ensure that the exception status has hit memory before a * thread waiting on the context's stop queue is woken */ smp_wmb(); wake_up_all(&ctx->stop_wq); } } int spu_stopped(struct spu_context *ctx, u32 *stat) { u64 dsisr; u32 stopped; stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; top: *stat = ctx->ops->status_read(ctx); if (*stat & stopped) { /* * If the spu hasn't finished stopping, we need to * re-read the register to get the stopped value. */ if (*stat & SPU_STATUS_RUNNING) goto top; return 1; } if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags)) return 1; dsisr = ctx->csa.class_1_dsisr; if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED)) return 1; if (ctx->csa.class_0_pending) return 1; return 0; } static int spu_setup_isolated(struct spu_context *ctx) { int ret; u64 __iomem *mfc_cntl; u64 sr1; u32 status; unsigned long timeout; const u32 status_loading = SPU_STATUS_RUNNING | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS; ret = -ENODEV; if (!isolated_loader) goto out; /* * We need to exclude userspace access to the context. * * To protect against memory access we invalidate all ptes * and make sure the pagefault handlers block on the mutex. */ spu_unmap_mappings(ctx); mfc_cntl = &ctx->spu->priv2->mfc_control_RW; /* purge the MFC DMA queue to ensure no spurious accesses before we * enter kernel mode */ timeout = jiffies + HZ; out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST); while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK) != MFC_CNTL_PURGE_DMA_COMPLETE) { if (time_after(jiffies, timeout)) { printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n", __func__); ret = -EIO; goto out; } cond_resched(); } /* clear purge status */ out_be64(mfc_cntl, 0); /* put the SPE in kernel mode to allow access to the loader */ sr1 = spu_mfc_sr1_get(ctx->spu); sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK; spu_mfc_sr1_set(ctx->spu, sr1); /* start the loader */ ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32); ctx->ops->signal2_write(ctx, (unsigned long)isolated_loader & 0xffffffff); ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE); ret = 0; timeout = jiffies + HZ; while (((status = ctx->ops->status_read(ctx)) & status_loading) == status_loading) { if (time_after(jiffies, timeout)) { printk(KERN_ERR "%s: timeout waiting for loader\n", __func__); ret = -EIO; goto out_drop_priv; } cond_resched(); } if (!(status & SPU_STATUS_RUNNING)) { /* If isolated LOAD has failed: run SPU, we will get a stop-and * signal later. */ pr_debug("%s: isolated LOAD failed\n", __func__); ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE); ret = -EACCES; goto out_drop_priv; } if (!(status & SPU_STATUS_ISOLATED_STATE)) { /* This isn't allowed by the CBEA, but check anyway */ pr_debug("%s: SPU fell out of isolated mode?\n", __func__); ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP); ret = -EINVAL; goto out_drop_priv; } out_drop_priv: /* Finished accessing the loader. Drop kernel mode */ sr1 |= MFC_STATE1_PROBLEM_STATE_MASK; spu_mfc_sr1_set(ctx->spu, sr1); out: return ret; } static int spu_run_init(struct spu_context *ctx, u32 *npc) { unsigned long runcntl = SPU_RUNCNTL_RUNNABLE; int ret; spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); /* * NOSCHED is synchronous scheduling with respect to the caller. * The caller waits for the context to be loaded. */ if (ctx->flags & SPU_CREATE_NOSCHED) { if (ctx->state == SPU_STATE_SAVED) { ret = spu_activate(ctx, 0); if (ret) return ret; } } /* * Apply special setup as required. */ if (ctx->flags & SPU_CREATE_ISOLATE) { if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) { ret = spu_setup_isolated(ctx); if (ret) return ret; } /* * If userspace has set the runcntrl register (eg, to * issue an isolated exit), we need to re-set it here */ runcntl = ctx->ops->runcntl_read(ctx) & (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE); if (runcntl == 0) runcntl = SPU_RUNCNTL_RUNNABLE; } else { unsigned long privcntl; if (test_thread_flag(TIF_SINGLESTEP)) privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP; else privcntl = SPU_PRIVCNTL_MODE_NORMAL; ctx->ops->privcntl_write(ctx, privcntl); ctx->ops->npc_write(ctx, *npc); } ctx->ops->runcntl_write(ctx, runcntl); if (ctx->flags & SPU_CREATE_NOSCHED) { spuctx_switch_state(ctx, SPU_UTIL_USER); } else { if (ctx->state == SPU_STATE_SAVED) { ret = spu_activate(ctx, 0); if (ret) return ret; } else { spuctx_switch_state(ctx, SPU_UTIL_USER); } } set_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags); return 0; } static int spu_run_fini(struct spu_context *ctx, u32 *npc, u32 *status) { int ret = 0; spu_del_from_rq(ctx); *status = ctx->ops->status_read(ctx); *npc = ctx->ops->npc_read(ctx); spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); clear_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags); spu_switch_log_notify(NULL, ctx, SWITCH_LOG_EXIT, *status); spu_release(ctx); if (signal_pending(current)) ret = -ERESTARTSYS; return ret; } /* * SPU syscall restarting is tricky because we violate the basic * assumption that the signal handler is running on the interrupted * thread. Here instead, the handler runs on PowerPC user space code, * while the syscall was called from the SPU. * This means we can only do a very rough approximation of POSIX * signal semantics. */ static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret, unsigned int *npc) { int ret; switch (*spu_ret) { case -ERESTARTSYS: case -ERESTARTNOINTR: /* * Enter the regular syscall restarting for * sys_spu_run, then restart the SPU syscall * callback. */ *npc -= 8; ret = -ERESTARTSYS; break; case -ERESTARTNOHAND: case -ERESTART_RESTARTBLOCK: /* * Restart block is too hard for now, just return -EINTR * to the SPU. * ERESTARTNOHAND comes from sys_pause, we also return * -EINTR from there. * Assume that we need to be restarted ourselves though. */ *spu_ret = -EINTR; ret = -ERESTARTSYS; break; default: printk(KERN_WARNING "%s: unexpected return code %ld\n", __func__, *spu_ret); ret = 0; } return ret; } static int spu_process_callback(struct spu_context *ctx) { struct spu_syscall_block s; u32 ls_pointer, npc; void __iomem *ls; long spu_ret; int ret; /* get syscall block from local store */ npc = ctx->ops->npc_read(ctx) & ~3; ls = (void __iomem *)ctx->ops->get_ls(ctx); ls_pointer = in_be32(ls + npc); if (ls_pointer > (LS_SIZE - sizeof(s))) return -EFAULT; memcpy_fromio(&s, ls + ls_pointer, sizeof(s)); /* do actual syscall without pinning the spu */ ret = 0; spu_ret = -ENOSYS; npc += 4; if (s.nr_ret < NR_syscalls) { spu_release(ctx); /* do actual system call from here */ spu_ret = spu_sys_callback(&s); if (spu_ret <= -ERESTARTSYS) { ret = spu_handle_restartsys(ctx, &spu_ret, &npc); } mutex_lock(&ctx->state_mutex); if (ret == -ERESTARTSYS) return ret; } /* need to re-get the ls, as it may have changed when we released the * spu */ ls = (void __iomem *)ctx->ops->get_ls(ctx); /* write result, jump over indirect pointer */ memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret)); ctx->ops->npc_write(ctx, npc); ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE); return ret; } long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event) { int ret; u32 status; if (mutex_lock_interruptible(&ctx->run_mutex)) return -ERESTARTSYS; ctx->event_return = 0; ret = spu_acquire(ctx); if (ret) goto out_unlock; spu_enable_spu(ctx); spu_update_sched_info(ctx); ret = spu_run_init(ctx, npc); if (ret) { spu_release(ctx); goto out; } do { ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status)); if (unlikely(ret)) { /* * This is nasty: we need the state_mutex for all the * bookkeeping even if the syscall was interrupted by * a signal. ewww. */ mutex_lock(&ctx->state_mutex); break; } if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))) { if (!(status & SPU_STATUS_STOPPED_BY_STOP)) continue; } spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); if ((status & SPU_STATUS_STOPPED_BY_STOP) && (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) { ret = spu_process_callback(ctx); if (ret) break; status &= ~SPU_STATUS_STOPPED_BY_STOP; } ret = spufs_handle_class1(ctx); if (ret) break; ret = spufs_handle_class0(ctx); if (ret) break; if (signal_pending(current)) ret = -ERESTARTSYS; } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_SINGLE_STEP))); spu_disable_spu(ctx); ret = spu_run_fini(ctx, npc, &status); spu_yield(ctx); if ((status & SPU_STATUS_STOPPED_BY_STOP) && (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100)) ctx->stats.libassist++; if ((ret == 0) || ((ret == -ERESTARTSYS) && ((status & SPU_STATUS_STOPPED_BY_HALT) || (status & SPU_STATUS_SINGLE_STEP) || ((status & SPU_STATUS_STOPPED_BY_STOP) && (status >> SPU_STOP_STATUS_SHIFT != 0x2104))))) ret = status; /* Note: we don't need to force_sig SIGTRAP on single-step * since we have TIF_SINGLESTEP set, thus the kernel will do * it upon return from the syscall anyway. */ if (unlikely(status & SPU_STATUS_SINGLE_STEP)) ret = -ERESTARTSYS; else if (unlikely((status & SPU_STATUS_STOPPED_BY_STOP) && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff)) { force_sig(SIGTRAP); ret = -ERESTARTSYS; } out: *event = ctx->event_return; out_unlock: mutex_unlock(&ctx->run_mutex); return ret; } |